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Instrumental variable (IV) methods are increasingly being used in comparative effectiveness research. Studies

using these methods often compare 2 particular treatments, and the researchers perform their IV analyses condi-

tional on patients’ receiving this subset of treatments (while ignoring the third option of “neither treatment”). The

ensuing selection bias that occurs due to this restriction has gone relatively unnoticed in interpretations and discus-

sions of these studies’ results. In this paper we describe the structure of this selection bias with examples drawn

from commonly proposed instruments such as calendar time and preference, illustrate the bias with causal

diagrams, and estimate the magnitude and direction of possible bias using simulations. A noncausal association

between the proposed instrument and the outcome can occur in analyses restricted to patients receiving a subset of

the possible treatments. This results in bias in the numerator for the standard IVestimator; the bias is amplified in the

treatment effect estimate. The direction and magnitude of the bias in the treatment effect estimate are functions of

the distribution of and relationships between the proposed instrument, treatment values, unmeasured confounders,

and outcome. IV methods used to compare a subset of treatment options are prone to substantial biases, even

when the proposed instrument appears relatively strong.

collider stratification bias; epidemiologic methods; instrumental variable; selection bias

Abbreviations: CVD, cardiovascular disease; IV, instrumental variable.

Because instrumental variable (IV) methods can identify
treatment effects even in the presence of unmeasured con-
founding, these methods are increasingly being used in com-
parative safety or effectiveness studies (1). Many such studies
have addressed research questions comparing 2 particular
treatments and therefore have ignored other possible treatments
(including no treatment) (2). While restriction of an analysis to
patients who have received the treatments of interest follows
naturally from the analytical strategies using non-IV methods,
this selection can induce bias in IV methods. Unlike other bi-
ases specific to IVmethods (1–6), this selection bias has rarely
been noticed in applications (7), and its structure and implica-
tions have not been thoroughly described.

Herewe describe the structure of this selection bias, as well
as its magnitude and direction. We first consider a calendar
time instrument. We then consider other commonly sug-
gested instruments, including a preference-based instrument
proposed for a study of patients initiating 2 classes of statin

therapy. We start by briefly describing the IV estimator and
the conditions required for its validity.

IV ESTIMATION

Suppose we want to estimate the effect of a dichotomous,
time-invariant treatment X on an outcome Y. We will use
superscripts to denote counterfactuals; for example, Yx indi-
cates the counterfactual outcome Y under treatment X = x.
A pretreatment variable Z is an “instrument” if 3 conditions
hold: 1) Z is associated with X; 2) Z only causes Y through X
(i.e., Yz ,x = Yx for all values x and z); and 3) there is no con-
founding between Z and Y (i.e., exchangeability; Z

‘
Yx for

all x).
When an instrument Z exists, the standard IV estimator

E½Y jZ ¼ 1� � E½Y jZ ¼ 0�
E½X jZ ¼ 1� � E½X jZ ¼ 0�
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identifies the average treatment effect in the population if a
fourth condition of effect homogeneity across levels of the
instrument holds (8), or it identifies the average treatment ef-
fect in a subset of the population (the “compliers”) if a differ-
ent fourth condition of monotonicity holds (9). We argue
below that condition 3 may be violated in studies restricted to
a subset of the possible treatments. We begin with an example
provided under the overall sharp null hypothesis (i.e., both the
instrument and the treatment have no effect on any individual’s
outcome), which guarantees that conditions 2 and 4 hold.

STRUCTURE OF THE SELECTION BIAS

Consider 2 treatments for the same illness, and suppose
that we are interested in estimating the average effect of treat-
ment 2 versus treatment 1 on risk of death for patients with this
particular illness. In 2014, treatment 1 is slightly more popu-
lar than treatment 2: Of all patients with this illness (i.e., those
who have indications for these treatments), 50% are prescribed
treatment 1, 40% are prescribed treatment 2, and 10% are pre-
scribed neither treatment (i.e., including different drugs or
no pharmacological treatment). In 2014, assume that the de-
cision to treat with treatment 1 versus treatment 2 versus nei-
ther is essentially random. In 2015, however, new evidence of
harmful side effects of treatment 1 is reported, and the Food
and Drug Administration issues a warning: Treatment 1 has
been found to increase risk of cardiovascular disease (CVD).
There is a sudden shift in prescribing practices: For patients
with this illness who have no serious CVD risk factors, 40%
are prescribed treatment 1, 45% are prescribed treatment 2,
and 15% are prescribed neither; for patients with 1 or more
serious CVD risk factors, none (0%) are prescribed treatment
1, 50% receive treatment 2, and 50% receive neither.
Such a large and sudden shift in prescribing practices is a

natural experiment that invites the comparison of treatments 1
and 2 via an IV analysis using calendar time as the proposed
instrument (assuming no other strong time trends occurred
during the study period). Note that the treatmentX can take the
values 1 (treatment 1), 2 (treatment 2), and 3 (neither). How-
ever, the typical IV analysis will use only observations from
patients who are prescribed either treatment 1 or treatment 2
(i.e., X = 1 or X = 2).
The crude treatment effect estimate comparing treatment 2

with treatment 1 would be confounded, because patients ac-
tually prescribed treatment 1 would have fewer CVD risk fac-
tors than patients prescribed treatment 2 (specifically during
the second time period). To understand whether the IV anal-
ysis would be confounded, we compare patients seen in the
prewarning (Z = 0) and postwarning (Z = 1) time periods who
were prescribed treatment 1 or 2. Prewarning, the risk of death
Y in patients prescribed treatment 1 or 2 would approximately
equal the risk of death in all patients (because treatment deci-
sions were essentially random and we have assumed an overall
sharp null). Postwarning, the risk of death in patients whowere
prescribed treatment 1 or 2 would be lower (because the pa-
tients actually prescribed treatment 1 would have fewer CVD
risk factors). Thus, the measured association between the pro-
posed instrument Z and the risk of death Y (i.e., the numerator
for the standard IV estimator) would be different from zero in
analyses restricted to patients prescribed treatment 1 or 2 when

in fact it should be zero. Consequently, the treatment effect es-
timated with the IV analysis would also be biased.
The structure of this potential bias is illustrated in a causal

diagram in Figure 1. By restricting the analysis to patients
prescribed treatment 1 or 2, we are selecting treatment values
X = 1 and X = 2. This selection on X, represented by a box
around X in the causal diagram, implies that we are condition-
ing on the collider X in the path Z− X−U− Y; that is, Z and
Y will be associated because of collider stratification (10).
Calendar time Zmeets instrumental condition 3 uncondition-
ally, but not in the analysis that selects on treatment.

MAGNITUDE AND DIRECTION OF SELECTION BIAS

A small bias in the IV numerator can be amplified into a
much larger bias for the treatment effect estimate (1). We
chose our calendar time instrument example to be of similar
apparent strength as proposed instruments in published epi-
demiologic studies to mirror the magnitude of expected am-
plification (2). Note that one subtlety in repurposing previous
results concerning bias in the IV numerator to understand this
particular bias is that the IV denominator is also affected by
the selection by treatment, and thus the functional form of the
bias is slightly more complicated.
We can explore the magnitude and direction of bias due to

selecting on treatment via simulations. For example, we gen-
erated data under the scenario described for our calendar-time
example (Figure 2). The association between calendar time
and outcome is null unconditionally, but a small association
arises among persons who received either treatment 1 or
treatment 2 (mean risk difference = −2 deaths per 100 pa-
tients). Now consider the treatment effect, that is, the causal
risk difference comparing treatment 2 with treatment 1, which
we know should be null. If we restrict our analysis to persons
who received treatment 1 or 2 and estimate the crude asso-
ciation, treatment 2 appears slightly more harmful (mean
risk difference = 3 deaths per 100 patients). The restricted
analysis follows naturally from the research question, and
the bias is due to unmeasured confounding by CVD risk fac-
tors. If we use the IV analysis to estimate the treatment ef-
fect, the bias in the IV numerator is amplified in the standard
IV estimate: Treatment 2 appears strongly protective relative

Z X
Y

U

Figure 1. Selection bias in an instrumental variable analysis re-
stricted to patients who were prescribed a subset of the treatment
options. Z represents the proposed instrument; X represents the treat-
ment the patient was prescribed (X = 1 if treatment 1, X = 2 if treatment
2, and X = 3 if neither treatment); U is a set of unmeasured confound-
ers; and Y is the outcome. The box around X indicates restriction to
patients prescribed X = 1 or X = 2.
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to treatment 1 (mean risk difference = −15 deaths per 100
patients).

To understand the bias in the numerator of the IV estimator,
we can (to some degree) repurpose results on the magnitude
and direction of collider-stratification bias (10). Specifically,
the bias in the IV numerator is a function of how strongly
the proposed instrument is associated with treatment, how
strongly treatment is associated with the outcome through the
unmeasured confounders (which is a function of the strengths
of the confounder-treatment and confounder-outcome asso-
ciations), and the distribution of treatment values.

However, much of the collider-stratification literature is
based on dichotomous colliders. Because here the collider is

trichotomous and represents our treatment of interest, an-
other subtlety arises. To explain, we need to expand the causal
diagram in Figure 1 by representing our trichotomous X with
2 dichotomous indicators X′ (1 if X = 1 or X = 2, 0 if X = 3)
and X″ (1 if X = 1, 2 if X = 2, and undefined if X = 3). Thus,
IV analyses restricted to persons with X = 1 or X = 2 are re-
stricted to persons with X′ = 1, but they include persons
with both levels of X″. In our calendar-time example, during
the second time period (Z = 1), relative to patients without the
confounder, those with the confounder were less likely to
receive treatment 1, more likely to receive treatment 2, and
more likely to receive neither treatment. This implies that
there is an arrow from U to X′ and another arrow from U to
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Figure 2. Results from a simulation with a dichotomous instrument Z, a trichotomous treatment X, and a dichotomous outcome Y. We generated
1,000 samples of 20,000 patients such that Zi∼ bernoulli(0.5), Ui∼ bernoulli(0.2), Yi∼ bernoulli(0.1 + 0.3Ui), and Xi∼multinom(0.5− 0.1Zi− 0.4ZiUi ,
0.4 + 0.05Zi + 0.05ZiUi , 0.1 + 0.05Zi + 0.35ZiUi). Results are shown for the distribution of the bias across the simulations in the standard instrumental
variable numerator in the entire population (mean bias = 0) (A) and in analyses restricted to observations withX = 1 orX = 2 (mean bias =−0.02) (B).
In estimating the treatment effect on the risk difference scale, the mean bias from our simulations based on a crude treatment effect estimate was
0.03 (C), while the mean bias from the instrumental variable analysis was −0.15 (D).
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X″ (Figure 3A). Suppose instead it were the case that, within
each level of calendar period Z, although the probability of
receiving neither treatment (X = 3) versus receiving treatment
1 or 2 (X = 1 or X = 2) may depend on the confounder U, the
probability of receiving treatment 2 given that a subject re-
ceived either treatment 1 or treatment 2 did not further depend
onU. Then therewould be an arrow fromU to X′ but no arrow
from U to X″ (Figure 3B). Finally, suppose it were the case
that, within each level of Z, the probability of receiving neither
treatment (X = 3) versus receiving treatment 1 or treatment 2
(X = 1 or X = 2) did not further depend on the confounder U,
but the probability of receiving treatment 2 given that a subject
received either treatment 1 or treatment 2 could depend on U.
Then there would be an arrow from U to X″ but no arrow from
U to X′ (Figure 3C).
In Web Appendix 1 (available at http://aje.oxfordjournals.

org/), we describe appropriate and inappropriate analytical

approaches under the 3 scenarios. We show that an IV anal-
ysis restricted to subjects who took either treatment 1 or treat-
ment 2 would be inappropriate for data generated under the
causal diagrams in parts A and B of Figure 3 but not part C.
In fact, we show under the causal diagram in Figure 3C that
such an IV analysis remains valid even when we 1) relax the
overall sharp null assumption (Yx¼1

i ¼ Yx¼2
i ¼ Yx¼3

i for all
subjects i) used in our calendar-time example, 2) allow
Yx¼3
i to differ from both of the treatment counterfactuals by

adding a causal arrow from X′ to Y, and 3) allow Yx¼1
i and

Yx¼2
i to differ by adding a causal arrow from X″ to Y (Web

Figures 1 and 2). The causal diagrams in Figure 3 all include
an arrow from Z to X′ (i.e., the probability of receiving treat-
ment 1 or 2 versus alternatives depends on the instrument),
while if this arrow were absent an IV analysis may be valid
(7). In Figure 4, we illustrate the magnitude of bias using data
generated under assumptions encoded in each of the 3 causal
diagrams in Figure 3.Web Appendices 1 and 2 describe these
simulations and the reasons why standard sensitivity analysis
formulas for selection bias due to collider stratification are
not directly applicable here.
In practice, it will generally be impossible to determine

which of the causal diagrams in Figure 3 represents a study.
Figure 3A will be a better representation whenever patient
characteristics that affect the decision between 2 treatments
also affect the decision between those treatments and alter-
natives. In these settings, confounding by indication is often
expected to be less tractable when comparing treatment with
no treatment than when comparing 2 active treatments,
which implies that investigators may be more successful in
blocking the path from U to X″ than in blocking the path
from U to X′.

SELECTION BIAS FOR PREFERENCE-BASED

INSTRUMENTS

The same form of selection bias can also occur with
preference-based instruments whenever there is selection
on treatments. However, for calendar-time instruments, the
instrument directly causes the treatment (i.e., in Figure 1,
there is an arrow directly from Z to X), while we do not di-
rectly observe the physician’s or facility’s preferences and
therefore rely on a surrogate instrument for preference (1).
For example, some investigators have proposed a proxy
of provider preference that is a function of the provider’s pre-
scribing decisions for his or her prior patients (11, 12). When
comparing a subset of possible treatments with a preference-
based proposed instrument, a similar structure of collider-
stratification bias is possible, but the magnitude of bias will
be a function of how the unobserved preference variable is
related to the treatment values and the measured preference
proxy. In Web Appendix 2, we propose a framework for sim-
ulations mirroring such instruments.
Data from a published observational study on statin ther-

apy and diabetes risk help to illustrate the potential impact
of this bias. Using an empirical example has the further ben-
efit of presenting results when the bias is of a more compli-
cated form: In reality, treatment decisions will be driven not
by a single dichotomous confounder but rather by a combina-
tion of many observed and unobserved patient and physician

Z X ′ X ′′ Y

U

Z X ′ X ′′ Y

U

Z X ′ X ′′ Y

U

A)

B)

C)

Figure 3. Three possible ways in which an unmeasured confounder
may affect treatment decisions: 1) the confounder affects decisions
between receiving one of the treatments of interest and other alterna-
tives and also decisions between the 2 treatments of interest (A); 2) the
confounder only affects decisions between receiving one of the treat-
ments of interest and alternatives (B); and 3) the confounderonly affects
decisions between receiving the 2 treatments of interest (C).Z is the pro-
posed instrument;U is anunmeasured confounder;Y is the outcome;X′
is an indicator of being prescribed treatment 1 or 2 versus neither
treatment; and X″ is an indicator of being prescribed treatment 1 versus
treatment 2 and is undefined otherwise. The box aroundX′ indicates re-
striction to patients prescribed X = 1 or X = 2.
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characteristics. The data come from the Health Improvement
Network, a large database of anonymized longitudinal med-
ical records from over 500 primary-care practices in the
United Kingdom. The eligibility criteria and the cohort have
been described in detail elsewhere (13). In brief, using med-
ical records collected between January 2000 and December
2010, the study included men and women aged 50–84 years
who had not been prescribed any statins in the past 2 years,
had at least 2 years of continuous recording in the database,
and did not have a history of diabetes, cancer, chronic liver or
kidney disease, schizophrenia, or antipsychotic medication
use. The authors studied the effect of initiating statin therapy
on diabetes risk. They found some evidence that lipophilic
statin medications, but perhaps not hydrophilic statin medica-
tions, may be associated with increased diabetes risk relative
to no statin therapy (13).

Suppose the authors had directly compared the effect of
hydrophilic statin therapy on the 12-month risk of diabetes
with the effect of lipophilic statin therapy via IV estimation
using a preference-based instrument. Following previous stud-
ies (11, 12), each patient’s instrument value could be deter-
mined by measuring the class of statin therapy prescribed at
the same general practice to the prior patient who met the
same eligibility criteria and initiated statin therapy. Necessar-
ily, for each general practice, we would exclude patients who
had been seen before the first eligible patient was prescribed
a statin.

Of 266,738 patients who met these criteria, 12,663 were
prescribed a lipophilic statin, 858 were prescribed a hydro-
philic statin, and 253,217 were prescribed neither (including
polydrug therapy (n = 30) or no statin (n = 253,187)). The

distributions of data on the preference proxy, treatment deci-
sion, and risk of diabetes are shown in Table 1. Only 5% of
patients were prescribed a statin. Using the analogy of a ran-
domized trial, the overwhelming majority of patients were
“noncompliant” in the sense that they did not take treatment;
this implies that the “intent-to-treat” effect (IVnumerator)will
not be informative about the relative effectiveness of treat-
ment 1 versus treatment 2. We consider this example in more
detail in Web Appendix 1. In particular, we report treatment
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Figure 4. Summary of bias in the standard instrumental variable numerator (A) and the treatment effect estimated with the standard instrumental
variable estimator (B) as a function of the relationship between a binary confounder U and treatment X. We generated 1,000 samples of 20,000
patients such that Zi∼ bernoulli(0.5), Ui∼ bernoulli(0.2), Yi∼ bernoulli(0.1 + 0.3Ui), and Xi∼multinom(0.5− 0.1Zi− bZiUi , 0.4 + c × 0.1 × Zi + c × b
× ZiUi , 0.1 + (1− c) × 0.1 × Zi + (1− c) × b × ZiUi). We varied b between 0 and 0.4 (x-axis) and varied c to be 0, 0.5, and 1. When c = 0, U does not
affect the decision between the treatments of interest (as per the assumptions in Figure 3B); when c = 1,U does not affect the decision between the
treatments of interest and the alternatives (as per the assumptions in Figure 3C).

Table 1. Distribution of Proposed Instrument, Treatment, and

Outcome for Patients Seen at Primary-Care Practices in the United

Kingdom, 2000–2010a

No. of
Patients

Prior Treated
Patient’s Statin

Class

Patient’s Statin
Class

12-Month Risk
of Diabetes

No. of
Cases

%

239,092 Lipophilic Neither lipophilic
nor hydrophilicb

2,780 1.16

12,155 Lipophilic Lipophilic 213 1.75

456 Lipophilic Hydrophilic 7 1.54

14,125 Hydrophilic Neither lipophilic
nor hydrophilicb

167 1.18

508 Hydrophilic Lipophilic 11 2.17

402 Hydrophilic Hydrophilic 14 3.48

a Study populationwasbasedonanalyses of theHealth Improvement

Network database presented by Danaei et al. (13).
b Either no statin (n = 253,187) or polydrug therapy (n = 30).

Selection Bias in Instrumental Variable Analyses 195

Am J Epidemiol. 2015;181(3):191–197

http://aje.oxfordjournals.org/lookup/suppl/doi:10.1093/aje/kwu284/-/DC1


effect estimates obtained with IV and non-IV approaches
(Web Table 1). Because unmeasured patient characteristics
U probably influence decision-making on whether to treat
with a statin (U to X′), decision-making on type of statin (U to
X″), and diabetes risk (U to Y), and because our data demon-
strate that the probability of receiving any statin differs across
levels of the instrument (Z to X′), a causal diagram similar to
that in Figure 3A is again the most likely data-generating pro-
cess (under the sharp null), implying that all of our reported
estimates will be biased.
As this example shows, evaluating the impact of selecting

on treatment in IV analyses requires the identification of per-
sons who were eligible for the treatments of interest but did
not receive them. For comparability purposes, we applied the
same eligibility criteria as those used in a previously pub-
lished study of the same data (13). In studies that cannot iden-
tify eligible patients who did not receive the treatments of
interest, the magnitude or even the direction of bias remains
unknown, and thus avoidance of IV methods that select on
treatment seems desirable. In studies that can identify eligible
patients who did not receive the treatments of interest, inves-
tigators may consider IV approaches using 3 or more levels of
the instrument and the treatment as valid alternatives to the
standard IV estimator.

DISCUSSION

We have described the bias in IV analyses of observational
studies due to selecting on a subset of available treatments,
adding to the list of sources of bias that are unique to IVmeth-
ods (1–6). Our simulations underscored how bias in the IV
numerator is amplified in the treatment effect estimate and
how these estimates may be biased in counterintuitive direc-
tions.We used calendar time- and preference-based instruments
as examples, with simulations described in Web Appendix 2
that could be adapted to understand themagnitude and direction
of plausible bias for other instruments.
The structure of this bias is related to known limitations of

the intent-to-treat effect and naive per-protocol analyses in
head-to-head randomized trials that compare 2 active thera-
pies. When both treatments are superior to no treatment and
the proportion of subjects who did not take either treatment
differs across the treatment arms, the intent-to-treat effect es-
timate will be different from zero even if both therapies have
exactly the same effect (14, 15). When the only form of non-
compliance is refusing (and not switching) treatments, the
commonly used naive per-protocol analysis restricted to per-
sons who actually took treatment 1 or 2 can be biased. More
generally,when subjects can both switch and refuse treatment,
a naive per-protocol analysis can also result in selection bias.
This selection bias has the same structure as the one described
in this paper for IV analyses that select on treatment (16).
Consider an analytical strategy in which we report the

intent-to-treat effect estimate restricted to patients who took
treatment 1 or 2 (which would include those who were as-
signed treatment 1 but took treatment 2, and vice versa). This
strategy would not generally be used to analyze a randomized
trial, but it is prone to the same selection bias as the naive per-
protocol analysis. However, note that this is exactly the strat-
egy used in an IV analysis that selects on treatment: The IV

numerator is the intent-to-treat estimate restricted to the
subset of patients receiving the treatments of interest. In the
randomized trial setting, one can overcome the limitations
of the intent-to-treat or naive per-protocol analyses using
g-methods under the assumption that one has obtained and
appropriately adjusts for data on a set of covariates that make
the subjects who took neither active treatment exchangeable
with those who took an active treatment conditional on these
covariates and treatment arm (14–19). In fact, under such an
assumption, one can also perform a valid IV analysis with the
goal of estimating the average causal effect of treatment
2 versus treatment 1 (20). (See Web Appendix 1 for further
discussion.)
We stress that unless the assumptions encoded in Figure 3C

seemed plausible initially, the IV approach (20) is valid only if
one can successfully obtain data on a sufficiently large set of
covariates to satisfy the above exchangeability assumption. Be-
cause the unmeasured patient characteristics that affect the
decision between 2 treatmentsmayoften affect the decision be-
tween those treatments and alternative options, we believe that
in many (if not most) epidemiologic studies that have used IV
methods, the IV estimates that have been reported are biased
because of the same unmeasured covariates that motivated
the investigators to use an IV approach; and although this bias
can be decreased by measuring additional covariates and then
applying g-methods, it generally cannot be eliminated.
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