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Abstract

Obesity increases linearly with age and is associated with impaired vascular endothelial function 

and increased risk for cardiovascular disease. Mineralocorticoid receptors (MR) contribute to 

impaired vascular endothelial function in cardiovascular disease; however, their role in 

uncomplicated human obesity is unknown. Because plasma aldosterone levels are elevated in 

obesity and adipocytes may be a source of aldosterone, we hypothesized that MR modulate 

vascular endothelial function in older adults in an adiposity-dependent manner. To test this 

hypothesis, we administered MR blockade (Eplerenone; 100 mg/day) for 1 month in a balanced, 

randomized, double-blind, placebo-controlled, crossover study to 22 older adults (10 men, 55–79 

years) varying widely in adiposity (body mass index: 20–45 kg/m2) but who were free from overt 

cardiovascular disease. We evaluated vascular endothelial function (brachial artery flow-mediated 

dilation [FMD] via ultrasonography) and oxidative stress (plasma F2-isoprostanes and vascular 

endothelial cell protein expression of nitrotyrosine and NADPH oxidase p47phox) during placebo 

and MR blockade. In the whole group, oxidative stress (P>0.05) and FMD did not change with 

MR blockade (6.39±0.67 vs. 6.23±0.73 %, P=0.7, placebo vs. Eplerenone). However, individual 

improvements in FMD in response to Eplerenone were associated with higher total body fat (body 

mass index: r=0.45, P=0.02 and DXA-derived % body fat: r=0.50, P=0.009) and abdominal fat 

(total: r=0.61, P=0.005, visceral: r=0.67, P=0.002 and subcutaneous: r=0.48, P=0.03). In addition, 

greater improvements in FMD with Eplerenone were related with higher baseline fasting glucose 

Address for correspondence: Demetra D. Christou, PhD, Department of Applied Physiology and Kinesiology, University of Florida, 
Gainesville, FL 32611-8205, Fax: 352-392-5262, Phone: 352-294-1715, ddchristou@ufl.edu. 

AUTHOR CONTRIBUTIONS
M.H.H and D.D.C conceived and designed the study; M.H.H., J.K.Y, M.J.L., T.H.M., M.E. and D.D.C. collected the data; M.H.H., 
J.K.Y., M.J.L. and H.K.K. analyzed the data; T.H.M. and M.E. provide on-site medical supervision for experiments; M.H.H and 
D.D.C. performed statistical analysis, prepared figures and drafted manuscript; M.H.H, M.S.S. and D.D.C. interpreted results, edited 
and revised manuscript; J.K.Y, H.K.K., M.J.L., M.S.S., T.H.M. and M.E. provided feedback for manuscript; all authors approved final 
version of manuscript.

NIH Public Access
Author Manuscript
Clin Sci (Lond). Author manuscript; available in PMC 2015 January 30.

Published in final edited form as:
Clin Sci (Lond). 2013 December ; 125(11): 513–520. doi:10.1042/CS20130200.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(r=0.53, P=0.01). MR influence vascular endothelial function in an adiposity-dependent manner in 

healthy older adults.
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INTRODUCTION

More than one third of adults worldwide is overweight or obese [1] and the prevalence of 

obesity increases linearly with age [2]. Obesity is associated with increased risk for 

cardiovascular disease [3], but the underlying mechanisms are not completely understood. 

Substantial evidence supports an independent role of aldosterone in the development and 

progression of cardiovascular disease [4–6]. According to the classic view of physiology, 

aldosterone is secreted by the adrenal gland and is involved in blood pressure regulation by 

acting on the kidney via activation of epithelial mineralocorticoid receptors (MR) [7]. In the 

past decade, non-epithelial presence of MR has been demonstrated in cardiac and vascular 

cells and increasing evidence supports the direct role of MR in modulating vascular function 

and contributing to cardiovascular disease [8].

Recently, findings from studies in vitro and studies performed in rodents demonstrate that 

adipose tissue is a secondary source of aldosterone [9] and that adipocyte-derived 

aldosterone contributes to vascular dysfunction in obesity [10]. In humans, several studies 

have shown that plasma aldosterone levels are positively related with measures of total and 

abdominal adiposity including body mass index [11], waist circumference [12], abdominal 

visceral [13] and subcutaneous adipose tissue [14]. In addition, plasma aldosterone 

concentrations are elevated in the obese compared with lean human subjects [15, 16]. With 

weight loss, aldosterone levels are significantly decreased [14, 17–19], highlighting the 

important role of adipose tissue in the obesity-related increases in aldosterone concentration.

Obesity is also associated with impaired endothelial function [20, 21], an independent 

predictor of future cardiovascular events, disease progression, and long-term outcome [22, 

23]. A key component of endothelial dysfunction is decreased nitric oxide bioavailability 

resulting from either decreased synthesis or increased degradation due to oxidative stress 

[24]. Activation of vascular NADPH oxidase, eNOS uncoupling and other factors lead to 

increased production of reactive oxygen species (ROS), which inactivate nitric oxide, thus 

leading to impaired vascular smooth muscle relaxation and vasodilation [25].

There is strong evidence supporting that aldosterone activation of MR contributes to 

oxidative stress and decreased nitric oxide activity. Data from experimental models of 

cardiovascular disease demonstrated that MR activation increases NADPH oxidase 

expression and activity leading to increased superoxide production, vascular oxidative 

stress, decreased nitric oxide bioavailability and impaired vascular endothelial function, 

while MR blockade reverses these effects [26–29]. Human studies in patients with 

congestive heart failure found that 1 month of MR blockade improves endothelial function 

and this improvement is associated with increased nitric oxide bioactivity [30, 31].
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Taken together these data support a potential role for MR in obesity-related impairments in 

endothelial function, but this has not been studied in human obesity. Thus, in the current 

investigation, we hypothesized that MR modulate vascular endothelial function in an 

adiposity-dependent manner in healthy older adults. To test this hypothesis we administered 

the selective MR antagonist Eplerenone (100 mg daily for 1 month) in a balanced 

randomized, double-blind, placebo-controlled, crossover study in healthy older adults 

varying widely in total and abdominal adiposity. We measured vascular endothelial function 

and oxidative stress markers during placebo and MR blockade.

METHODS

Subjects

Twenty-two healthy adults (55–79 years), 10 men and 12 women, of a wide range of 

adiposity (body mass index: 20.0–44.6 kg/m2; body fat: 25.6–54.1 %) were studied. All 

subjects were sedentary, non-smokers and were free of overt cardiovascular disease and 

other clinical disorders (e.g., diabetes, liver and renal disease) as assessed by medical 

history, physical examination, resting ECG, urinalysis, blood chemistries and hematological 

evaluation. None of the subjects were taking antihypertensive or vasoactive drugs and 

subjects who were taking antioxidant supplements completed a 4-week washout prior to 

study enrolment. All subjects demonstrated normal ECG and blood pressure responses to a 

graded exercise test on a treadmill. The graded exercise protocol is described below under 

the aerobic fitness section. Women were all postmenopausal, established by absence of 

menses for at least 2 years and follicle stimulating hormone >40 IU/L. Postmenopausal 

women were not on hormone replacement therapy for at least 1 year prior to data collection. 

The study was carried out in accordance with the Declaration of Helsinki (2008) and was 

approved by the Institutional Review Boards of the University of Florida, Texas A&M 

University, and Scott & White Health System. The purpose, nature and risk of all procedures 

used were explained to the subjects and their written informed consent was obtained prior to 

participation.

Study design

Subjects were assigned to receive an MR antagonist (Eplerenone; 100 mg per day) for 1 

month in a balanced randomized, double-blind, placebo-controlled, crossover study with 1-

month washout between treatments (Figure 1). Eplerenone was chosen because it has a 

higher selectivity for mineralocorticoid receptors and fewer side effects than the other 

mineralocorticoid receptor antagonist that is currently available (i.e., Spironolactone).

To reduce the risk of hyperkalemia, subjects were not enrolled in the study if their baseline 

serum potassium was greater than 5.5 mmol/L, serum creatinine was greater than 1.6 mg/dL 

or creatinine clearance was less than 30 mL/min. Following study enrollment, serum 

potassium and blood pressure were assessed at baseline, day 3, day 7 and weekly thereafter 

for each treatment. In response to 1-month treatment with Eplerenone, serum potassium 

levels did not rise and systolic blood pressure did not decrease excessively requiring subject 

withdrawal.
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General experimental procedures

All measurements were performed in the morning, at the same time each day, in a semi-

darkened temperature-controlled room after a 12-hour overnight fast (including abstinence 

from caffeine and alcohol) and a minimum of 20 minutes of supine rest. Subjects took their 

morning dose of Eplerenone or placebo exactly one hour prior to data collection.

Vascular endothelial function (flow-mediated dilation; FMD)—Brachial artery 

FMD was assessed non-invasively following established guidelines [32, 33] by using an 

ultrasound/Doppler system equipped with a 7.5 MHz vascular transducer (Aplio XV, 

Toshiba).

Briefly, the subject rested in the supine position with the right arm abducted and fixed in 

position at heart level by using a Versaform pillow (Sammons Preston Rolyan, Bolingbrook, 

IL). A pressure cuff connected to a rapid inflator/deflator system (E20 and AG 101, D. E. 

Hokanson, Bellevue, WA) was placed around the widest part of the subject’s forearm. A 

duplex ultrasound image of the brachial artery (i.e., 2D image and spectral Doppler 

waveforms) was obtained ~7 cm proximal to the antecubital fossa. The Doppler angle of 

insonation for assessing blood velocity was set ≤ 60 degrees. Following image optimization 

the vascular transducer was clamped (Flexbar, Flexbar Machine Corporation, Islandia, NY) 

in place to prevent movement during data collection. To ensure the same segment of the 

brachial artery was imaged in the subsequent ultrasound visit, the distance of the transducer 

relative to the antecubital crease was recorded, a digital photograph of the arm position was 

stored, and the ultrasound image was printed.

Reactive hyperemia was induced by inflating the forearm cuff to 250 mmHg for 5 minutes 

followed by rapid deflation. ECG R-gated duplex ultrasound images of the brachial artery 

were digitally recorded (Vascular Imager, Medical Imaging Applications, LLC, Coralville, 

IA) for one minute to establish pre-occlusion baseline and for 2 minutes after cuff deflation 

to assess peak dilatory response (the maximum brachial artery diameter). End-diastolic 

diameters were analyzed by using a commercially available edge-detection wall-tracking 

software package (Brachial Analyzer, Medical Imaging Applications, LLC, Coralville, IA). 

Individual diameters were averaged (bin: 3 R-gated diameters) before identifying the peak 

diameter. FMD was expressed as absolute change in mm (maximum diameter − baseline 

diameter) and as % change ([(maximum − baseline diameter)/baseline diameter] × 100). To 

quantify the hyperemic response, the first 15 post-occlusion spectral Doppler envelopes and 

at least 15 baseline spectral Doppler envelopes were recorded on super VHS tape and were 

analyzed with the Toshiba ultrasound system software to obtain blood velocity. Blood flow 

(ml/min) was calculated as mean blood velocity × [(baseline diameter)2/4] × μ × 6 × 10−1. 

Shear stress (dyne/cm2) was calculated as 8 × μ × mean blood velocity/baseline diameter, 

where μ was blood viscosity, which was assumed to be 0.035 dyne/cm2 [34]. Ultrasound 

images were analyzed by MH and spectral Doppler was analyzed by ML, both of whom 

were blind to the treatment (i.e., Eplerenone or placebo) and subject identity.

Vascular endothelial cell collection and protein expression—Endothelial cells 

were collected from an antecubital vein as previously described [35–38]. Briefly, 2 sterile J-
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shaped guidewires (Daig, Inc., Minnetonka, MN) were sequentially advanced ~ 10 cm 

through an 18 gauge intravenous catheter and retracted. Cells were recovered by washing 

the wires with a dissociation buffer and centrifugation. Cells were fixed with 4% 

paraformaldehyde (USB corporation, Cleveland, OH), washed thoroughly with PBS, plated 

on poly-L-lysine coated slides (Sigma Chemical, St. Louis, MO), and stored at −80°C until 

the immunofluorescence staining was performed.

For immunofluorescence staining, fixed vascular endothelial cells were rehydrated with PBS 

containing 50 mmol/L glycine and non-specific sites were blocked with 5% donkey serum 

(Jackson Immunoresearch, West Grove, PA). Slides were incubated with one of the 

following primary antibodies followed with corresponding secondary antibody with Alexa 

Fluor 488 (Invitrogen, Carlsbad, CA): nitrotyrosine which is a marker of oxidative stress 

(Abcam, Inc, Cambridge, MA) and NADPH oxidase p47phox (Millipore, Inc., Billerica, 

MA) which is one of the major sources of vascular superoxide. Slides were also incubated 

with a primary antibody for von Willebrand factor (DAKO, Carpinteria, CA) and 

corresponding secondary antibody with Alexa Fluor 555 (Invitrogen, Carlsbad, CA) to allow 

identification of endothelial cells. Finally, slides were mounted with Vectashield containing 

the nuclear stain DAPI (Vector Laboratories, Inc., Burlingame, CA). Because of the large 

number of slides, staining was performed in several batches, but each subject’s slides from 

the Eplerenone and placebo visits were included in the same batch to avoid the influence of 

day-to-day variability in staining. To minimize the potential confound of inter-batch 

variability in staining, 2 slides of human umbilical venous endothelial cells (HUVEC) were 

stained in each batch and intensity for each protein of interest was expressed relative to the 

average HUVEC intensity in that batch.

For analysis, cells were examined with a fluorescence microscope (Eclipse 80i, Nikon 

Instruments, Inc., Melville, NY) at ×100 magnification using the same exposure time. 

Images of endothelial cells with intact nuclei were digitally captured by a coolSNAP ES2 

camera (Photometrics, Tuscon, AR). Endothelial cells were identified by the presence of von 

Willebrand factor staining and nuclear integrity was confirmed by DAPI staining. Vascular 

endothelial cell protein expression was measured with NIS Elements software (version 3.2, 

Nikon Instruments, Inc., Melville, NY) by quantifying Alexa Fluor 488 intensity while 

correcting for background fluorescence. Vascular endothelial cell protein expression is 

reported as intensity per HUVEC intensity.

Blood measures—Standard blood chemistries and hematological evaluation were 

performed at baseline by a clinical laboratory using conventional assays. Insulin resistance 

was estimated using the homeostasis model of insulin resistance, [HOMA-IR; HOMA-IR = 

(fasting insulin μU/ml × fasting glucose mg/dl)/405]. Plasma F2-isoprostanes were measured 

by the Vanderbilt University Eicosanoid Core Laboratory using gas chromatography-mass 

spectrometry, as previously described [39].

Height, weight and adiposity measures—Height was measured to the nearest mm 

using a stadiometer. Body weight was measured to the nearest 0.1 kg with an electronic 

scale (Tanita, Arlington Heights, IL, USA) while subjects were barefoot and dressed in light 

clothing. Body mass index (BMI) was calculated as weight divided by height squared 
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(kg/m2). Total % body fat was assessed with dual-energy x-ray absorptiometry (DPX-IQ, 

GE/Lunar, Salt Lake City, UT, USA) as described previously [40]. Abdominal total, visceral 

and subcutaneous fat were measured at the level of L4-L5 using a single slice computed 

tomography scan and assessed by a commercially available analysis software (Slice-O-

Matic v4.3, Tomovision) [41].

Resting blood pressure—Resting blood pressures were recorded over the brachial 

artery with a semi-automated device (Dinamap, GE, Salt Lake City, UT, USA).

Aerobic fitness—Aerobic fitness was determined using maximal oxygen consumption 

(VO2max) as previously described [40]. Briefly, online computer-assisted open-circuit 

spirometry was used during incremental treadmill exercise. After subjects walked for 6 to 10 

min at a comfortable speed that corresponded to 70 to 80 % of their age-predicted maximal 

heart rate to warm-up, the treadmill grade was increased 2.5% every two minutes until 

volitional exhaustion.

Data Analysis

Statistical analyses were performed using SPSS version 21. Statistical significance for all 

analyses was set at P< 0.05. Paired t-tests were used to compare FMD, blood and vascular 

endothelial cell markers of oxidative stress during MR blockade and placebo treatments. 

Bivariate relations were determined using Pearson product moment correlation coefficients.

RESULTS

Mean values and ranges for baseline subject characteristics are presented in Table 1. 

Subjects varied widely in total and abdominal adiposity. At baseline, total and abdominal 

adiposity were negatively associated with FMD (r=−0.37 to 0.49, P<0.05) and positively 

associated with F2-isoprostanes (r=0.43 to 0.68, P<0.05).

Vascular responses to MR blockade

In the whole group, mean brachial artery FMD was not different with MR blockade 

compared to placebo (P=0.7; Table 2). However, individual responses to MR blockade 

varied from decreased to increased FMD. Subjects whose FMD improved with MR 

blockade had ~ 40% higher abdominal visceral fat compared with those whose FMD either 

decreased or did not change with MR blockade (P=0.03). In agreement with these results, 

greater improvements in FMD in response to MR blockade were related with greater 

baseline body mass index, total % body fat and total abdominal, visceral and subcutaneous 

fat (r=0.45 to 0.67, P≤0.03; Figures 2 and 3). In addition, greater improvements in FMD 

were associated with higher baseline fasting glucose (r=0.53, P=0.01; Figure 4).

Baseline brachial artery diameter was not different between MR blockade and placebo 

treatment, whereas, baseline shear stress increased in response to MR blockade (P=0.9 and 

P=0.02, respectively; Table 2). However, hyperemic shear stress and the change in shear 

stress from baseline did not differ between MR blockade and placebo, indicating that the 

post-occlusion stimulus to induce vasodilation was similar (P=0.8 and P=0.1, respectively, 

Table 2). MR blockade resulted in significant reductions in systolic blood pressure 
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(P<0.0001) and smaller reductions in diastolic blood pressure that did not reach statistical 

significance (P=0.07; Table 2). However, the change in systolic blood pressure was not 

related with the change in FMD in response to MR blockade (P>0.05). In addition, 

accounting for the change in systolic blood pressure in multiple linear regression analysis 

did not contribute significantly to the model (P>0.05) and did not influence the relation of 

adiposity with the change in FMD in response to MR blockade.

Plasma oxidative stress and vascular endothelial cell protein expression

MR blockade did not influence plasma F2-isoprostanes (6.5±1.0 vs. 5.9±0.6 pg/mL, P=0.3; 

placebo vs. MR blockade). Similarly, vascular endothelial cell protein expression of 

nitrotyrosine (marker of oxidative stress) and NADPH oxidase (vascular source of 

superoxide) did not significantly change in response to MR blockade (0.79±0.04 vs. 

0.73±0.22 intensity/HUVEC intensity, P=0.2, 0.66±0.04 vs. 0.57±0.04 intensity/HUVEC 

intensity, P=0.1, respectively). There were no correlations between 1) baseline plasma/

endothelial cell oxidative stress measures, and baseline adiposity or change in FMD with 

MR blockade; and 2) change in plasma/endothelial cell oxidative stress markers and change 

in FMD with MR blockade.

DISCUSSION

We investigated whether MR modulate vascular endothelial function in an adiposity-

dependent manner in healthy older adults with widely varying total and abdominal adiposity. 

Our study demonstrates for the first time that greater improvement in vascular endothelial 

function with MR blockade is seen in those who have greater total and abdominal adiposity. 

Another important finding of our study is that greater enhancements in endothelial function 

in response to MR blockade are associated with higher baseline fasting glucose.

Findings from two recent studies based on animal and in vitro models have shown 

compelling evidence of aldosterone production in adipocytes and contribution of adipocyte-

derived aldosterone to vascular dysfunction in obesity [9, 10]. In humans, several studies 

have shown elevated plasma aldosterone levels with obesity and some have found that 

greater BP reduction with MR blockade was associated with higher body mass index [42] 

and higher waist circumference [43]. Our data extend these findings by demonstrating 

greater increases in FMD with MR blockade are associated with higher body mass index, 

total % body fat, total abdominal, visceral and subcutaneous fat.

Aldosterone might be the potential link between adiposity, insulin resistance, and increased 

risk for cardiovascular disease. A recent review article highlighted data supporting a role for 

elevated plasma aldosterone levels and MR signaling in the pathophysiology of insulin 

resistance and vascular dysfunction [44]. Our data demonstrate greater improvements in 

endothelial function with MR blockade are associated with higher baseline fasting blood 

glucose. These findings suggest that MR play a larger role in vascular dysfunction in 

subjects with lower insulin sensitivity.

In our study, systolic blood pressure significantly decreased in response to MR blockade, 

thus, one might speculate that this could have contributed to the improvements in 
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endothelial function. However, the change in systolic blood pressure was not related with 

the change in FMD in response to MR blockade. In addition, accounting for the change in 

systolic blood pressure in multiple linear regression analysis did not significantly contribute 

to the model and did not influence the relation of adiposity with the change in FMD in 

response to MR blockade. Taken together these findings argue against the assumption that 

reductions in blood pressure might have played a significant role in the beneficial effects of 

Eplerenone on vascular endothelial function.

Our study has several strengths including: 1) novelty of findings; 2) use of balanced 

randomized, double-blind, placebo-controlled, cross-over design; 3) exclusion of subjects 

with overt cardiovascular or other clinical disease and medication use, which could 

confound the independent relation of MR with obesity; 4) quantification of total % body fat 

using DEXA and total abdominal, visceral and subcutaneous fat using computed 

tomography; and 5) rigorous procedures to ensure adherence to intervention.

Our study also has some potential limitations. We did not measure baseline plasma 

aldosterone to determine if it was elevated in our obese subjects. However, several studies 

have already established a relation between aldosterone levels and obesity. MR have equal 

affinity for aldosterone and cortisol, however, the presence of the enzyme 11β-

hydroxysteroid dehydrogenase (11βHSD) in tissues (including the vascular wall) converts 

cortisol to corticone making aldosterone the primary MR agonist [45]. Our current data 

cannot address whether cortisol might have a role in the observed effects of MR blockade in 

human obesity. In cardiovascular disease, MR appear to contribute to vascular dysfunction 

by exacerbating ROS production and oxidative stress, but in our study plasma F2-

isoprostanes and vascular endothelial cell protein expression of nitrotyrosine and NADPH 

oxidase p47phox did not change in response to MR blockade. Given our limited oxidative 

stress measures, we cannot rule out that oxidative stress plays a role in the beneficial effects 

of MR blockade on endothelial function in human obesity. Our protein expression data of 

oxidative stress markers focused on vascular endothelial cell samples, which does not reflect 

whether oxidative stress levels changed in vascular smooth muscle cells. In addition, we 

measured protein expression of a specific subunit of NADPH oxidase, but it is possible that 

other isoforms/subunits and/or activation of the enzyme are playing a role, which cannot be 

addressed using our current methodology. Finally, our subjects were older, thus our results 

might not be applicable to healthy young adults. Additional research is needed to investigate 

whether MR blockade also improves vascular endothelial function in an obesity-dependent 

manner in healthy young adults.

Clinical Significance

Aldosterone contributes to vascular dysfunction in cardiovascular disease. Plasma 

aldosterone is elevated with total and abdominal adiposity in humans, but its influence on 

vascular function is unknown. We sought to examine the role of MR in vascular endothelial 

function in human obesity in a balanced randomized, double-blind, placebo-controlled, 

crossover study using 1 month MR blockade with Eplerenone. We found that Eplerenone-

related improvements in FMD were positively associated with total and abdominal adiposity 

and baseline fasting glucose in healthy older adults. Aldosterone appears to be an important 
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contributor to vascular endothelial dysfunction in healthy older adults with increased 

adiposity and fasting blood glucose. These findings have important clinical implications. 

Therapeutic use of MR blockade to treat hypertension in patients with increased adiposity 

might confer direct favorable effects on obesity-related vascular alterations and might 

reduce the risk of developing cardiovascular complications.

CONCLUSIONS

The present findings demonstrate, for the first time, that MR modulate vascular endothelial 

function in an adiposity-dependent manner in healthy older adults. MR-blockade-related 

improvements in FMD are positively related with both total and abdominal adiposity. We 

also demonstrate that changes in vascular endothelial function with MR blockade are related 

with baseline fasting blood glucose. Our study suggests that MR contribute to the 

pathophysiology of impaired vascular endothelial function in human obesity.
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Figure 1. 
Study design. Subjects were assigned to receive an MR antagonist (Eplerenone; 100 mg per 

day) or placebo for 1 month in a balanced randomized, double-blind, crossover study with 1-

month washout between treatments.
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Figure 2. 
The relation between body mass index (A) and total % body fat (B) with the change in flow-

mediated dilation (FMD) in response to mineralocorticoid receptor blockade.
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Figure 3. 
The relation between total abdominal fat (A), abdominal visceral fat (B) and abdominal 

subcutaneous fat (C) with the change in flow-mediated dilation (FMD) in response to 

mineralocorticoid receptor blockade.
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Figure 4. 
The relation between baseline fasting glucose and the change in flow-mediated dilation 

(FMD) in response to mineralocorticoid receptor blockade.
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Table 1

Subject Characteristics

Mean±SE Min-Max

Sex (male/female) 10/12

Age, years 63.6±1.5 55–79

Weight, kg 89.6±4.3 54.8–132.7

Body mass index, kg/m2 29.9±1.4 20.0–44.6

Body fat, % 39.7±1.9 25.6–54.1

Total abdominal fat, cm2 498.7±51.4 183.1–1045.0

Abdominal visceral fat, cm2 144.3±17.2 45.8–329.5

Abdominal subcutaneous fat, cm2 354.4±41.1 137.3–715.5

VO2max, ml/kg/min 24.9±1.4 14.2–37.7

Total cholesterol, mg/dL 185±6 143–225

LDL cholesterol, mg/dL 114±6 69–162

HDL cholesterol, mg/dL 47±3 30–69

Triglycerides, mg/dL 120±18 58–384

Fasting glucose, mg/dL 95±2 84–109

Fasting insulin, μU/mL 3.3±0.5 2–10

HOMA-IR 0.8±0.1 0.4–2.5

F2-Isoprostanes, pg/mL 69±9 32–198

VO2max = Maximal oxygen consumption; LDL = low density lipoprotein; HDL = high density lipoprotein; HOMA-IR= homeostasis assessment 

model for insulin resistance.
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Table 2

Cardiovascular Responses to Mineralocorticoid Receptor Blockade

Placebo MR Blockade P values

Heart rate, beats/min 60±2 62±2 0.06

Systolic blood pressure, mm Hg 133±3 123±3 <0.0001

Diastolic blood pressure, mm Hg 77±2 72±1 0.07

Baseline diameter, mm 3.77±0.16 3.78±0.15 0.9

Baseline SS, dyne/cm2 1.75±0.12 2.02±0.18 0.02

Hyperemic SS, dyne/cm2 7.66±0.44 7.74±0.46 0.8

Change in SS from baseline, % 348±15 314±25 0.1

Flow-mediated dilation, mm 0.23±0.02 0.23±0.02 0.7

Flow-mediated dilation, % 6.39±0.67 6.23±0.73 0.7

Flow-mediated dilation/hyperemic SS 0.03±0.003 0.03±0.003 0.5

Data are mean±SE. SS: shear stress.
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