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Abstract

Natural selection drives evolving populations up the fitness landscape, the projection from 

nucleotide sequence space to organismal reproductive success. While it has long been appreciated 

that topographic complexities on fitness landscapes can arise only as a consequence of epistatic 

interactions between mutations, evolutionary genetics has mainly focused on epistasis between 

pairs of mutations. Here we propose a generalization to the classical population genetic treatment 

of pairwise epistasis that yields expressions for epistasis among arbitrary subsets of mutations of 

all orders (pairwise, three-way, etc.). Our approach reveals substantial higher-order epistasis in 

almost every published fitness landscape. Furthermore we demonstrate that higher-order epistasis 

is critically important in two systems we know best. We conclude that higher-order epistasis 

deserves empirical and theoretical attention from evolutionary geneticists.

Introduction

Epistasis is the geneticist’s term for mutational interaction. Colloquially, epistasis can be 

regarded as our surprise at the phenotype when mutations are combined, given the 

constituent mutations’ individual effects. The recognition of epistasis between pairs of 

mutations in both discrete, Mendelian [1] and continuous [2,3] traits goes back roughly 100 

years, but recent experimental advances draw attention to interactions between more than 

two mutations. For example, how often does pairwise epistasis itself vary with genetic 

background [4•,5••]? Critically, such higher-order interactions cannot be captured by 

pairwise epistasis [6,7].

Epistasis is also fundamental to systems biology, because interdependencies are intrinsic to 

networks, its central object of study. For example, data on pairwise epistasis between gene 

deletions have provided insight into metabolic networks in yeast [8••,9,10 and E. coli [11]. 

Epistasis is also of critical importance to the analysis of genome-wide association data 

[12,13]
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For population and evolutionary geneticists, one phenotype is of particular interest: 

reproductive success (or fitness). Theoretical and experimental results link pairwise epistasis 

for fitness to speciation [e.g. [14,15]], the evolutionary advantage of recombination [e.g. 

[16–18]] and opportunities for adaptation [e.g. [19••,20]]. Our own interest in higher-order 

epistasis began from an appreciation that only epistasis [21,22•] can give rise to topographic 

complexities on the fitness landscape [23]. To illustrate this point, first consider nucleotide 

sequence space [24], in which all pairs of genotypes differing by a single point mutation are 

adjacent to one another. The fitness landscape is then the projection from such a spatially 

organized sequence space to organismal fitness. Finally, ruggedness in the fitness landscape 

arises if an only if the sign of the fitness effect of mutations varies with genetic background, 

elsewhere called sign epistasis [21]. Importantly however, we lack a more complete 

quantitative understanding of the relationship between landscape topography and higher-

order epistasis.

Here we first review recent empirical studies that follow the groundbreaking approach of 

Malcolm et al. [25] to describe fitness landscapes using reverse genetics. That study 

characterized the combinatorially complete set of eight alleles of an avian lysozyme defined 

by all combinations of three missense mutations. Other studies have used traditional genetic 

crosses or random mutagenesis to describe fitness landscapes. Whatever their method, these 

recent surveys demonstrate that fitness landscapes are not terribly smooth [19••,25–29,30••].

The next challenge is to characterize the epistasis in these data [31•]. In any system defined 

by point mutations at L sites, there are  subsets of k mutations which may or may not 

interact. Consequently there may be this number of epistatic terms of order k. Here we 

propose a generalization of the classical population genetic framework which allows us to 

compute epistasis of all orders (see Box 1). Using this approach we find substantial amounts 

of higher-order epistasis in almost every published dataset. We also show that higher-order 

epistasis is of evolutionary importance in two systems we know best.

Empirical fitness landscapes

Table 1 lists the 14 systems we know of in which fitness (or a proxy phenotype) for all 

combinations of some set of point mutations has been reported. Interestingly, while the 

datasets are formally similar, these studies spring from three distinct intellectual traditions.

The original case [25] begins from the observation that in game bird lysozyme, threonine-

isoleucine-serine and serine-valine-threonine are the only two amino acid triplets that are 

ever observed at residues 40, 55 and 99, respectively. The authors reasoned that these two 

extant forms must be linked phylogenetically by some succession of functionally equivalent 

alleles defined by other combinations of these three residues. They thus synthesized all six 

such lysozymes, and characterized the melting temperature of each. Remarkably, all 

conceivable mutational trajectories between the two extant triplets include at least one 

mutational intermediate whose melting temperature is outside the physiologically 

permissible range [25]. Thus this system exhibits sign epistasis [21], since the same 

mutations increase melting temperature in some genetic contexts while reducing it in others 
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[see Figure 2 in citation [25]]. The authors concluded that some compensatory processes 

must have been at work during the evolution of bird lysozyme: either other residues 

influencing melting temperature, or natural selection responding to other enzymatic 

properties conferred by these mutations.

Many studies follow the lysozyme tradition, finding that sign epistasis is widespread [26–

28,32,33] though not ubiquitous [19••,30••]. This work has further stimulated study of the 

underlying molecular mechanisms of epistasis [32,34,35,36••] as well as epistasis across 

environments [37••,38] and epistatic opportunities for evolutionary reversions [32,37••].

Quite a different motivation for developing such datasets stems from an interest in genetic 

load (the steady-state fitness cost of recurrent deleterious mutations) [reviewed in [39]] and 

relatedly, the ability of genetic recombination to reduce genetic load [reviewed in [40]]. 

Perhaps because they derive from older theoretical questions, these studies often used 

traditional genetic crosses of visible markers [39–41]. Interestingly, although extensive 

epistasis is observed (including sign epistasis), this work tends not to support the hypothesis 

that genetic recombination can more effectively purge deleterious mutations [41] or speed 

adaptation [40]. (But see Conclusions.)

The final class of studies comes from the protein engineering community. This work uses 

random mutagenesis to search for novel enzymatic variants exhibiting desired catalytic 

properties in the mutational neighborhood around some starting allele. Thus this work is not 

principally concerned with abstract properties of the fitness landscape, but of course these 

properties influence results. As with the other two classes of studies, this work has revealed 

considerable topographic complexities on fitness landscapes [e.g. [42,43]].

Is higher-order epistasis evolutionarily important?

Thus topographic complexities are widespread on biological fitness landscapes. In order to 

quantify the underlying epistasis, we computed all epistatic coefficients for all datasets in 

Table 1 using the approach proposed in Box 1. Figure 1 presents mean squared values as a 

function of interaction order for each system. In almost every case the mean magnitude of 

higher-order epistatic coefficients is as large as or larger than the pairwise effects. Although 

considerable heterogeneity exists among systems, it appears that substantial higher-order 

epistasis is common in nature.

We next addressed the evolutionary consequences of higher-order epistasis by re-examining 

two published systems in greater detail. Typical of the work summarized in Table 1, we 

previously characterized the combinatorially complete fitness landscape defined by five 

mutations in the β-lactamase gene of E. coli [27]. These mutations jointly increase resistance 

to the antibiotic cefotaxime ~100,000-fold, and together define 5! = 120 possible mutational 

trajectories linking the starting and highest-resistance β-lactamase alleles. Importantly, four 

of these five mutations exhibit sign epistasis, and consequently, resistance increased 

monotonically on only 18 of the 120 trajectories [27]. In other words, epistasis renders many 

mutational trajectories selectively inaccessible.
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What is the relationship between selective accessibility and epistatic coefficients in these 

data? To test the hypothesis that higher-order terms might contribute only modestly to the 

number of selectively accessible mutational trajectories, we took advantage of the fact that 

one can easily convert from epistatic components back to fitness landscapes (see Box 1). For 

each order we thus computed the number of selectively accessible trajectories on the 

premise that all higher-order epistatic coefficients were zero. When only first-order terms 

are nonzero the landscape is by definition additive (see circles in Figure 1a) and thus drug 

resistance must increase monotonically along all 120 mutational trajectories. But 

interestingly, the number of selectively accessible trajectories drops almost linearly (r2 = 

0.97) as successively higher-order epistatic coefficients are included in the landscape (data 

not shown). Thus this characteristic of fitness landscapes seems to depend almost equally on 

all orders of epistasis.

We also computed all epistatic coefficients on the fitness landscape defined by a simple 

model of protein folding stability [44••] given by 1/(1 + eΔG/kbT). Here ΔG is the free energy 

of folding, kb is Boltzman’s constant and T is temperature. Beginning from a wild type 

protein with typical folding stability ΔG = −8 kcal/mol [44••], assuming that ΔG values are 

additive [45] and that mutations have ΔΔG = 1 kcal/mol [44••], we find that on this 

landscape mean squared epistatic coefficients for fitness increase monotonically and almost 

exponentially with order (triangles in Figure 1a).

Conclusions: evolutionary biologists should worry about higher-order 

epistasis

While empirical fitness landscapes were first characterized almost 25 years ago [25], the 

past few years have seen an explosion in this work, and several empirical facts are now 

beginning to emerge. Here we propose a natural generalization to the classical measure for 

pairwise epistasis (Box 1) which reveals substantial higher-order epistasis in almost every 

empirical system examined (Figure 1). We also show that higher-order epistasis is of critical 

evolutionary importance in the two systems we know best. As outlined in the introduction, 

these findings have direct implications for many branches of systems biology.

We are aware of two other studies that explore higher-order interactions in experimental 

data using an approach closely related to ours. One demonstrates several intriguing 

regularities among higher-order interactions in a meta-analysis of 113 combinatorially 

complete experiments from the engineering literature [46]. The other shares our specific 

interests in the statistical properties of fitness landscapes [47].

Our chief novelty has been to propose a generalization to the classical population genetic 

approach for computing pairwise epistasis, to now address epistatic interactions of all order. 

Importantly, higher-order epistasis is formally independent of the pairwise effects (see Box 

1). While we have not addressed the consequences of experimental measurement error for 

our approach, the influence of such noise on interaction coefficients computed in a closely 

related manner was very modest [47] in one dataset [43] examined here. We also note that 

other approaches for computing epistatic coefficients of arbitrary order are possible and may 

prove useful in some contexts.
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The theoretical implications of higher-order epistasis remain unknown. For example, 

substantial attention has traditionally been paid to the role of positive and negative pairwise 

epistasis in the evolutionary persistence of genetic recombination [48], but under what 

circumstances will recombination be favored in the face of higher-order effects [40,49,50]? 

Moreover we now have several classification schemes for epistasis, including the distinction 

between one-dimensional and multidimensional epistasis [50], sign and magnitude epistasis 

[21] and between pairwise and higher-order effects. These definitions derive from different 

intellectual motivations, but it may be possible to use the present framework to integrate 

these traditions into a single conceptual apparatus.

Finally, we acknowledge an important limitation to the approach used here: its dependence 

on combinatorially complete datasets. This follows from the fact that the fitness landscape 

and its epistatic coefficients are simple transformations of one another: they both have 2L 

degrees of freedom. Thus as L (the number of mutations of interest) increases in any given 

system, the amount of bench work required to compute all epistatic coefficients increases 

exponentially [51]. Fortunately our framework can also yield expressions for a subset of 

epistatic coefficients from combinatorially incomplete datasets of corresponding size 

[46,52]. Recently published analyses based on alignments of naturally occurring protein-

coding sequences demonstrate that a great deal of evolutionary information is already 

present in pairwise epistasis [53,54•,55]. We now look forward to analogous work that 

capitalizes on the theoretical opportunities posed here to explore the consequences of 

epistatic interactions among mutational subsets larger than two but possibly still much 

smaller than L.
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Box 1 - A natural framework for computing epistasis of arbitrary order

Abstractly, any combinatorially complete fitness landscape is a mapping from all 2L 

genotypes defined by L biallelic loci to fitness [21]. This can be represented as a vector 

W⃑ of 2L fitness values, ordered by an L bit binary number whose digits 1 and 0, 

respectively, signal the presenceor absence of the mutation at the corresponding loci [28]. 

Thus for example, in a system with three mutations there are 23 = 8 fitness values in W⃑, 

and the element W011 represents the fitness of the genotype carrying mutations at only 

the second and third loci.

The Walsh Transform is a linear transformation of W⃑ into another vector E⃑, called the 

Walsh coefficients [57–59]. E⃑ also has 2L values, again ordered by an L bit binary 

number, but here digits 1 and 0 represent the presence or absence of a contribution from 

the mutation at each locus to the corresponding interaction term. For example again 

assuming three mutations, E011 represents the interaction between the second and third 

loci.

The Walsh transformation yields E⃑ by multiplying W⃑ with an invertible, symmetric 2L × 

2L transformation matrix ψ together with a constant 2−L (figure). Because ψ is its own 

inverse to within a constant, subsequent multiplication of E⃑ by ψ restores W⃑. 

(Algebraically, 2−L. ψ·ψ = I, where I is the identity matrix.) In general, there will then be 

 terms involving exactly k interacting loci in E⃑; we describe these as kth order 

terms, and note that the order of each element in E⃑ is the number of 1’s in its subscript.

A critical feature of the Walsh framework is that its basis is orthogonal, since the dot 

product of any two row vectors in ψ is zero. In other words, each Walsh coefficient is 

independent of all others, which explains why pairwise interactions cannot capture 

higher-order terms. This orthogonality also links the Walsh transform to both the discrete 

Fourier transform [60,61], and 2k factorial analysis from experimental design [46,62].

We now develop the connection between Walsh coefficients and familiar population 

genetic parameters.

First order Walsh coefficients (i.e. those with a single 1 in their subscript) are related to 

classical selection coefficients (s = Wmutant – Ww.t., w.t. denotes wild-type), which 

represent the fitness effect of single mutations. To see this consider E001 (the second line 

in the 3-locus case illustrated in the figure):

By grouping terms we have highlighted the fact that E001 is proportional to the sum of 

four quantities: the effect of a mutation at the rightmost locus on the 000, 010, 100, and 

110 genetic backgrounds. Thus, E001 is exactly half the effect of a mutation at the 

rightmost locus, averaged over all backgrounds. Following the subscripting convention 

outlined above for E⃑, we compute the average selection coefficient for the rightmost 
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mutation  given the combinatorially complete fitness vector W⃑. We similarly 

compute average selection coefficients  and  for mutations at 

the center and leftmost loci.

Continuing in this manner we see that second order Walsh coefficients (i.e. those with 

two 1’s in their subscript) are intimately related to pairwise epistatic coefficients. 

Classically, epistasis between two mutations i and j is represented by eij, equal to the 

difference between a double mutant’s expected and observed fitness. Assuming an 

additive expectation, this means that for two arbitrary mutations A and B, eAB = WAB -

[Ww.t. + (WA - Ww.t.) + (WB - Ww.t.)] = (Ww.t. - WA) - (WB - WAB). (Note that eAB is 

symmetric with respect to mutations A and B: eAB= eBA.)

Now compare the rightmost expression for eAB with a second order Walsh coefficient, for 

example,

(the fourth line of the figure). The two terms in square brackets each have the structure of 

eAB. Furthermore, these terms are identical except for allelic state at the leftmost locus, 

that is, except for genetic background. Thus E011 is exactly one fourth the epistasis 

between the rightmost two loci averaged across backgrounds. Again following the 

subscripting convention above, we compute the average epistasis between these two loci 

as . (And similarly  and .)

The pattern described for first and second order Walsh coefficients can be generalized up 

to Lth order interactions on combinatorially complete datasets of L mutations. In 

particular, every kth order Walsh coefficient will be proportional to the sum of 2L-k 

interaction terms, each of which involves 2k differences. Hence, we compute the kth order 

epistatic coefficient as 2k times the corresponding Walsh coefficient. We note in passing 

a close connection between our epistatic coefficients and those in the Taylor expansion of 

the fitness landscape [61].

Two points of reference are useful (Figure 1a). On additive (or log-transformed 

multiplicative) fitness landscapes, all epistatic coefficients of second order and above are 

numerically equal to zero. And in contrast, on fitness landscapes whose values are 

independent and identically distributed on any probability density function, mean squared 

epistatic coefficients increase exponentially with order. We expect biological datasets to 

lie between these two extremes.
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Figure 1. 
Epistatic coefficients as a function of order. Because epistatic coefficients may be positive 

or negative (Box 1), mean squared values are shown. The zeroth-order epistatic coefficient 

is the mean fitness across all genotypes (see Box 1); in each case here, fitness values were 

normalized to make this quantity equal to 1.0. First-order and second-order coefficients are 

analogous to classical selection coefficients and classical pairwise epistasis terms, 

respectively (see Box 1). Error bars represent standard deviation among coefficients of given 

order; those that extend to the x-axis overlap 0. (a) Theoretical fitness landscapes. Additive 
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(circle) genotypic fitness values are the sum of the fitness effects of constituent mutations, 

which in turn were drawn uniformly on the interval [0, 1]. Here, all pairwise and higher 

epistatic coefficients are zero. I.I.D. (squares) genotypic fitness values were drawn 

independently and identically from a uniform distribution over [0, 1]. Here, magnitude of 

mean squared epistatic coefficient increases exponentially with order. We expect empirical 

results to lie in between these two extremes. Enzyme folding stability model (triangles) 

considers the fitness landscape defined by 1/(1 + eΔG/kbT) over 7 missense mutations with 

identical and additive ΔΔG = 1 kcal/mol [44••]. Here ΔG is the free energy of folding, kb is 

Boltzman’s constant and T is temperature. See text for further details. (b–o) Empirical 

fitness landscapes in Table 1; citations given in square brackets. Growth rate (panels c, e, h, 

l, n and o) and drug resistance (f, i and k) values were log-transformed before epistatic 

coefficients were computed. In cases where more than one combinatorially complete subset 

of mutations was identified (panels d, g, k, m) results for a randomly selected subset is 

shown.
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Figure 2. The Walsh transform of the fitness landscape W⃑ into Walsh coefficients E⃑

Here we consider the fitness landscape defined by all combinations of L = 3 mutations in the 

avian lysozyme characterized by Malcolm et al. [[25]; melting temperature is used as a 

proxy for fitness]. Each row is ordered by a binary string whose bits left-to-right correspond 

to the T40S, I55V and S91T mutations. (Here, T, S, I and V stand for threonine, serine, 

isoleucine and valine, respectively, and the number is the mutated residue in the enzyme.) In 

the case of the fitness landscape vector W⃑, each ‘1’ in the string signals a contribution from 

that mutation to the corresponding fitness value. In the Walsh coefficients vector W⃑, each ‘1’ 

in the string signals a contribution from that mutation to the corresponding interaction 

coefficient. Thus for example we observe that the Walsh coefficient corresponding to the 

S91T mutation is equal to −1.53°C (second line) and that Walsh coefficient corresponding to 

the I55V and S91T mutations (fourth line) is equal to zero. ψ can be written for arbitrary L, 

as for example with the hadamard() function in the software package Matlab (Mathworks, 

Natick, MA).
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