
Direct Detection and Prediction of All Pneumococcal Serogroups by
Target Enrichment-Based Next-Generation Sequencing

Margaret Ip,a Veranja Liyanapathirana,a Irene Ang,a Kitty S. C. Fung,b T. K. Ng,c Haokui Zhou,a Dominic N. C. Tsangd

Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SARa; Department of Pathology, United Christian Hospital, Hong
Kong SARb; Department of Pathology, Princess Margaret Hospital, Hong Kong SARc; Department of Pathology, Queen Elizabeth Hospital, Hong Kong SARd

Despite the availability of standard methods for pneumococcal serotyping, there is room for improvement in the available meth-
ods, in terms of throughput, multiplexing capacity, and the number of serotypes identified. We describe a target enrichment-
based next-generation sequencing method applied to nasopharyngeal samples for direct detection and serogroup prediction of
all known serotypes of Streptococcus pneumoniae, 32 to the serotype level and the rest to the closely related serogroup level. The
method was applied to detect and to predict the serogroups of pneumococci directly in clinical samples and from sweeps of pri-
mary culture DNA, with increased detection rates versus culture-based identification and agreement with the serotypes/sero-
groups determined by conventional serotyping methods. We propose this method, in conjunction with traditional serotyping
methods, as an alternative to rapid detection and serotyping of pneumococci.

The introduction of conjugate vaccination has dramatically al-
tered the prevalence and community structure of pneumococ-

cal serotypes, in both disease and carriage (1). As the serotype
valency of conjugate vaccines increased from 7 to 13, the serotypes
and their prevalence were subjected to dynamic changes to less
common serotypes. Thus, there is a need for laboratory methods
that are capable of identifying the maximum possible number of
serotypes with a limited number of assays, in order to monitor
serotype replacement and any emerging serotypes (2).

The Quellung reaction remains the standard method for iden-
tification of pneumococcal serotypes. This method is expensive
and time-consuming and requires expertise (3). With the se-
quencing of the capsular biosynthesis loci of all 90 pneumococcal
serotypes, new molecular methods for pneumococcal serotyping
have been developed (4). The most widely used of these methods
remain sequential multiplex PCRs. The Centers for Disease Con-
trol and Prevention (CDC) (Atlanta, GA) recommends a set of 8
multiplex PCRs that are capable of differentiating 40 seroidenti-
ties, 22 to the serotype level (5) (http://www.cdc.gov/streplab/pcr
.html). More recently, a set of seven real-time PCR assays capable
of differentiating 21 serotypes was also recommended by the CDC
(6). However, the number of tests to be performed still remains
relatively high, due to the limited multiplexing capabilities associ-
ated with gel-based differentiation and quencher dye combina-
tions. Thus, there is a need for alternative serotyping methods
capable of differentiating the greatest number of serotypes at least
to closely related serogroups, with a minimal number of assays, in
a rapid and cost-effective manner.

Next-generation sequencing (NGS) is an attractive alternative
platform for the development of diagnostic methods. The high
throughput, the increasingly simple and fast methods for sample
preparation, and the ability to pool samples together make these
platforms versatile for adaptation. Target enrichment-based se-
quencing through selective enrichment of the regions of interest
enables the use of sequencing reads in a more cost-effective man-
ner. While target enrichment and sequencing are commonly used
for the diagnosis of cancers and hereditary diseases, their use in
diagnostic microbiology is still emerging (7). We previously used
a set of published primers to enrich the common pneumococcal

serotypes included in the 23-valent pneumococcal polysaccharide
vaccine (PPSV23) (8) and established cutoff values for the inter-
pretation of serogroup/serotype data based on the NGS target
reads. However, with the rapid changes in the serotype composi-
tion of Streptococcus pneumoniae globally, the methodology needs
to be expanded to include other serotypes. We thus extended and
validated the NGS protocol to enrich serotype-specific sequences
from additional S. pneumoniae serotypes. This enabled the iden-
tification and detection of all current serogroups of S. pneu-
moniae, including 32 at the serotype level. We then applied this
methodology to identify and to serotype S. pneumoniae directly
from clinical samples from hospitalized children with pneumonia
and from sweeps of primary cultures and compared the results
with those of the conventional method of culture and serotyping
of S. pneumoniae.

MATERIALS AND METHODS
Pneumococcal isolates and capsular typing. Thirty-eight isolates of
pneumococcal serotypes/serogroups included in the second enrichment
PCR were used for the validation section. All isolates were serotyped as
described previously, with multiplex PCR (5) (http://www.cdc.gov
/streplab/pcr.html). DNA from bacterial isolates was prepared by boiling
lysis of overnight cultures.

Processing of clinical samples. Nasopharyngeal aspirate (NPA) sam-
ples collected from children hospitalized with pneumonia at a tertiary care
pediatric department during a consecutive 9-month period were evalu-
ated. NPA samples were stored in skim milk-glycerol-glucose-tryptone
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soy broth (STGG) at �80°C, thawed to room temperature, and vortex-
mixed for 10 to 20 s. DNA was extracted from 200 �l using the Qiagen
DNeasy blood and tissue kit, with modifications suggested by the CDC
(http://www.cdc.gov/streplab/downloads/pcr-body-fluid-DNA-extract-
strep.pdf). Ten microliters of each NPA sample was cultured on blood
agar (BA) plates with gentamicin (5 �g/ml), the samples were incubated
in 5% CO2 at 37°C for 24 h, and suspected S. pneumoniae colonies were
identified by routine methods described previously (9). Plates with no
growth were reincubated for an additional 24 h.

DNA extraction was also performed from sweeps of the primary
cultures (sweep culture) as described by Turner et al. (10), with mod-
ifications. After a single colony was picked from the primary culture
plate, a sweep of the remaining bacterial colonies was suspended in 500
�l to 1 ml of ultrapure water, and the turbidity was adjusted to a
McFarland standard of 1. DNA was extracted from this suspension by
simple boiling lysis.

Target enrichment-based next-generation sequencing. The multi-
plex PCR for target enrichment of extended pneumococcal serotypes con-
tained 33 previously described pairs of primers (11), of which 20 were
serotype specific (13, 11F, 16F, 16A, 17A, 21, 23A, 23B, 27, 29, 31, 33C, 34,
35B, 36, 39, 43, 45, 47A, and 48) and 13 were serogroup specific (7B/7C/
40, 10F/10A, 11B/11C, 15A/15F, 19B/19C, 24F/24A/24B, 25F/25A/38,
28F/28A, 32F/32A, 33B/33D/33C, 35F/47F, 35A/35C/42, and 41F/41A)
(see Table S1 in the supplemental material). An 18-bp nucleotide adaptor
was added to the 5= end of the primers to enable sample pooling (8), and
multiplex PCRs were optimized with or without the addition of a pair of
primers targeting the streptococcal autolysin gene, with an intervening
segment of specific sequence signatures (8), for the identification of S.
pneumoniae. The remaining 24 common serotypes (those present in
PPSV23 and serotype 6A) were enriched using the previously described
PCR (8). The extended enrichment PCR used a 4-�l volume from a
primer mixture containing serotype/serogroup-specific primers at 1 �M
concentrations, without or with lytA-specific primers at 0.25 �M con-

centrations, with 2 �l of identified isolate DNA, 4 �l of primary culture
DNA, or 8 �l of direct sample DNA as the template in a total reaction
mixture of 25 �l, using a Platinum multiplex PCR kit (Life Technolo-
gies).

A modified step-out (MSO)-PCR used the sequence of the 18-nucle-
otide adaptor for the primer, with 10 unique 5-nucleotide indexes selected
from an online list (http://cloud.github.com/downloads/faircloth-lab
/edittag/edit_metric_tags.txt) at the 5= end, to enable sample pooling (12,
13). The MSO-PCR used 4 �l of the purified products of multiplex PCR as
the template in a 50-�l reaction mixture with other constituents as rec-
ommended for ActiTaq polymerase (Life Technologies), for 20 cycles with
an annealing temperature of 53°C.

Figure 1 presents the workflow for sample preparation and the meth-
ods evaluated. The multiplex PCRs described above and described previ-
ously (8) were used in conjunction to determine the identification and
pneumococcal serogroups/serotypes from DNA extracted directly from
samples and from sweeps of primary cultures.

Library preparation and sequencing. MSO-PCR products were ana-
lyzed visually for the presence of bands regardless of size, and DNA was
purified using the QIAquick PCR product purification kit (Qiagen) and
quantified using a Qubit fluorometer (Life Technologies). Purified PCR
products from samples with 10 unique barcodes were pooled together in
equal quantities to generate a single “index sample,” and library prepara-
tion was performed using the TruSeq DNA library preparation kit (ver-
sion 2; Illumina), according to the manufacturer’s instructions. Sequenc-
ing was performed with a MiSeq sequencer (Illumina), using 2 by 150-bp
sequencing. The paired-end reads obtained from the sequencing run were
demultiplexed for Illumina indexes with MiSeq reporter software, fol-
lowed by quality filtering and demultiplexing for in-house indexes using
the FASTX toolkit (http://hannonlab.cshl.edu/fastx_toolkit). Amplicons
were aligned with reference sequences mentioned in the articles describ-
ing the original primers (11, 14) and with atypical and typical pneumo-

FIG 1 Workflow for three methods for S. pneumoniae identification (ID) and prediction of serogroups/serotypes.
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coccal lytA gene sequences (GenBank accession numbers AJ419979.1 and
AJ243407.1, respectively).

Confirmation of discrepant results between culture-based and tar-
get-based NGS methods. For samples for which there were discrepancies
in S. pneumoniae isolation or multiple serotypes were detected with the
NGS method and not culture, the specimens were recultured using a
50-�l inoculum, and up to 20 to 50 colonies were picked for confirmation
of the pneumococcal identities and serotyping by conventional methods.
Additionally, the original DNA samples were tested with the CDC-recom-
mended PCR, with a second round in which the product of the first round
was used as a template.

Interpretation of results. In the previous study for detection of 23-
valent serotypes, we evaluated different criteria with variable stringency to
correctly assign serotypes. We found that identification of a serotype for
which �500 reads were mapped against the given serotype, accounting for
�15% of reads mapped against serotype sequences, was a stringent crite-
rion with 100% correct prediction of serotypes (8). Thus, the same crite-
rion was used in this study. For the identification of S. pneumoniae in
samples containing S. pneumoniae with a mixture of viridians strepto-
cocci, the percentage of reads mapped against the pneumococcus-specific
lytA gene was identified as �10% of the total mapped reads for the given
sample. Thus, in the validation using clinical samples versus pneumococ-
cal isolates, only samples for which �10% of total reads were mapped
against the typical lytA gene and �500 reads were mapped against sero-
type sequences were considered to contain pneumococci.

RESULTS
Target enrichment-based NGS detection and prediction of
pneumococcal serotypes. Table 1 shows the detailed results of
the pneumococcal serotype/serogroup prediction by target-based
NGS. The total numbers of reads mapped against each serotype/
serogroup-specific sequence ranged from 1,667 to 18,106, while
totals ranged from 1,902 to 18,701 reads in the results with inclu-
sion of the lytA primers for detection of pneumococci. For the
results with lytA primers, 316 to 14,760 reads were mapped against
the typical lytA gene, which accounted for �10% of total mapped
reads for a given sample. Considering all samples, the mean per-
centages of reads mapped against the correct serotype/serogroup-
specific sequence were well above the defined cutoff value of
�15% of reads at 80.6% (95% confidence interval [CI], 77.7 to
84.1%) and 80.9% (95% CI, 77.8 to 84.1%) with inclusion of the
lytA gene. Applying the criteria derived from the previous study
(�15% of all sequence reads and �500 total reads for a particular
serotype sequence), all 38 serogroups/serotypes (100%) were cor-
rectly identified to the corresponding type; in the reaction includ-
ing the lytA gene for pneumococcal identification, 37 of the 38
serogroups/serotypes (97.4%) were correctly identified. The re-
maining sample was also correctly identified to the original sero-
type but gave an additional serotype match based on the cutoff
criterion.

Comparison of serotypes determined by target-based NGS
versus conventional culture-based serotyping. Of 155 respira-
tory samples, 22.6% of the samples (35 samples) yielded S. pneu-
moniae in culture. The serotypes of these isolates are listed in Table
2. DNA was prepared from sweeps of bacterial colonies from 81 of
155 samples that revealed bacterial growth in the primary cultures.
Of these, 40 samples were positive after PCR enrichment and were
subjected to sequencing by NGS, and the results are presented in
Table 2. Of the 40 samples, 38 fulfilled the criteria for pneumo-
coccal identification, giving a pneumococcal positivity rate of
24.5%. Thirty-seven of these samples gave predicted serotypes; 36
samples contained a single serotype with �500 reads mapped

against a serotype accounting for �15% of reads, while one sam-
ple (sample 27) had two serotypes predicted based on the same
criteria for serotype allocation. One sample (sample 95) was iden-
tified as containing S. pneumoniae based on the lytA criteria but
did not fulfill the criteria for serotype allocation.

Of all 155 samples tested with the direct NGS method, 44 had
amplified products after multiplex PCR for target enrichment and
were subjected to NGS sequencing; 39 samples fulfilled the criteria
for pneumococcal identification, giving a positivity rate of 25.2%.
Thirty-eight of 39 samples fulfilled the criteria for prediction of
serotypes and were mapped to a predominant serotype. In addi-
tion, two of these samples (samples 117 and 132) had sufficient
numbers and percentages of reads to map against a second sero-
type. One sample (sample 95) had 24.4% of reads mapped against
serotype 23A, 16.6% against serotype 19A, and 13.6% against se-
rotype 10A/10B; however, as none of the serotypes had �500
reads mapped against the given type, this sample did not fulfill the
criteria for serotype allocation.

All 35 samples yielding S. pneumoniae from cultures were pos-
itive for S. pneumoniae by sweeps of primary culture DNA for
NGS, and the results also corroborated the serotype predictions.
However, only 34 of 35 samples were considered positive by the
direct sample DNA NGS method (yielding a sensitivity of 97.4%
versus sweep culture identification), as one sample (sample 152)
did not meet the cutoff criterion and had only 8.3% of total
mapped reads aligned to the typical lytA gene. Sample 95 did not
meet the criteria for serotype allocation by either primary culture
or the direct sample DNA NGS method.

Sweep culture DNA NGS identified 3 additional samples as
containing S. pneumoniae, and these were also identified and con-
firmed by the direct sample NGS method (Table 3). Two of these
three samples (samples 44 and 143) yielded pneumococcal isola-
tion of the corresponding serotypes on repeat culture. Another
two samples (samples 71 and 104) were identified as containing
pneumococci by the direct sample NGS method. All five samples
were confirmed to contain S. pneumoniae by repeat testing of the
original DNA samples, with a second-round PCR using the CDC
PCR method for prediction of serotypes. Of the three samples
identified as having a second serotype (Table 3), two from the
direct NGS method were confirmed to have the second serotype
with reanalysis of the original DNA with additional PCR cycles
using the CDC PCR method.

For sample 95, which was identified as having pneumococci
but did not fulfill the criteria for serotype allocation, the original
respiratory sample was recultured on 3 plates in 50-�l aliquots,
and the progeny of 50 colonies were serotyped. Thirty-six of the
colonies belonged to serotype 10A, 9 to serotype 19A, and 5 to
serotype 23A (Table 3). The results of reanalysis of the samples
with �10% of total reads mapped against the pneumococcal lytA
gene with �500 reads mapped for sequence-specific reads are pre-
sented in Table 3.

DISCUSSION

The target-based NGS method described herein was capable of
identifying all serogroups, including 32 serotypes at the serotype
level. NGS offers a more versatile, high-throughput alternative to
detection with previously described detection methods (11, 14).

Recently, a number of novel methods to increase the capacity
to detect a broader range of pneumococcal serotypes have been
described. These methods include a multiplexed PCR coupled to
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an automated microarray assay differentiating 22 serotypes and 24
other serotypes to the subgroup level, the sequetyping method,
which relies on sequencing products of a single consensus pair of
primers capable of amplifying products of 84 serotypes and differ-
entiating 46, a 5-plex multiplex PCR followed by ionization mass
spectrometry, which is capable of differentiating 45 serotypes, and
a set of three multiplex PCRs with 40 pairs of previously described
primers followed by fragment analysis using automated fluores-
cence-based capillary electrophoresis, which is capable of differ-
entiating 39 serotype/serogroups (15–17). These methods are
similar to our current method in terms of serotype resolution;
however, to the best of our knowledge this is the first instance in
which NGS coupled with target enrichment has been used to de-
termine S. pneumoniae with serogroups directly from clinical
specimens, although recently a similar method was used to iden-
tify other bacterial isolates (18). The potential advantages of
whole-genome sequencing (WGS) over the current method in-
clude the potential ability to detect novel serotypes and the ability
to distinguish more serogroups to the serotype level. In this study,
however, the identification of lytA positivity in the absence of an
identified serotype may suggest novel serotypes that deserve rein-
vestigation of the original samples. Also, the current method is
much more affordable, in terms of per-isolate or per-sample costs,
and enables greater throughput than WGS.

The rates of detection by direct NGS from clinical samples
(25.2%) and sweep culture DNA identification (24.5%) were both
higher than the rate of culture-based identification (22.6%). Cul-
ture-independent methods for pneumococcal detection have
been shown to increase the detection rates in both colonization
studies and assessments of sterile samples (19). It might be pre-
sumed that S. pneumoniae identified from only direct sample
DNA (samples 71 and 104) and not from cultures or sweep cul-
tures reflected remnant DNA of S. pneumoniae with serotypes
predicted from the sequences. Thus, this method could potentially
detect nonviable organisms or organisms from specimens from
patients already receiving antibiotic treatment.

A drawback of molecular methods for detecting S. pneumoniae
directly from clinical samples is the potential misidentification of
nonpneumococcal isolates with similar genetic make-ups. Viri-
dans group streptococci have been found to harbor a large num-
ber of genes originally identified as pneumococcal genes (20, 21).
Our assay incorporated a specific pair of primers that amplified a
signature of the streptococcal autolysin gene that differentiated S.
pneumoniae from nonpneumococcal isolates. The presence of
specific lytA gene sequences but not serotype-specific sequences at
the given cutoff criteria could potentially be used to indicate novel
serotypes. This could also be due to the presence of multiple non-
dominant serotypes in low abundance, as exemplified by the re-
sults of reanalyzing sample 95.

One key factor in the successful application of the current
method is the determination of cutoff read numbers and pro-
portions to consider a sample for serotype allocation. Pooling
multiple samples into one index sample, while helping to re-
duce costs, could potentially introduce false positivity of minor
serotypes due to chimera formation-related issues. Further
evaluations of the cutoff values in relation to the number of
samples pooled to distinguish a true minor serotype versus a
sample pooling artifact are needed. The number of samples
pooled together is best kept uniform for a given diagnostic
assay after full validation (22).13
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Detection of multiple serotypes in colonization is one key area
in pneumococcal research that is of increasing importance, due to
changes in the capsular types with the use of vaccines (2). Multi-
plex PCRs, microarrays, and latex agglutination assays have been
used to detect multiple serotypes in colonization, with different
success rates (23–25). The use of culture for detection of multiple
serotypes is limited by the number of colonies that need to be
identified in order to have a realistic probability of identifying a
minor serotype (26, 27). The method described offers an attractive
alternative to detection of multiple serotypes in colonization from
primary cultures or direct sample DNA.

This method is sufficiently versatile to be applied to pneumo-
coccal isolates, sweep cultures, and direct clinical samples. As the
enrichment requires only two multiplex PCRs optimized to the
same thermocycling conditions, the method is amenable to auto-
mation, and NGS could be adapted to different sequencing plat-
forms with modified library preparation protocols. With the
emergence of competitively priced kits for rapid library prepara-
tion, this method can be carried out in a relatively short time. The
bioinformatics pipeline used for this method is simple. Alterna-
tively, on-instrument data-processing pipelines may be used for
analysis.

Siira et al. (28) indicated that the best way to utilize different
methodologies for serotyping is to use them in a complemen-
tary manner, whereby molecular methods are used to rapidly
screen large numbers of samples in a high-throughput manner
and then the more precise but costly standard methods are used
for further identification where needed (28). We propose our
target enrichment-based sequencing method as a versatile
adaptable method that can be used in conjunction with stan-
dard methods.
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