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Introduction

The cardiovascular system is the first functional organ system 
to develop in the embryo. Consisting of the heart, vessels, and 
blood, the circulatory system of the embryo is responsible for 
the transport of oxygen, nutrients, and waste to and from the 
developing tissue. Impairments in the early development of 
the cardiovascular system can lead to congenital cardiovascular 
birth defects (1,2), and in severe cases, embryonic death. 
In particular, the early establishment and remodeling of 
the embryonic vasculature is a critical step for maintaining 

embryonic viability. To investigate the mechanisms of vascular 
remodeling in the developing embryo, the mouse has become 
a leading model system due to the availability of genetic 
manipulation tools, and the relatively short gestation period. 
The initial vessels of the mouse embryo form in the extra-
embryonic yolk sac starting at embryonic day E7.5; resulting 
in a network of small vessels which are homogeneous in shape 
and size by E8.5. As the heart begins to beat, the primitive 
capillary plexus of the yolk sac is remodeled into a branched, 
hierarchical vessel network of large arteries, veins, and small 
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capillary beds, evident by E9.5 (3,4). To this end, it has been 
shown that the development of embryonic yolk sac vasculature 
is closely related to the development of the embryonic 
heart (5). Moreover, it is also known that during embryonic 
development, vascular remodeling is induced by hemodynamic 
force (4), and that abnormal blood flow can potentially lead 
to heart defects (6-8). Visualization and quantification of this 
dynamic, morphogenetic remodeling process in living embryos 
remains a significant challenge. However, by combining 
embryo culture with optical imaging and image processing 
techniques, these challenges have begun to be overcome (9,10).

For the live imaging of mouse embryonic development, 
several noninvasive imaging techniques have been proposed 
and applied to obtain structural and functional information. 
Among these, ultrasound biomicroscopy (UBM) has been 
utilized to study the mouse embryos in utero with typical 
spatial resolutions of 30 to 40 μm for axial direction and 
70 to 90 μm for lateral direction (11). Besides structural 
features, blood flow can also be assessed using the UBM-
Doppler method (11). However, due to limitations in spatial 
resolution, achieving high-quality vasculature mapping with 
UBM remains challenging. With similar spatial resolving 
ability, micro-magnetic resonance imaging (μMRI) has 
been used for structural imaging of mouse embryos (12). 
However, the long data acquisition time (several hours) 
restricts the use of μMRI for live imaging of embryonic 
vascular development. With superior spatial resolution, 
optical imaging techniques possess advantages in vascular 
imaging. Therefore, confocal imaging has been used for 
studies on dynamic yolk sac vascular development with the 
spatial resolution down to sub-micron level (13). However, 
due to the field of view of confocal imaging being restricted 
by its imaging mechanism, mapping of large areas of the 
vasculature can be time consuming. Also, high contrast 
imaging of the vasculature usually requires fluorescence 
labeling, which exacerbates the time complexity.

Optical coherence tomography (OCT) is a non-invasive 
interferometry-based imaging system (14) which facilitates 
real-time imaging of biological structures. Beginning 
with ophthalmology (15,16), OCT has been extensively 
used in several other research and clinical applications 
(17-22). Recently, OCT has been applied to live imaging 
of various parts of the mammalian embryo (23-28) with 
resolutions ranging from 2-20 μm, and imaging depths of 
1-5 mm. Overall, OCT has emerged as an excellent tool for 
imaging the live mammalian yolk sac vasculature (24), thus 
facilitating its comprehensive and quantitative analysis.

Doppler OCT has been the conventional tool for vascular 

reconstruction. This method can quantify blood flow. 
However, it has several limitations including: sensitivity to 
the phase stability of the system; limited resolving ability for 
capillaries; insensitivity to transverse component of blood 
flow; and sensitivity to bulk tissue motion (BTM) (29). The 
phase variance technique (30) improves upon this method, in 
that, it can detect blood flow in both transverse and parallel 
directions. However, it is still subject to the other limitations 
of Doppler OCT. Optical angiography (31) is a recently 
proposed method that is more sensitive in detecting blood 
flow compared to Doppler OCT. However, the method 
remains insensitive to the transverse flow component. Apart 
from the aforementioned methods, a few other approaches 
based on OCT data processing have also been proposed. 
For example, speckle correlation detects motion contrast 
by computing cross-correlation between successive frames 
recorded at the same location (32). However, the resolving 
ability of this method is largely dependent on the kernel 
size, in that, big vessels and capillaries may need a different 
kernel size to achieve a comparable reconstruction quality. 
Considering the fact that the variations in scatter caused by 
moving targets are higher than those caused by stationary 
ones, the speckle variance (SV) method (10,33,34) detects 
motion contrast by computing the variance in pixel intensities 
across multiple time points. Although SV provides good 
reconstruction quality for big vessels, its limitations include 
lower reconstruction quality for capillaries, and sensitivity to 
high-intensity fluctuations and BTM (29).

High quality 3-D reconstruction of blood vessels from 
OCT data and their computational analysis involves several 
challenges. These include the presence of multi-scale 
vessel structures, capillaries with weak flow, and artifacts 
contributed by BTM. As mentioned above, the previous 
methods have only partially addressed these challenges. In 
this study, a novel method based on anomaly detection and 
sparsity-based reconstruction is proposed and studied with 
comparisons to the SV approach and confocal imaging. 
This method combines the advantages of SV, whereas it 
uses anomaly detection (35,36) and sparse-reconstruction 
(37,38) to cope with the previously mentioned challenges. 

Materials and methods

Animal manipulations and imaging

Flk1-H2B::YFPtg/tg; Flk1-myr::mCherrytg/tg x CD-1+/+ mouse 
timed matings are set overnight and checked for vaginal 
plugs daily. The day of the observed vaginal plug is counted 
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as E0.5. Embryos are dissected at E8.5 and E9.0 with 
the yolk sac intact in dissection medium containing 89% 
DMEM/F12, 1% Pen-strep solution, and 10% FBS (Life 
Technologies). The dissection station is maintained at 37 ℃.  
After dissection, embryos are transferred to a humidified 
incubator maintained at 37 ℃, 5% CO2 and allowed to 
recover for 30 minutes. The dish and embryo are then 
transferred to a 37 ℃, 5% CO2 microscope stage for image 
acquisition (39). Embryos are positioned such that the 
arterial vessels of the yolk sac can be imaged using OCT.

A spectral-domain OCT system is used to conduct live 
imaging of the mouse embryos. The details of the OCT 
system can be found in, e.g., (40,41). Briefly, the system 
employs a low-coherence Titanium:Sapphire laser source 
(Micra-5, Coherent, Inc.) that has a central wavelength of 
~808 nm and a bandwidth of ~110 nm. A home-built high-
resolution spectrometer with a complementary metal-
oxide-semiconductor (CMOS) camera (Basler, Inc.) is used 
to resolve the interference of the light from the reference 
and sample arms. A two-axis galvanometer-mirror system 
(Cambridge Technology, Inc.) is utilized in the sample arm 
for 2-D transverse scanning of the laser beam over the 
sample. This system setup provides an axial resolution of  
~5 μm in tissue and a transverse resolution of ~4 μm. 
During the experiments, the A-line acquisition speed is set 
to 62.5 kHz. The data acquisition is performed at 20 frames 

per position within the 3-D volume with a frame rate of  
100 Hz. The imaging time for each sample is 200 seconds.

Upon completion of OCT image acquisition, the 
Flk1-H2B::YFPtg/+; Flk1-myr::mCherrytg/+ embryos are 
immediately imaged using a Zeiss LSM 780 laser scanning 
confocal microscope. Embryos are positioned such that the 
arterial vessels of the yolk sac can be imaged using 10× and 
20× objectives. Z-stack images of whole mount yolk sacs are 
acquired, and maximum intensity projections are created 
for analysis of vascular morphology. Followed by this, the 
embryos are fixed in 4% paraformaldehyde/PBS at 4 ℃ 
overnight followed by rinsing in PBS. The yolk sac is then 
removed from the embryo, flattened and mounted on a glass 
slide with Fluoromount-G mounting medium. The entire 
flattened yolk sacs are tile-imaged again using a 10× objective 
on a LSM 780 confocal microscope. Z-stack images of the 
tiled flattened yolk sacs are acquired, and maximum intensity 
projections are created for analysis of vascular morphology.

Overview of the reconstruction method

The data obtained from the OCT system consists of 
spectral information (representing structure) corresponding 
to each A-line. We obtain the structural OCT image by 
computing the magnitude of the Fourier transform of the 
raw data, by means of the FFT algorithm. The intensity 
value at every pixel in the transformed data represents the 
total backscatter from a specific location in the specimen. 
For the purpose of our analysis, we consider the speckle 
arising from the blood flow as signal, and the speckle from 
all other sources as noise.

Figure 1 summarizes the computational pipeline for the 
proposed reconstruction method. Starting with 4-D (3-D 
+ time) OCT data, the first step consists of processing the 
data with anomaly detection and SV. The integrated output 
of this step forms the input for sparse reconstruction, which 
employs a pre-computed parametric dictionary. The sparse 
reconstruction output provides the 3-D vascular data, which 
can be analyzed using standard vessel tracing algorithms  
(42-44), thereby facilitating morphological quantification of 
the data. A detailed presentation of each component follows 
in the next subsections, along with the motivation of each 
method employed.

Anomaly detection

In order to address the multiple inherent challenges 
involved in the reconstruction of blood vessels from OCT 

Figure 1 Overview of the proposed method for OCT vessel 
reconstruction. The proposed method uses anomaly detection and 
sparse reconstruction algorithms for detecting blood vessels. OCT, 
optical coherence tomography; SAD, speckle anomaly detection; 
SSAD, sparsity-integrated speckle anomaly detection.
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data, we propose an anomaly detection-based approach. 
Anomaly detection-based methods are extensively used in 
hyperspectral image processing (35,45,46) for detecting 
structures or patterns that are rare and distinguishable from 
the rest of the data points. They form a specific case of 
target detectors (TD), and are typically employed when the 
target spectral signature is either unavailable or challenging 
to obtain a priori. In adapting anomaly detection for 
vessel reconstruction, the temporal signal corresponding 
to blood is represented as the target, embedded in a 
locally homogenous background. The complex and non-
deterministic nature of the dynamics associated with blood 
flow as imaged using OCT discourages the use of global 
model-based approaches, thereby making anomaly detection 
a justified choice for vessel reconstruction.

In applying anomaly detection for OCT vessel 
reconstruction, we compare the temporal signal at every 
pixel with that of the surrounding pixels belonging to a 
pre-determined spatial neighborhood. In the parlance of 
hyperspectral imaging, the number of spectral components 
at each location equals the number of frames acquired per 
position using OCT. We adapted the well-known Reed-
Xiaoli (RX) algorithm (47) which is a benchmark method 
for anomaly detection in hyperspectral imaging. The RX 
algorithm is an adaptive matched filter that models the 
data as a Gaussian non-stationary multivariate random 
process with a space-varying mean and covariance matrix. 
Our adaptation of this algorithm for detecting anomalies 
in OCT data is termed speckle anomaly detection (SAD), 
which is a weighted addition of the RX metric and SV. The 
SAD metric is given by:
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where α and β are constants, NP is the total number of pixels 
in the local background of the pixel at location x, μx and Σ 
are the mean and covariance respectively of the pixels in NP, 
and L is the number of frames per location. The first term in 
Eq. [1] is the normalized RX metric that is proportional to 
the Mahalanobis distance between the target signal and the 
local background, whereas the second term is the SV of the 
temporal target signal. Evidently, the proposed method is 
formulated with the goal of improving upon the SV method.

Sparse reconstruction

In recent years, sparse representations have successfully 
evolved as robust modeling schemes for acquisition and 
representation of multi-dimensional signals, and have made 
significant contributions to the field of image processing 
and computer vision (37,38,48-50). The main idea in sparse 
reconstruction is to effectively model the data as a linear 
combination of a small number of representative elements 
(called “atoms”) from a dictionary. Sparse representations 
thus exploit the redundancy inherent in the data.

In the context of OCT vessel reconstruction, we use 
sparse representation for two purposes. First, it is used for 
harnessing the structural redundancy found in the data, and 
second, to eliminate any morphological false detections that 
might result from a pixel-wise application of Eq. [1]. To this 
end, we model the blood vessels as geometrical structures 
with tube-like morphologies, and a piece-wise constant 
texture. These characteristics can be succinctly represented 
by a dictionary comprising of simple parametric shapes. For 
this purpose, we design a dictionary of 3-D solid cylinders 
at multiple scales and orientations. It should be noted that 
we choose to employ a hand-designed dictionary versus 
learning the dictionary from the data for two reasons. First, 
learning the dictionary is an exploratory approach which 
is inherently more suitable for solving problems where the 
underlying representation of the data is either unknown or 
challenging to model parametrically (e.g., natural images). 
Second, the use of a parametric dictionary allows for easy 
computation of geometrical features from the dictionary 
parameters, which can be effectively utilized for further 
processing steps including segmentation and vessel tracing. 
The parametric dictionary D used in this work is given by:

( ) ( )2 2 2, , , ,D x y z x y z hσ τ σ ≡ Ω + < < 
[2]

for, ( ) ( )1 2, ... , 2 , ,c
n fσ σ σ σ τ θ ϕ∈ Ω ≡ ≡ [3]

where x,y,z are the Cartesian coordinates, h is the height 
of the cylinder that is set equal to the size of the pre-
determined local spatial neighborhood. Multiple scales (n) 
are selected using the function Ω. Multiple orientations are 
selected using the function τ that uniformly samples the 
range of possible azimuth angles φ and inclination angles θ.  
Along with the parametric dictionary D, a dictionary of 
cylinder centerlines is pre-computed as follows:

( )( , , ) 0, 0,centerD x y z x y z hτ≡ = = < . [4]

In applying the pre-computed dictionary D for sparse 
reconstruction, the image is divided into 3-D overlapping 
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patches and sparse codes are computed for each patch by 
solving the following optimization problem:

[5]2 0
.argmin x D s t Tγ γ γ− ≤

for every pixel in the SAD image with a positive intensity 
value, where T specifies the number of dictionary atoms 
to be used for the reconstruction. Computing the exact 
solution for the optimization problem with L0 sparsity 
constraint (Eq. [5]) has been proven to be NP-hard (51,52). 
To this end, we use the orthogonal matching pursuit 
(OMP) algorithm (53) that provides an approximate and 
computationally efficient solution to the above problem. For 
details of the OMP algorithm, the reader is referred to (53).  
Followed by the application of OMP for each image patch, 
we compute the sparsity-integrated SAD (SSAD) image by 
using Dcenter as follows:
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where Npatch is inversely proportional to the interval between 
adjacent patch centers for each patch p, PT is the set of all 
patches in an image, and γp is the sparse code computed 
using OMP based on the dictionary D. The SSAD result 
consists of the 3-D reconstructed image, which can be used 
for subsequent processing steps such as segmentation and 
feature computation.

Results and discussion

Parameter selection

Considering the necessity of applying the proposed 
method on large-scale datasets, all the algorithms have 
been designed with minimal requirements for parameter 
selection/tuning. The following parameters were used for 
processing the datasets described in this paper: for the SAD 
computation (Eq. [1]), the constants α and β in were both 
set to 0.5 in order to give equal contribution to the RX 
and SV estimates, whereas the window size, NP was set to  
61 × 61 × L voxels, where L is the number of frames acquired 
per location. The latter was selected based on empirical 
knowledge of the expected size of the thickest blood vessel in 
the mouse embryos imaged using OCT. It should be noted 
that, given the covariance-based measurement used in Eq. 
[1], a window size that is sufficiently large to reconstruct a 
thick vessel, also suffices for reconstructing smaller vessels 
with a similar quality. Based on the same motivations, the 
patch size for sparse reconstruction was set to 16×16×16 

voxels. Furthermore, in designing the dictionary D, the 
number of scales, σ was set such that, c ∈ (1,2) and the 
number of orientations in τ were set to 182. With the goal of 
promoting sparsity, the number of dictionary atoms, T for the 
minimization problem in Eq. [5] was set to a very low value of 5.

Reconstruction results

The proposed method was applied to the aforementioned 
mouse embryonic datasets. The algorithms were developed 
using MATLAB®, enabled with multi-core processing 
capability. To this end, the datasets were processed on a Dell 
910 PowerEdge server with 40 processing cores; two threads 
per core and 1 TB of RAM running on Red Hat Enterprise 
Linux linked to a RAID 5 SAN. The output of the proposed 
method consists of 3-D tiff stacks with 32-bits/voxel.

Figure 2 demonstrates the comparative 3-D vessel 
reconstruction results on a dataset of an E8.5 embryo. It can 
be observed that the SSAD method [panel (B)] generates an 
overall higher-quality reconstruction compared to the SV 
method [panel (A)]. Specifically, the overlaid arrowheads 
indicate some of the locations where SSAD detects vessel 
segments that are partially or completely missed by SV, 
whereas the solid arrows indicate locations where SSAD 
provides a higher quality reconstruction compared to the 
corresponding vessels in SV, in terms of the continuity and 
smoothness of vessel structures. Additionally, the dashed 
arrows highlight locations where SSAD is able to minimize 
the speckle arising from other moving parts of the embryo 
(BTM), in comparison with SV. Similar comparisons are 
shown in panels (C,D) and (E,F) wherein the image has been 
cropped for visualization purposes. Panel (G) compares the 
intensity profile of the SSAD and SV result corresponding 
to the dashed line in panels (A) and (B). The relative 
magnitudes of the local maxima in these plots demonstrate 
that the SSAD generates a higher-contrast reconstruction 
of the blood vessels compared to SV. Along similar lines, 
Figure 3 illustrates the comparative performance of SSAD 
[panels (B), (D) and (F)] and SV [panels (A), (C) and (E)] 
reconstruction for a dataset of an E9.0 embryo wherein 
the intensity plots in panel (G) corresponds to the dashed 
curve in panels (A) and (B). Figures 2 and 3 demonstrate 
the qualitative superiority of the SSAD reconstruction over 
SV, in terms of the ability to detect weakly reconstructed 
vessel segments, reconstruct vessels with an overall higher 
contrast and minimization of the artifacts arising from 
BTM. The following paragraphs provide a quantitative 
validation of these observations. Figure 4 summarizes the 
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Figure 3 Demonstrating the 3-D vessel reconstruction results on a 
dataset at E9.0. Images were linearly normalized from 0-255. (A) A 3-D 
rendering of the SV result; (B) SSAD result rendered with the same 
specifications. Scale bars in (A,B) correspond to 250 μm; (C,D) a side-
view rendering of SV and SSAD results respectively; (E,F) another 
side-view rendering of SV and SSAD results respectively. Scale bars in 
(C-F) correspond to 100 μm. Arrowheads point to locations where the 
proposed method is able to detect vessel segments which are partially 
or completely missed by SV. Solid arrows indicate locations where 
SSAD results in higher quality reconstruction compared to SV, in 
terms of continuity and smoothness of the vessel structures. Dashed 
arrows highlight locations where SSAD is able to minimize the artifacts 
arising from BTM, in comparison with SV. (G) Intensity profile 
corresponding to the curve in (A,B). The relative magnitudes of local 
maxima in these plots demonstrate that the proposed method provides 
high contrast reconstruction of blood vessels compared to SV. Overall, 
figure illustrates comparative improvements resulting from SSAD 
reconstruction. SV, speckle variance; SSAD, sparsity-integrated speckle 
anomaly detection.

Figure 2 Demonstrating the 3-D vessel reconstruction results on a 
dataset at E8.5. Images were linearly normalized from 0-255. (A) A 3-D 
rendering of the SV result; (B) SSAD result rendered with the same 
specifications. Scale bars in (A,B) correspond to 500 μm; (C,D) a side-
view rendering of SV and SSAD results respectively; (E,F) Another 
side-view rendering of SV and SSAD results respectively. Scale bars in 
(C-F) correspond to 250 μm. Arrowheads point to locations where the 
proposed method is able to detect vessel segments which are partially 
or completely missed by SV. Solid arrows indicate locations where 
SSAD results in higher quality reconstruction compared to SV, in 
terms of continuity and smoothness of the vessel structures. Dashed 
arrows highlight locations where SSAD is able to minimize the artifacts 
arising from BTM, in comparison with SV. (G) Intensity profile 
corresponding to the dashed line in (A,B). The relative magnitudes 
of local maxima in these plots demonstrate that the proposed method 
provides high contrast reconstruction of blood vessels compared to SV. 
Overall, figure illustrates the comparative improvements resulting from 
SSAD reconstruction. SV, speckle variance; SSAD, sparsity-integrated 
speckle anomaly detection.
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comparison between SSAD and SV reconstructions using 
confocal data as the baseline. To this end, panel (A) shows 
the maximum intensity projection of the confocal image 
of a E9.0 yolk sac in which the vessels are labeled using a 
membrane targeted fluorescent protein, mCherry, acquired 
as mentioned earlier. The arterial section of the yolk sac, as 
indicated by the box, is expanded in panel (B), wherein it is 
aligned for facilitating comparisons with the corresponding 
SV [panel (C)] and SSAD [panel (D)] reconstructions. The 
corresponding vessel segments in panels (B-D) are marked 
with the same color. The red arrows in panels (B-D) point 
to the vessel segments that are detected by SSAD but are 

partially or completely missed by SV, whereas the white 
arrows indicate segments that are reconstructed with a 
comparatively higher contrast. The corresponding locations 
for these segments, as marked in panel (B), indicate that 
these structures in panel (D) indeed correspond to vessel 
segments (dashed lines) that are visible in the confocal 
data. Figure 4 thus corroborates the ability of the SSAD 
algorithm to detect valid vessel segments that might be 
missed or weakly reconstructed by current state-of-the-art 
methods such as SV. This is further confirmed by evaluating 
the SV, SSAD and confocal images using a standard active-
contour based tracing algorithm (44). To this end, Figure 5 

Figure 4 Comparison of SSAD reconstruction result with corresponding confocal data. (A) Maximum intensity projection of the confocal 
image of E9.0 embryo (Figure 3). Highlighted region corresponds to the part of the yolk sac which is imaged using OCT; (B) Cropped section 
corresponding to the highlighted region in (A); (C) A 3-D rendering of the SV result; (D) A 3-D rendering of the SSAD reconstruction 
result. Scale bars in (C,D) correspond to 250 μm. Images were linearly normalized from 0-255. Corresponding vessel segments in (B-D) are 
highlighted with the same color. Red arrows in (C,D) point to the vessel segments which are detected by SSAD but are partially or completely 
missed by SV, while white arrows indicate the segments which are reconstructed with a comparative higher quality. Corresponding locations, as 
pointed in (B), confirm that these structures indeed correspond to vessel segments (dashed lines) which are present in the confocal data. Figure 
validates the ability of the proposed method to perform robust detection of blood vessels from OCT data. OCT, optical coherence tomography; 
SV, speckle variance; SSAD, sparsity-integrated speckle anomaly detection.
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shows a sample result obtained after applying this algorithm 
to the SSAD output, wherein the vessel centerlines 
estimated by the active-contour based tracing algorithm (44) 
are shown in yellow. Based on application of the tracing 
algorithm, Figure 6 compares the number of detected 
segments for SV, SSAD and confocal images. As expected, 
the tracing algorithm could detect more vessel segments in 
the SSAD image compared to SV image due to the higher 
reconstruction quality of the prior. Additionally, tracing of 
the corresponding area from the confocal image resulted in 
the detection of a relatively large number of vessel segments 
which include the segments missed by both SV and SSAD 
reconstructions due to the resolution limits of OCT. 
Figure 6 thus quantifies the aforementioned improvements 
resulting from the SSAD reconstruction.

In addition to the tracing-based quantification, we employ 
the standard multi-scale “vesselness” metric (54) to provide 
a global morphological measure for vessel reconstruction 
quality. The vesselness value at scale sigma Vσ, is given by:
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Figure 6 Comparing the number of vessel segments in SV, SSAD 
and confocal images as detected by an active-contour based tracing 
algorithm using optimal parameter settings. As expected, the 
algorithm could detect more number of vessel segments in SSAD 
[376] compared to SV [348] due to the higher reconstruction quality. 
Additionally, tracing of the corresponding area from confocal image 
resulted in the detection of a relatively large number of vessel 
segments [888] which include the segments which are missed by 
both SV and SSAD due to the resolution limits of OCT. SV, speckle 
variance; SSAD, sparsity-integrated speckle anomaly detection; 
OCT, optical coherence tomography.

Figure 7 Quantification of the overall reconstruction quality 
of the SSAD and SV images (N=6) using the vesselness metric. 
Vesselness value provides a global morphological measure for 
vessel reconstruction quality. Higher values are better. SSAD 
reconstruction resulted in a higher vesselness (0.8±0.09) compared 
to SV (0.6±0.2), indicating overall higher reconstruction quality. 
SV, speckle variance; SSAD, sparsity-integrated speckle anomaly 
detection.
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Figure 5 Demonstrating the result of applying an active contour-
based tracing algorithm on the SSAD reconstruction of a E9.0 
dataset. Yellow lines correspond to the centerlines detected by 
the algorithm. Scale bar corresponds to 250 μm. The tracing 
result is used in subsequent analysis to count the number of vessel 
segments and can facilitate the computation of rich morphological 
measurements for quantifying embryonic yolk sac vasculature. 
SSAD, sparsity-integrated speckle anomaly detection.
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where  α ,β  and  γ  a re  constants  that  indicate  the 
corresponding weight for each term in the product and are 
set to 50%, 50% and 0.25% respectively of the maximum 
intensity value in the input image, λ1,λ2,λ3 are eigenvalues of 
the Hessian matrix at scale σ. The Hessian matrix is given 
by Hσ (x)=∇2 [I(x)*Gσ (x)], wherein I is the input image and 
Gσ is the Gaussian function with standard deviation σ. The 
vesselness value at every pixel is computed as the maximum 
of Vσ across all the scales. Based on prior knowledge about 
the expected size of the vessel structures, σ was set equal to 
2n where n∈(2,4). Figure 7 summarizes the vesselness values 
for SSAD and SV reconstruction for N=6 datasets. It can be 
noticed that, the SSAD reconstruction resulted in an overall 
higher vesselness value (0.8±0.09) compared to SV (0.6±0.2), 
indicating an overall higher reconstruction quality.

Our results demonstrate that SSAD has significant 
advantages over the state-of-the-art SV method. Specifically, 
SSAD is able to reconstruct some of the vessel segments 
that are partially missed or weakly reconstructed by SV 
while providing an overall high-quality reconstruction, in 
terms of the smoothness, continuity and contrast of the 
vessel structures. Additionally, the SSAD reconstruction 
also results in minimization of artifacts arising due to 
BTM. While this encouraging, it should also be noted that 
SSAD is a computationally expensive method due to the 
analysis of a large neighborhood region around every pixel. 
Specifically, the SSAD run-time for a representative dataset 
is ~6 hours compared to SV which takes ~2 hours on the 
same dataset. In order to address this concern, the SSAD 
method has been implemented with contemporary multi-
core computers in mind, and with increasing availability of 
computing cores, this limitation will be easily overcome.

Conclusions

The proposed SSAD method used a combination of 
anomaly detection and sparse representation for improved 
reconstruction of blood vessels from 4-D OCT data 
acquired from live mammalian embryos. Quantitative 
comparisons with the widely used SV method demonstrate 
that the proposed method generates a higher quality 
reconstruction of the vascular network, especially for 
those vessel structures that may be partially missed or 
weakly reconstructed by SV, and in areas with high BTM. 
Specifically, the SSAD resulted in an overall higher 
vesselness (0.8±0.09) compared to SV (0.6±0.2). These 
results suggest that SSAD is potentially a valuable tool for 
performing accurate quantification of the progression of 

vascular development in the mammalian embryonic yolk sac 
as imaged using OCT, thus having a significant potential to 
further embryonic cardiovascular research.

Although the advantages of SSAD are clear, there is 
room for further improvement. For example, the anomaly 
detection method could be improved by adapting non-linear 
modeling strategies such as the kernel-RX algorithm (55). 
This could be potentially useful for detecting vessels with 
very weak blood flow. To overcome the challenge of high 
computational cost, publicly-available high-performance 
computing resources (56) could be utilized for performing 
rapid analysis on large batches of images. Finally, as a 
natural consequence of this work, the SSAD method could 
be applied for discovering morphological differences in 
various developmental stages of the mammalian embryonic 
yolk sac vasculature.
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