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Abstract

Consistent spatial patterns of coherent activity, representing large-scale networks, have been reliably identified in
multiple populations. Most often, these studies have examined ‘‘stationary’’ connectivity. However, there is a
growing recognition that there is a wealth of information in the time-varying dynamics of networks which
has neural underpinnings, which changes with age and disease and that supports behavior. Using factor analysis
of overlapping sliding windows across 25 participants with Parkinson disease (PD) and 21 controls (ages 41–86),
we identify factors describing the covarying correlations of regions (dynamic connectivity) within attention
networks and the default mode network, during two baseline resting-state and task runs. Cortical regions that
support attention networks are affected early in PD, motivating the potential utility of dynamic connectivity
as a sensitive way to characterize physiological disruption to these networks. We show that measures of dynamic
connectivity are more reliable than comparable measures of stationary connectivity. Factors in the dorsal atten-
tion network (DAN) and fronto-parietal task control network, obtained at rest, are consistently related to the alert-
ing and orienting reaction time effects in the subsequent Attention Network Task. In addition, the same
relationship between the same DAN factor and the alerting effect was present during tasks. Although reliable,
dynamic connectivity was not invariant, and changes between factor scores across sessions were related to
changes in accuracy. In summary, patterns of time-varying correlations among nodes in an intrinsic network
have a stability that has functional relevance.

Key words: attention network task; dynamic functional connectivity; Parkinson disease; resting-state connectiv-
ity; task connectivity

Introduction

Studies of spontaneous fluctuations in the blood ox-
ygenation level-dependent signal measured at rest with

functional magnetic resonance imaging (fMRI) have greatly
advanced our understanding of how cortical regions interact
in large-scale systems. Consistent spatial patterns of coherent
activity, representing large-scale networks, have been reli-
ably identified in multiple populations (Beckmann et al.,
2005; Damoiseaux et al., 2006). Most often, these studies
have examined ‘‘stationary’’ connectivity, which is blind to
time-varying changes in connectivity that may occur over
the duration of a several-minute scan. However, there is a
growing recognition that there is a wealth of information in
the time-varying dynamics of networks which has neural un-
derpinnings, which changes with age and disease and that
supports behavior (Chang and Glover, 2010; Hutchison
et al., 2012, 2013; Jones et al., 2012; Smith et al., 2012).

There are many ways to measure dynamic connectivity
(for a recent review, see Hutchison et al., 2013). We describe
our approach briefly here. We have observed in an earlier
work (Madhyastha and Grabowski, 2013) that not only do
correlations among network nodes (computed from sliding
windows) change throughout a scan, but they also do so in
a structured way (i.e., certain groups of nodes increase or de-
crease their intercorrelations together). Using factor analysis,
we can identify covarying correlations and describe how
closely they are coupled. This is illustrated in Figure 1.
Although a mean factor score, which summarizes the time-
varying coupling of a subset of nodes across the scan, is
clearly related to the stationary functional connectivity of
the nodes in that subset, factor analysis more accurately
quantifies the coupling of correlations, information lost in or-
dinary stationary analyses.

We previously observed (Madhyastha and Grabowski,
2013) that specific factors describing dynamic connectivity
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were negatively correlated with age. We hypothesized that
this age-related decoupling of covarying correlations could
be caused by numerous age-related processes (e.g., alterations
in dopaminergic tone, age-related sensory decline, vascular
insufficiency, and damaged white matter microstructure).
Due to the heterogeneity in a normally aging sample, we ex-
pect that several of these processes contribute to age-related
breakdown of dynamic connectivity.

In this study, we examine data from healthy controls and
participants with Parkinson disease (PD). Idiopathic PD is
diagnosed on the basis of motor impairments caused by pro-
gressive loss of striatal dopamine, but cognitive impairment
and dementia are key symptoms of the disease. Although
similar to aging, PD also involves multiple pathophysiologic
processes; subjects share a common phenotypic presentation
with known deficits in lateral frontoparietal networks that
support attention and task control. These networks have
been conceptualized as the fronto-parietal task control net-
work (FPTC), comprising anterior prefrontal, dorsolateral
prefrontal, dorsomedial superior frontal/anterior cingulate,
anterior inferior parietal lobule, and anterior insular cortex
(Dosenbach et al., 2007); and the dorsal attention network

(DAN), comprising frontal eye fields (FEF) and intraparietal
sulci (Corbetta and Shulman, 2002). These ‘‘task-positive’’
networks are also identifiable at rest (Fox et al., 2005). Cort-
ical regions that support these networks are affected early in
PD, as evidenced by cortical thinning ( Jubault et al., 2011;
Pereira et al., 2012) and metabolic covariance analysis
(Eckert et al., 2007). A metabolic covariance network char-
acterized by reductions in the posterior parietal cortex, left
prefrontal cortex, precuneus, and supplementary motor area
has been shown in PD to be specifically related to cognitive
(vs. motor) symptoms (Huang et al., 2007). In addition to
cortical pathology, impairment of multiple interacting as-
cending control systems, including the dopaminergic, norad-
renergic, cholinergic, and serotonergic systems, contributes
to deficits and is difficult to disentangle (Barone, 2010; Mat-
tila et al., 2001). We, therefore, expect that PD participants
should display a wide range of abnormalities in both ascend-
ing modulation of attention networks and cortical function of
areas that support these networks. This population enables us
to evaluate whether differences in dynamic connectivity in
attention networks are specifically related to attention net-
work function.

FIG. 1. Overview of dynamic correlation factor analysis. (a) Dynamic correlation analysis uses the z-transformed corre-
lations of the time courses among all regions of interest within sliding windows (W1.Wn) as an input to a factor analysis,
yielding factors that describe sets of edges with covarying connectivity. (b) The dotted blue lines show sliding window cor-
relations among nodes with covarying connectivity within a factor as shown in (a), and the heavy blue line is the mean of
these values. One can observe that there is a relationship between the mean correlation and the factor score, but the latter is a
more direct measurement of the coupling. During a scan, these correlations may be more tightly coupled, yielding a high
factor score (first red circle) or more loosely coupled, yielding a lower factor score (second red circle).
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To assess attention function, we administered the Atten-
tion Network Test (ANT), adapted for the MRI environment
by Fan et al. (2005), which is a combination of a cued reac-
tion time task and a Flanker task. The task is designed to
measure the efficiency of the alerting, orienting, and execu-
tive control networks, each of which is posited to be primar-
ily modulated by a different neurotransmitter system known
to be affected in PD. The alerting attention network involves
the ability to maintain the alert state and respond to a cue,
and is considered to be modulated by the noradrenergic sys-
tem. The orienting network directs attention to a target stim-
ulus and is considered to be related to the cholinergic system
(Posner, 2008). The executive network manages the ability to
resolve conflict, as measured here by the difference in reac-
tion time between the Incongruent and Congruent Flanker
tasks. It involves activation of the anterior cingulate cortex,
and is considered to be related to dopaminergic function
(Fan et al., 2003). There is likely to be a substantial inter-
action in neurotransmitter modulation of these attentional
networks; for example, through changes in reactive pupil di-
lation, Geva et al. (2013) show a role for the noradrenergic
system in modulating all three networks. Conventional task
analysis (see Results section) shows that the regions acti-
vated by this task include areas in the FPTC and DAN.

Our hypothesis is that measurements of dynamic connec-
tivity obtained at rest and during tasks in attention networks
should be related to behavioral markers of attention network
function, and that dynamic connectivity is a more reliable
and sensitive measurement than stationary functional con-
nectivity to assess within-network dynamic coupling.

Materials and Methods

Participants

This analysis includes 25 subjects with PD (Mage = 66, 45–
86) and 21 controls (Mage = 62, 41–76), selected from a
larger study. Potential participants were excluded if they

had a history of any primary neurodegenerative disease
other than idiopathic PD, brain surgery (including placement
of a deep brain stimulator), moderate to severe dyskinesia,
significant head trauma, stroke history, severe or unstable
cardiovascular disease, contraindications to MRI, or a Mon-
treal Cognitive Assessment score (MoCA) (Nasreddine
et al., 2005) lower than 23. Four subjects from the larger
study were excluded from fMRI analysis; one became claus-
trophobic in the scanner, one could not adequately perform
the task, one fell asleep during both the resting and task
scans, and another dropped out after the first session.

See Table 1 for sample characteristics. Participants were
predominantly right handed. PD patients did not differ signif-
icantly from controls with regard to age, education, or scores
on the MoCA. Although the PD participants are within the
range of normative values for controls (Nasreddine et al.,
2005) and do not differ from study controls on the MoCA,
they have declined from their premorbid abilities, such that
14 PD participants are classified via consensus rating as hav-
ing mild cognitive impairment (see Cholerton et al., 2013 for
details on consensus rating procedure). PD participants had
significantly higher scores on the UPDRS motor subscale, in-
dicating greater motor impairment (Goetz et al., 2007)
[t(44) =�11.82, p < 0.001].

Men were over-represented in the PD group, consistent
with higher incidence rates of PD in men (Wooten et al.,
2004). PD patients ranged from Hoehn and Yahr (1967)
stage 1 to 2.5 with most at stage 2 (n = 20; bilateral involvement
without impairment of balance) and had been experiencing
symptoms for an average of 8.47 years. At diagnosis, the
motor symptoms for most patients were predominantly on the
right. At the time of the scan and corresponding neuropsycho-
logical evaluations, most PD patients were taking dopaminergic
medications (28% were taking both levodopa and a dopamine
agonist, 36% were taking only levodopa, 16% were taking
only a dopamine agonist, and 20% were taking no dopaminer-
gic medications). This study was approved by the University of

Table 1. Demographics of Sample

PD Control Total

n 25 21 46
Age at scan 66.04 (10.05) 61.90 (10.00) 64.15 (10.13)
Sex (number males) 18 (72%) 9 (43%) 27 (59%)
Education (years) 16.17 (2.08) 15.90 (2.39) 16.04 (2.20)
Hoen and Yahr 2.04 (1–2.5) NA
Handedness (right) 21 19 40
Dominant side of motor symptoms 7 Left/18 right
UPDRS Part I 9.96 (5.74) NA 9.96 (5.74)
UPDRS Part II 8.76 (5.33) NA 8.76 (5.33)
UPDRS Part III 23.56 (8.71) 0.81 13.17 (13.14)
UPDRS Part IV 2.00 (3.70) NA 2.00 (3.70)
Levodopa (current) 16 0 16
Dopamine agonist (current) 11 0 11
Time since symptom onset 8.47 (4.79) NA
MoCA 26.40 (2.12) 27.29 (1.95) 26.80 (2.07)
Hopkins Verbal Learning Test 24.72 (5.64)
Golden Stroop (total correct) 189.24 (25.90)
Trails B (sec) 74.42 (32.31)

Groups differ significantly on the UPDRS Part III (motor subscale), t(44) =�11.82, p < 0.001, and in proportion male t(44) =�2.05,
p = 0.047. They do not differ significantly in education, age, or MoCA score.

MoCA, Montreal Cognitive Assessment score; PD, Parkinson disease.
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Washington Institutional Review Board. All participants pro-
vided written informed consent.

Materials and procedures

Participants completed two scanning sessions (Session 1
and Session 2), without intervention, 1–3 weeks apart.
Scans were performed after morning doses of dopaminergic
medication (if applicable). During each session, participants
were scanned while viewing a fixation cross at rest and dur-
ing performance of the ANT (Fan et al., 2005) (Fig. 2). The
ANT was chosen as an index of function in cortical networks
differentially affected by ascending neuromodulatory sys-
tems. Participants performed six runs of the ANT. Each
run contained 2 buffer trials followed by 36 analyzed trials.
During each trial, a cue appeared on the screen for 200 msec,
providing varying degrees of information about when and
where to expect the target to appear. The cue was an asterisk
in the center of the screen (Center Cue), an asterisk above or
below the fixation cross indicating where the target would
appear (Spatial Cue), or nothing at all (No Cue). The cue
was followed by a jittered delay before a target set of five ar-
rows (each subtending 0.56� of visual angle, separated by
0.05�) that appeared 1.06� above or below the fixation
cross. The target arrows remained on the screen until the par-
ticipant responded, or 2000 msec elapsed. Participants used a
button box in each hand to indicate which direction (left or
right) the center arrow was pointing to while ignoring the di-
rection of the flanking arrows on each side.

Half of the trials were Congruent, meaning that the flank-
ing arrows pointed in the same direction as the center arrow
and half were Incongruent, meaning that the flanking arrows
and the center arrow pointed in opposite directions. Each of
these target trial types was also equally divided among the
three cue conditions. In the No Cue condition, participants

viewed an unchanging fixation cross. In the Center Cue con-
dition, an asterisk appeared briefly at the center of the screen,
providing temporal information about an upcoming target. In
the Spatial Cue condition, an asterisk appeared above or
below the fixation, providing spatiotemporal information
about an upcoming target. Trials in each run were presented
in a predetermined counterbalanced order in which each con-
dition followed the other condition equally as often as it fol-
lowed itself. The six conditions (3 cue conditions · 2 target
conditions) were rotated within the counterbalance across
the six runs. Both the cue-target interval (mean 2800 msec)
and the time between the end of onset of the target in one
trial and the onset of the cue in the next (mean 6000 msec)
were independently jittered across 12 predetermined values
to approximate an exponential distribution. The cue-target
interval was one of a set of 12 discrete time points from
300 to 11,800 msec, including three 300-msec intervals, as
well as 550, 800, 1050, 1550, 2300, 3300, 4800, 6550, and
11,800 msec, approximating an exponential distribution
with a mean interval of 2800 msec (Fan et al., 2005). The
time between the end of onset of target and the onset of
cue was one of a set of 12 discrete time points from 3000
to 15,000 msec, including 3000, 3250, 3500, 3750, 4000,
4500, 5000, 5500, 6500, 8000, 10,000, and 15,000 msec, ap-
proximating an exponential distribution with a mean of
6000 msec (Fan et al., 2005).

MRI acquisition

Data were acquired using a Philips 3T Achieva MR Sys-
tem (software version 3.2.2; Philips Medical Systems,
Best, The Netherlands) with a 32-channel SENSE head
coil. During each session, whole-brain axial echo-planar im-
ages (43 sequential ascending slices, 3 mL isotropic voxels,
field of view = 240 · 240 · 129, repetition time = 2400 msec,

FIG. 2. Schematic of
Attention Network Test (Fan,
2005). During each trial, a
cue (No Cue, Center Cue, or
Spatial Cue) appeared on the
screen for 200 msec. This was
followed by a fixation delay
before a target set of five
Congruent or Incongruent
arrows appeared above or
below fixation. The target
arrows remained on the
screen until the participant
responded, or 2000 msec
elapsed, and was followed by
fixation of jittered duration.
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echo time = 25 msec, flip angle = 79�, and SENSE acceleration
factor = 2) were collected parallel to the anterior-commissure–
posterior commissure (AC-PC) line for all functional runs.
The first five dummy volumes in our fMRI acquisition are
automatically discarded to achieve steady-state imaging. Run
duration was 300 volumes (12 min) for the resting-state run
and 149 volumes (5.96 min) for each task run. A sagittal
T1-weighted 3D MPRAGE (176 slices, matrix size = 256 ·
256, inversion time = 1100 msec, turbo-field echo factor = 225,
repetition time = 7.46 msec, echo time = 3.49 msec, flip an-
gle = 7�, and shot interval = 2530 msec) with 1 mm isotropic
voxels was also acquired for registration.

MRI processing

Functional images from rest or tasks were processed iden-
tically using a pipeline developed using software from FSL
( Jenkinson et al., 2011), FreeSurfer (Fischl and Dale,
2000), and AFNI (Cox, 1996). Processing steps for each
analysis [dynamic connectivity, independent components
analysis (ICA), and univariate general linear model
(GLM)] were kept as similar as possible, with a few excep-
tions (noted below) where necessary to improve the quality
of the analysis following FSL recommendations.

Data were corrected for motion using FSL MCFLIRT
( Jenkinson et al., 2002). The pipeline removed spikes
using AFNI, performed slice timing correction using FSL,
and regressed out time series motion parameters and the
mean signal for eroded (1 mm in 3D) masks of the lateral
ventricles and white matter (derived from running FreeSurfer
on the T1-weighted image). We did not regress out the global
signal. We did not perform bandpass filtering to avoid artifi-
cially inflating correlations or inducing structure that was not
actually present in the data, and because resting-state net-
works exhibit different levels of phase synchrony at differ-
ent frequencies (Handwerker et al., 2012; Niazy et al.,
2011). Factor analysis explicitly models error that might be
introduced into correlations by higher frequencies. Three-
dimensional spatial smoothing was performed using a Gauss-
ian kernel with a full width at half maximum (FWHM) of
sigma = 3 mm. Co-registration to the T1 image was per-
formed using boundary-based registration based on a white
matter segmentation of the T1 image (epi_reg in FSL).

We performed a conventional group ICA of the resting-
state data. Data were preprocessed as described earlier ex-
cept that motion, cerebrospinal fluid (CSF), and white matter
regressors were not removed from the data (because motion
and physiological signals are accurately separated from sig-
nal using ICA) (Salimi-Khorshidi et al., 2014). A Temporally
Concatenated Probabilistic Group Independent Components
Analysis (TC-GICA) was implemented using Multivariate
Exploratory Linear Decomposition into Independent Com-
ponents (MELODIC) Version 3.12 (Beckmann and Smith,
2004) to generate large-scale components across all resting-
state scans for all participants. In this data set, a probabilistic
Principal Component Analysis using the Laplace approxima-
tion to the Bayesian evidence of the model order estimated
a 22-dimensional subspace into which data were projected
(Beckmann and Smith, 2004). The whitened observations
were decomposed into sets of vectors that described the signal
variation across the concatenated time courses and across the
spatial maps by optimizing for non-Gaussian spatial source

distributions using a fixed-point iteration technique (Hyvari-
nen, 1999). A dual-regression approach implemented in FSL
(Filippini, 2009) was used to identify session-specific time
courses for each subject corresponding to the spatial maps
identified in the ICA, then to identify session-specific spatial
maps for each subject corresponding to these time courses.
An average spatial map for each subject was created for
each component of interest by averaging the Session 1 and
Session 2 maps. A group-level analysis comparing PD patients
with controls was performed by nonparametric testing (5000
permutations) on the single-subject spatial maps for the
group-level components of interest. Maps were thresholded
at a Bonferroni-corrected probability of 0.05 with threshold-
free cluster enhancement.

We also performed a univariate GLM analysis on the task
data. For inclusion in this analysis, functional task data were
processed as previously described except that data were sub-
mitted to a high-pass filter at sigma = 16.5 after motion cor-
rection; data were spatially smoothed with a Gaussian kernel
with an FWHM of sigma = 4 mm, and regression of nuisance
covariates (e.g., motion, white mater, and CSF) were in-
cluded later as a part of the first-level GLM. The high-pass
filter is necessary in the GLM to remove low-frequency sig-
nals that obscure signals of interest. Spatial smoothing for the
GLM is larger than used for the dynamic factor analysis to
improve between-subject anatomical alignment, a step that
does not occur with dynamic analysis. The GLM was imple-
mented using FSL’s fMRI expert analysis tool (FEAT) ver-
sion 6.0. Time series statistical analysis was carried out
using FILM with local autocorrelation correction (Woolrich
et al., 2001). Onsets of each cue (No Cue, Center Cue, and
Spatial Cue) and target (Congruent, Incongruent) condition
were entered as explanatory variables and convolved with
a double-gamma hemodynamic response function. Error tri-
als were modeled separately but not analyzed. Temporal de-
rivatives were included in the model. The first derivative of
the time series motion parameters as well as the original mo-
tion parameters, and CSF and white mater signals were
regressed out as nuisance covariates. Contrasts for the alert-
ing (Center Cue–No Cue), orienting (Spatial Cue–Center
Cue), and executive (Incongruent–Congruent) effects were
generated for each run for each participant. Contrast images
were registered to standard space using FLIRT to apply pa-
rameters determined by boundary-based registration of
each functional run to the subject’s own T1 image and 12-
dof linear registration of the subject’s T1 to standard Mon-
treal Neurological Institute (MNI) space. Registered contrast
images were then carried forward into higher-level models to
generate a single contrast image for each participant across
all runs in both sessions. These contrast images were fed
into a group comparison model using FMRIB’s Local Anal-
ysis of Mixed Effects (FLAME) stage 1 (Beckmann et al.,
2003; Woolrich, 2008; Woolrich et al., 2004). Z-statistic im-
ages were thresholded using clusters determined by Z > 2.3
and a corrected cluster significance threshold of p = 0.05
(Worsley, 2001).

Dynamic connectivity analysis

We selected MNI coordinates that have been identified as
nodes in the default mode network (DMN), DAN, and FPTC,
republished by Power et al. (2011) and derived from Raichle
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et al. (2001) and Dosenbach et al. (2007) (Supplementary
Table S1; Supplementary Data are available online at
www.liebertpub.com/brain). For each coordinate, we cre-
ated a 10 mm diameter mask in standard space and trans-
formed that to subjects’ native space to calculate mean
subject-specific time courses for each region of interest.

To analyze changes in connectivity, we calculate pair-
wise correlations between nodes in each network in over-
lapping windows, using a method of dynamic connectivity
analysis previously described (Madhyastha and Grabowski,
2013). The choice of window length is pragmatic and mo-
tivated by the need to obtain reliable correlations while
quantifying the individual variability throughout the scan;
as in an earlier work, we use a window length of *40 sec
(17 frames at TR = 2.4 or 40.8 sec). These correlations
were transformed by Fisher’s z-transform to convert them
to a normally distributed variable for subsequent factor anal-
ysis. In contrast to our previous work, we used overlapping
windows, moving forward 1TR each window from the be-
ginning of the scan. For each resting-state scan, this yielded
283 data points per subject. For each task run, this yielded
132 data points per subject. A schematic of this analysis is
shown in Figure 1.

We conducted an exploratory factor analysis using
chained P-technique factor analysis on the pairwise correla-
tions between nodes (dynamic patterns of connectivity)
within each network to obtain a factor structure (Madhyastha
and Grabowski, 2013). P-technique factor analysis (Cattell,
1963) applies the common factor model to multivariate re-
peated measures of one individual obtained over many occa-
sions. This type of factor model is appropriate to obtain
information about both covariation patterns and level of corre-
lations (Molenaar and Nesselroade, 2009; Nesselroade and
Ford, 1985). Here, we concatenate subject data, a method
called chained P-technique (Cattell, 1966), and apply varimax
rotation to the factor loading matrix. We concatenated data
from both sessions to enable factor scores to be compared be-
tween sessions. The approach of concatenating data is analo-
gous to a group ICA, and makes the analogous underlying
assumption that the structure of fluctuating correlations is
the same across individuals, reflecting a common functional
architecture, but that individual scores for each latent factor
may be different. This assumption may also be tested explic-
itly (see Discussion section), making factor analysis a power-
ful technique for separating measurement error from change.
Conceptually, varimax rotation is an orthogonal rotation that
tries to create a loading matrix with a simple structure (a pat-
tern of loadings where items load most strongly on one factor,
and more weakly on the other factors) (Kaiser, 1958). The
resulting factors represent subgroups of correlations that
covary in time across all individuals.

We extract four factors for each network at rest to be con-
sistent with a previous work (Madhyastha and Grabowski,
2013), where we determined a stable number of factors via
congruence in a split-half analysis of a large sample of elderly
adults. Four factors per network are also suggested by a Cattell
scree test of these data. A factor score is obtained for each slid-
ing window for each factor using Bartlett’s method, which
produces unbiased estimates of the true factor scores (Hersh-
berger, 2005); we average these scores for each factor for each
individual at each session. Therefore, for each network, we
obtain four factor scores per individual at each session. Scores

represent the expression of each factor (e.g., how tightly cou-
pled the links with high loadings on the factor are). The intu-
itive meaning of this analysis is illustrated in Figure 1b.

Since the rotation of the factor solution is determined by
the varimax criterion, it is not unique, and, therefore, might
be different at tasks and rest solely because of the rotation.
To compare factor analyses obtained during tasks with
those at rest, we rotate four factor solutions obtained during
task runs to maximal congruence with the analogous network
solutions obtained during rest using orthogonal Procrustes
rotation (as used in McCrae et al., 1996). This procedure
maximizes the size of the total congruence coefficient by op-
timally aligning real factors. To evaluate the similarity of the
solutions, we computed the congruence of the factors and the
significance of the Procrustes statistic.

Statistical analyses

All analyses were conducted using Revolutions R Enter-
prise Version 6.2.0 (www.revolutionanalytics.com). Mean
differences in response latencies obtained from the ANT task
across different experimental conditions were analyzed to
obtain a measurement of the alerting effect (No Cue–Center
Cue), orienting effect (Center Cue–Spatial Cue), and exec-
utive effect (Incongruent–Congruent) for each subject for
Session 1 and Session 2. Independent sample t-tests were
used to compare response latencies and alerting, orienting,
and executive effects across PD and control groups. Non-
parametric Mann–Whitney U tests were used to compare
accuracies across PD and control groups, which were non-
normally distributed due to ceiling effects.

Reliability of stationary connectivity between nodes is com-
puted as the Pearson correlation of the Fisher z-transformed
correlations of their time courses. Reliability of factors
obtained from dynamic connectivity analysis is computed
as the Pearson correlation of the normally distributed mean
factor scores. To compare reliability of stationary connectiv-
ity with dynamic connectivity, we use a Mann–Whitney U
test, a nonparametric test of the null hypothesis that the distri-
bution of the reliability coefficients obtained from pairwise
stationary connectivity analysis is identical to the distribution
of the reliability coefficients obtained from dynamic connec-
tivity analysis.

Since resting-state scans occurred before task scans in
each of the two baseline sessions, we computed aggregate
mean individual factor scores for resting-state dynamic fac-
tors and examined whether these scores could be used to pre-
dict reaction time effects, using linear regression, in each
session independently. The dependent variable is the reaction
time effect and the predictors are the factor score, group, and
group · factor interaction. Similarly, we computed mean in-
dividual factor scores from all task runs in the two task ses-
sions and repeated this analysis. We attempted to replicate
results for both rest and tasks in both sessions to identify
reliable effects.

Results

PD participants are slower to respond, showing
a significant alerting response latency effect

PD participants had slowed response latencies across all
conditions (Table 2) and a significant group difference in
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the alerting effect (No Cue–Center Cue) (Table 3). Accuracy
was extremely high with only 2.3% of trials missed, on aver-
age, but even so, PD participants had a significantly lower ac-
curacy in the Center Cue condition (Table 2) and a marginal
reduction in accuracy in the Incongruent condition. Behav-
iorally, PD participants showed a generalized slowing of re-
sponse latencies, but only the alerting effect was significantly
different between PD and controls. This is because while PD
participants are slower than controls, they are even slower
when there is No Cue (i.e., note in Table 2 that the difference
between PD and controls is 115 msec in the No Cue condi-
tion).

We evaluated the possibility that the PD participants were
slower to respond solely because of motor impairment by
comparing mean response latency for correct Flanker re-
sponses on subjects’ dominant side of motor impairment
with the mean response latency for correct Flanker responses
on their nondominant side. By design, half of the Flanker
tasks required pushing the left button box and half required
pushing the right button box. If motor impairment were a pri-
mary reason for slow responses, it should be slower on the
predominantly affected side. The mean response latency
for all subjects on their side of dominant motor impairment
was 935.5 msec (standard deviation [SD] = 193 msec) and
for the nondominant side, it was 945.3 msec (SD = 183
msec). A paired t-test indicated that these latencies were
not significantly different [t(24) = 1.37, p = 0.184].

The complete results of the corresponding GLM task anal-
ysis will be discussed in a forthcoming paper; however, im-
portantly, we observe that the regions activated by the cue as
a group (Any Cue–No Cue) include frontoparietal and DAN

regions (Fig. 3), confirming the salience of our focus on at-
tention networks.

ICA analysis reveals no significant resting network
differences between PD and control groups

Group-level components from TC-GICA analysis were
examined to identify three resting-state networks of interest
(Fig. 4). The DAN was identified as the spatial map com-
posed of bilateral intraparietal sulcus (IPS), bilateral FEF,
and dorsal anterior cingulate cortex. The salience network
was identified as the spatial map containing anterior cingu-
late cortex and bilateral insular cortex. The DMN was iden-
tified as the spatial map containing precuneus/posterior
cingulate cortex (PCC), medial frontal/frontopolar/superior

Table 2. Attention Network Test Task Behavioral Summary Statistics, Computed Over Two Sessions

Flanker type Cue type

Group Congruent Incongruent Center Spatial No cue

Mean response latencies (msec) and standard deviations
PD 869 (167) 1003 (205) 942 (177) 876 (188) 989 (193)
Controls 771 (116) 887 (136) 846 (125) 766 (122) 874 (130)
Difference (PD–controls) 97 115 95 109 115
p 0.024 0.027 0.038 0.022 0.021

Mean accuracy
PD 97.7 96.4 96.6 97.7 96.9
Controls 98.8 98.0 98.3 98.3 98.5
Difference (PD–controls) �1.03 �1.53 �1.63 �0.66 �1.54
p 0.268 0.090 0.024 0.463 0.110

Accuracy values are highly skewed toward ceiling, so p-values for accuracy comparisons were computed using a Mann–Whitney U test.

Table 3. Summary Statistics for Mean Alerting,

Orienting, and Executive Response Latency

Effects Computed Over Two Sessions

PD Controls

Effect (msec) M SD M SD t p

Alerting 47 33 28 22 2.32 0.025
Orienting 66 33 80 27 �1.59 0.120
Executive 134 59 116 43 1.20 0.240

M, mean; SD, standard deviation.

FIG. 3. Attention network activated by cueing in the Atten-
tion Network Task. Contrast shown is all subjects (Any Cue–
No Cue), overlaid on a Montreal Neurological Institute axial
slice at z = 40 mm.
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frontal cortex, bilateral angular gyrus, and bilateral superior/
middle temporal gyrus. Dual regression analysis revealed no
significant group differences in these networks between PD
participants and controls.

Reliability of dynamic factors is higher than reliability
of individual correlations

We extracted four factors for each network (DAN, FPTC,
and DMN) from the correlations between nodes in the net-
work. Loading tables are provided in Supplementary Tables
S2–S4, and loadings > 0.4 are illustrated in Figure 5. The
DAN is split into (1) a posterior factor that interconnects
the left and right anterior and posterior IPS, (2) an anterior/
posterior factor which interconnects the left and right FEF
and posterior IPS, (3) an anterior factor interconnecting the
left FEF with the right anterior IPS, and (4) a symmetric
and weaker anterior factor interconnecting the right FEF
with the left anterior IPS. The FPTC is split into (1) a sym-
metric anterior/posterior factor, (2) a factor connecting the
right frontal to other nodes, (3) a factor connecting the left
frontal to other nodes, and (4) a factor connecting the left
dorsal lateral prefrontal cortex (dlPFC) to the IPS. The

DMN is subdivided into (1) a factor connecting the left lat-
eral temporal lobe to the PCC, medial prefrontal cortex
(mPFC), and left and right angular gyrus; (2) a symmetric
right opposite with weaker connectivity to the mPFC; (3)
an anterior factor connecting the mPFC with the PCC and
left and right angular gyrus; and (4) a posterior factor con-
necting the PCC and left and right angular gyrus.

Despite methodological differences between this and our
earlier work (i.e., this was a smaller sample including partic-
ipants with PD, individual acquisition time was longer, we
used overlapping sliding windows, and the rotation was spe-
cific to this solution), factors were qualitatively similar to
those obtained from an aging sample (Madhyastha and Gra-
bowski, 2013). Consistent with heterogeneity that might be
introduced by PD, factors in this sample described a smaller
total variance than in our earlier work (DMN factor solution
explained 45.8% of the variance vs. 52%, DAN factor solu-
tion explained 46.2% of the variance vs. 57%, and FPTC
explained 34% of total variance vs. 44%).

The reliability of the factor scores obtained at rest is high
across the two occasions, compared with the reliability of the
correlations of the links themselves. We measure reliability
as the Pearson correlation of the measures for each individual

FIG. 4. Group-level components
from Temporally Concatenated
Probabilistic Group Independent
Components Analysis (TC-GICA)
analysis identify a dorsal attention
network (DAN), salience network,
and default mode network (DMN).
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on both occasions (either the mean factor scores or the Fisher
z-transformed pairwise correlations within each network).
For the DAN, the reliability of the factor scores is 0.56,
0.55, 0.64, and 0.61 for Factors 1–4, respectively. For the
FPTC, reliability is 0.52, 0.52, 0.69, and 0.35 for Factors
1–4, respectively. For the DMN, the reliability of the factor
scores is 0.62, 0.57, 0.64, and 0.78 for Factors 1–4, respec-
tively. All values are significant at p < 0.001 except for
FPTC Factor 4 ( p = 0.01). The median reliability of factor
scores on each occasion is higher than the median reliability
of the pairwise correlations among the network nodes. A
Mann–Whitney U test indicates that the median reliability
of factor scores for the DAN (0.58) is higher than the median
internode correlation reliability (0.45), p = 0.020. Similarly,
reliability of factor scores for the DMN (0.63) is higher
than the median DMN internode correlation reliability
(0.53), p = 0.036. The median reliability of factor scores for
the FPTC (0.52) is higher than the median internode correla-
tion reliability (0.38), but this difference is only marginally
significant ( p = 0.082). Supplementary Tables S5–S7 show
the mean inter-node correlations for each link and reliability
of these links.

Motion is an important potential confound in resting-state
analyses (Power et al., 2012). We compared groups and ses-
sions on total relative and absolute motion (parameters esti-
mated from motion correction); there were no significant
differences either between PD and controls or between Ses-
sion 1 and Session 2. However, there were three PD partici-
pants who had moved more than 3 mm from the reference
volume during Session 2. Motion affects the computation
of mean correlations more than it does the dynamic factor
analysis, given that the purpose of factor analysis is to iden-

tify the shared variance among several changing correlations
across individuals, explicitly modeling error (as might be in-
troduced by motion). To verify that motion was not respon-
sible for decreased reliability, we repeated the reliability
analysis using correlations and factors obtained by excluding
those three subjects; our pattern of results was unchanged.

Dynamic factors provide different information
than stationary connectivity

The dynamic connectivity score for an individual during a
scan is a mean measure of how closely correlations that
covary in a population are coupled in an individual (e.g., re-
ferring to Fig. 1b, on average does the time-varying structure
of correlations have a higher or lower factor score?). This is
different from measurements of stationary connectivity—the
mean correlations between nodes calculated from the dura-
tion of the scan—because it characterizes the structure and
dynamics of a system of nodes. To illustrate the difference
between these two types of measurements, we conducted a
post hoc analysis to examine the correlations between the
connectivity of each pair of nodes (transformed by Fisher’s
z) and the alerting effect in the DAN. Table 4 shows these re-
sults. Only the stationary connectivity between the left fron-
tal eye field and the right aIPS is significantly related to the
alerting effect at both time points. This is the connection with
the highest loading in the DAN Factor 3. The correlation at
each timepoint (0.35 and 0.38) is comparable within a 95%
confidence interval to the correlation of the DAN Factor 3
at each timepoint (0.46 and 0.31). However, the other links
with high loadings in this factor are not significantly corre-
lated to the alerting effect at both timepoints. The system

FIG. 5. Dynamic factor
structures obtained from all
subjects, two sessions of
resting-state data. (a) DAN
four-factor solution, (b)
fronto-parietal task control
network four-factor solution,
and (c) DMN four-factor so-
lution.
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of coupled time-varying correlations that is related to the
alerting effect is not visible from a stationary connectivity
analysis.

Dynamics of resting-state connectivity predict alerting
and orienting response latency effects

We calculate the predictive value of the dynamic factor
scores, computed during rest in each network, for the alert-
ing, orienting, and executive effect calculated in that session.
For the DAN, Factor 3 (anterior DAN) predicted the magni-
tude of the alerting effect on both occasions [Session 1: t(44) =
3.46, p = 0.001, R2 = 0.21, Session 2: t(44) = 2.15, p = 0.037,
R2 = 0.09]. The anterior DAN factor remained significant in
all comparisons after controlling for age.

Figure 6 shows the relationship between the average alert-
ing effect across both time points and the DAN Factor 3 com-
puted at the second session. The different slopes for PD and
control suggest a group-by-factor interaction, which we in-
vestigated. We added the group and group · Factor 3 terms
to the model and found that at Session 1, there was a main ef-
fect of Factor 3 [t(42) = 5.27, p < 0.001], group [t(42) =�2.65,
p = 0.011], and a group · Factor 3 interaction [t(42) =�3.2,
p = 0.002]. However, at Session 2, Factor 3 remained only
marginally significant in predicting the alerting effect on the
first occasion [t(42) = 1.72, p = 0.094], with no significant
main effect of group or group · Factor 3 interaction. Thus,
the effect of the factor appears individually in both sessions
but the interaction does not.

FPTC Factor 3 predicted the magnitude of the orienting ef-
fect at Session 1 but did not reach significance at Session 2
[Session 1: t(44) = 2.70, p = 0.010, Session 2: t(44) = 1.6,
p = 0.116]. These relationships are unchanged controlling
for age. There is no significant effect of group or group · fac-
tor interaction.

Given the change in predictive ability of DAN and FPTC
Factor 3 computed during the resting state on the alerting and
orienting effect at the two sessions, we hypothesized that

these changes in dynamic connectivity might reflect a learn-
ing effect to trade off speed for accuracy. We investigated
this possibility further by correlating change in factor scores
across sessions with change in accuracy (though see Gardner
and Neufeld, 1987 and Discussion section for difficulties in
interpreting related change scores). The PD group had a sig-
nificantly lower accuracy than controls in the Incongruent
Flanker condition and the Center Cue and No Cue condi-
tions. We found a significant correlation of increase in
DAN Factor 3 with improvement in accuracy in the Incon-
gruent Flanker condition [r(44) = 0.37, p = 0.011, see Fig.
7], but this relationship was not significant in the Center
Cue condition [r(44) = 0.121, p = 0.23] or in the No Cue con-
dition [r(44) =�0.05, p = 0.714]. Similarly, we found a sig-
nificant correlation of increase in FPTC Factor 3 with
improvement in accuracy in the Incongruent Flanker condi-
tion [r(44) = 0.39, p = 0.007] and in the Center Cue condition
[r(44) = 0.32, p = 0.027] but not in the No Cue condition
[r(44) =�0.05, p = 0.731].

No factors in the DAN and FPTC were related to the ex-
ecutive effect. There was also no relationship between fac-
tors in the DMN and any reaction time effects.

Dynamics of task connectivity predict alerting,
but not orienting, response latency effects

We examined whether the relationships between dynamic
factors and performance at rest would be replicated in tasks.
Since the rotation of a factor solution is not unique, we used
the solution identified at rest as a target and used an orthog-
onal Procrustes rotation to rotate the factor solution derived
from the task run to maximum congruence with the target.
The rotated matrix was then used to compute new factor
scores, which were then averaged for each individual over
the six task runs as for each resting-state run.

The factor structure identified for the DAN during task
was highly congruent with the factor structure identified dur-
ing rest (Procrustes correlation was 0.93 at Session 1 and

Table 4. Correlation Between Stationary Connectivity Within the DAN

and Alerting Reaction Time Effect at Each Session

Session 1 Session 2

r p r p

LpIPS.RpIPS 0.06 0.75 �0.09 0.56
LpIPS.RaIPS 0.07 0.62 �0.03 0.86
LpIPS.LaIPS �0.05 0.73 �0.14 0.34
RpIPS.RaIPS �0.20 0.17 �0.13 0.37
RpIPS.LaIPS �0.14 0.35 �0.13 0.39
RaIPS.LaIPS 0.21 0.16 0.10 0.49
LFEF.RaIPS 0.35 0.02 0.38 0.01
LFEF.LaIPS 0.13 0.37 0.18 0.24
RFEF.RaIPS 0.12 0.42 0.36 0.02
RFEF.LaIPS �0.05 0.73 0.33 0.03
LpIPS.RFEF �0.25 0.09 0.15 0.34
RpIPS.RFEF �0.14 0.36 0.25 0.09
LFEF.RpIPS �0.09 0.55 0.10 0.49
LpIPS.LFEF �0.06 0.68 0.02 0.89
LFEF.RFEF 0.15 0.32 0.24 0.10

Gray highlighting denotes links significantly related to alerting effect at p < 0.05, at both sessions, uncorrected for multiple comparisons.
DAN, dorsal attention network; FEF, frontal eye fields; IPS, intraparietal sulcus.
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FIG. 6. Relationship between
mean alerting effect (average of
both task sessions) and DAN Factor
3 computed from resting-state scan
at Session 2.

FIG. 7. Change in resting-state
DAN Factor 3 is positively
correlated with change in accuracy
between sessions.
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0.89 at Session 2, p = 0.001). Reliability of the DAN factors
computed during tasks was slightly lower than that obtained
from resting-state data (0.49, 0.62, 0.62, and 0.34 for Factors
1–4, respectively).

DAN Factor 3 computed during tasks predicted the mag-
nitude of the alerting affect at Session 1 and was marginally
significant at Session 2 [Session 1: t(44) = 2.36, p = 0.023,
R2 = 0.11, Session 2: t(44) = 1.644, p = 0.107, R2 = 0.06].
The change in DAN Factor 3 that occurred between Session
1 and Session 2 was positively correlated with the change in
accuracy in the Incongruent Flanker condition [r(44) = 0.299,
p = 0.043] and was marginally significantly correlated with
the change in accuracy in the Center Cue condition [r(44) =
0.26, p = 0.074], but not in the No Cue condition [r(44) =
0.169, p = 0.25]. Interestingly, during tasks, the DAN Factor
3 had a significant or marginally significant negative relation-
ship with the orienting effect at both sessions [Session 1:
t(44) =�1.67, p = 0.097, R2 = 0.06, Session 2: t(44) =�2.581,
p = 0.013, R2 = 0.13]. For reference, during rest, the DAN Fac-
tor 3 had a negative relationship with the orienting effect that
was not significant [Session 1: t(44) =�1.344, p = 0.186,
R2 = 0.03, Session 2: t(44) =�0.37, p = 0.713, R2 = 0.003].

We added the group and group · Factor 3 terms to the
model to predict the Alerting effect and found that at Session
1, there was a main effect of Factor 3 [t(42) = 3.69,
p < 0.001], group [t(42) =�2.15, p = 0.037], and a group ·
Factor 3 interaction [t(42) =�2.80, p = 0.008]. However, at
Session 2, no predictors were significant in the extended
model. In a similarly extended model to predict the orienting
effect from Factor 3, group, and group · Factor 3, no predic-
tors were significant at either session.

The factor structure identified from the FPTC during tasks
was less similar to that obtained at rest than the DAN (Pro-
crustes correlation was 0.78 at Session 1 and 0.83 at Session
2). Analogously, the reliability of the factor scores obtained
during tasks was lower than that at rest (0.30, 0.39, 0.27, and
0.32 for Factors 1–4, respectively). FPTC Factor 3 did not
predict the orienting effect during tasks [Session 1:
t(44) = 0.427, p = 0.671, Session 2: t(44) = 0.064, p = 0.949].

The factor structure of the DMN during tasks was very
similar to that obtained during rest (Procrustes correlation
was 0.87 at Session 1 and 0.97 at Session 2). Reliability of
factor scores across the two runs is similar to that obtained
at rest (0.66, 0.39, 0.67, and 0.76). No DMN factors com-
puted during tasks predict any response time effects.

Discussion

The primary contribution of this work is to demonstrate
that measurements of dynamic functional connectivity
obtained at rest have behavioral correlates in a subsequent at-
tention task. This is significant, because it indicates that there
is stability of patterns of time-varying correlations among
nodes in an intrinsic network, and this stability is function-
ally relevant. We are able to replicate our findings within
our sample in two baseline resting-state runs and for the
alerting effect in two task runs. We also show that dynamic
connectivity is reliable; factor scores for all networks
obtained at the two baseline sessions are more highly corre-
lated than the mean correlations among nodes in these net-
works, and this difference is statistically significant for the
DMN and DAN.

Increasing the reliability of measurement decreases the
magnitude of the effect size necessary to observe a group dif-
ference or longitudinal change at a given sample size and
power. We observe that the reliability of the structure of
time-varying correlations is higher for the DAN than for
the FPTC both during tasks and at rest, suggesting that the
DAN may be a reasonable testbed for further studies of the
nature of network dynamics and their behavioral correlates.

The method of dynamic connectivity analysis we describe
identifies groups of correlations that covary in time. Clearly,
as shown by Figure 1b, a lower factor score is related to
lower correlations in the links with high factor loadings.
However, we believe that this structure of covarying correla-
tions, and changes to this structure or to the expression of the
factors, is a more informative and precise abstraction than
mean correlations. Here, we showed that a post hoc inspec-
tion of the mean correlations within the network does not
provide the same information. Individual correlations do
not reflect the functioning of a system of nodes. Moreover,
a factor analysis identifies structure among the covarying
links, indicating where to look in the first place.

One reason that the reliability of factor scores is higher than
that of the individual correlations is that the purpose of factor
analysis is to uncover a latent structure which may not be visible
from individual, potentially error-contaminated, measurements.
A fairer comparison would be to obtain a latent measurement of
stationary connectivity. This is challenging; measurement is-
sues are confounded with the stability of the construct that we
are measuring. Our comparison tells us that we can only obtain
a measurement of the dynamics of connectivity which is reli-
able across timepoints.

Using dual regression ICA analysis, we found no significant
group differences in attention and DMNs (Fig. 4). The most
likely explanation for this, consistent with behavioral informa-
tion, is that in our sample of early stage PD participants and
controls, any differences in these networks are subtle. Although
MCI is prevalent in our PD participants, they do not differ from
controls in most neuropsychological measurements. Heteroge-
neity in PD progression and dopaminergic medication might
also contribute to between-subject variability, and we may sim-
ply lack statistical power to detect differences.

Factors in the DAN and FPTC are consistently related to
the alerting and orienting effects derived from the ANT
task. In the DAN, larger coupling of connections between
the FEF and anterior IPS was related to a larger alerting ef-
fect, and in the FPTC, larger coupling of the left frontal gyrus
to other regions in the FPTC was related to a larger orienting
effect. In both of these networks, higher coupling was asso-
ciated with a larger effect, or worse performance without the
advantage of a cue (alerting) or a Spatial Cue (orienting).
Although higher connectivity is usually considered posi-
tive, in the context of a dynamic analysis of an attention net-
work whose components support many specific functions,
it may reflect more effortful information processing, or an
underlying rigidity in the ability to reallocate resources. Fur-
ther work will be necessary to determine whether this higher
dynamic connectivity is compensatory or pathological, and
whether it is generalizable to other attention tasks.

Factors in the DMN obtained from rest and task data were
consistently unrelated to reaction time effects. We interpret
this as evidence of specificity of dynamic factors. However,
a failure to suppress the DMN has been related to reaction
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time (Kelly et al., 2008). Such a phenomenon might be vis-
ible by examining higher-order dynamic factor structures of
task-positive and DMNs, which we have not yet explored.

In both rest and tasks during the first session, PD partici-
pants had a larger alerting effect for a given score of the re-
lated DAN factor. One of the symptoms of even early PD is
reduced cerebral metabolism in frontal and parietal associa-
tion areas, along with cortical thinning (Huang et al., 2007;
Jubault et al., 2011), indicating that early cortical involve-
ment is a part of the disease. However, the locus coeruleus
(LC), which sends noradrenergic projections to most brain
regions, is highly involved in alerting and attention through
interactions with the dopaminergic system (Sara, 2009).
Loss of noradrenergic neurons in the LC is an important
factor in PD (Delaville et al., 2011), and may occur even
earlier than destruction of dopaminergic neurons (Braak
et al., 2004). Since alerting and orienting effects are related
to DAN and FPTC dynamic factors in both the PD partici-
pants and healthy controls, neuromodulatory influences
may play a role in dynamic connectivity and reconfiguration.

The expression of dynamic connectivity was reliable across
baseline sessions, though not invariant, and changes in indi-
vidual expression of dynamic connectivity had a behavioral
correlate. We observed in rest and tasks that an increase in dy-
namic connectivity of the DAN Factor 3 between the baseline
sessions was correlated with an increase in accuracy of the
Incongruent trials across the sessions, and that the effect of
group and group · factor interaction was not significant in
the second session. This effect may be due simply to learning
or might be a marker of compensation among PD participants.
Mechanisms of neural plasticity and compensation may ini-
tially mask disruption to cognitive systems. It is possible
that deviations from the normal pattern of variability are an
early physiological indicator of impending cognitive impair-
ment, analogous to intra-individual variability of behavior
(MacDonald et al., 2003, 2006; Wojtowicz et al., 2013).

An important caveat is that our sample is small and we did
not correct for multiple comparisons. However, we acquired
two baseline resting-state and task scans, and were able to rep-
licate our findings in multiple runs. This reduces the probabil-
ity that the results are caused by spurious aspects of the
analysis or data acquisition. They could still be sample depen-
dent, and, thus, require replication in a different population.

We used correlations of simple change scores to examine
the significance of changes in dynamic connectivity between
the two baseline sessions. Although intuitive, correlations of
change should be interpreted with caution (Gardner and Neu-
feld, 1987). In this case, an alternative interpretation may be
that the factor structure of the network dynamic connectivity
changed between sessions or for certain individuals, making
the exact meaning of the scores suspect.

In an earlier work, we have demonstrated the replicabil-
ity of dynamic factor structure in a data-driven split-half
analysis (Madhyastha and Grabowski, 2013) and using
exploratory factor analysis in a structural equation model-
ing framework with two independent samples (Madhyastha
et al., 2013). In light of this reproducibility among aging
adults, it is reasonable to simplify interpretation by treating
patterns (factor structure) of connectivity in a sample as
fixed, and examining how the expression (scores) of these
patterns changes. This is the approach that we took in this
study, and despite important differences in sample, acquisi-

tion, and methodology, we identified qualitatively similar
factor structures to our earlier work, with the most similarity
in the DMN solution. However, the factor structures we iden-
tified reflect the common dynamic structure of PD partici-
pants (half of whom have mild cognitive impairment) and
controls across two sessions. The variance described by a
four-factor solution among PD participants and controls is
uniformly slightly lower than that described by a four-factor
solution among a sample of cognitively normal elderly, sug-
gesting that there may be a breakdown of dynamic structure
in this sample. If dynamic connectivity reflects normal vari-
ability of correlations, dysfunction in one or more of the cor-
tical regions in the system, or the system itself, would cause
factor scores to be elevated or depressed during tasks or rest.
This suggests an analytic approach where factors defined in a
normal population could be used as a template against which
to compare a patient population. Alternatively, invariance of
the factor structure of groups or individuals at different time-
points can be formally established using techniques such as
exploratory factor analysis in a structural equation modeling
framework (Asparouhov and Muthén, 2009). Much research
remains to be done on modeling approaches to best quantify
how altered functional connectivity dynamics reflect early
neurophysiological changes that occur with disease.

In summary, we observe that the time-varying patterns of
correlations across nodes in an intrinsic network are stable
across rest and tasks and this stability is functionally mean-
ingful. However, even though factors describing the coupling
of these correlations are reliable across scanner sessions,
they are not invariant, and individual changes in factor scores
between sessions reflect behavioral changes across sessions.
There is selectivity to our findings, in that factors describing
time-varying correlations within attention networks predict
measurements obtained from an attention task, and factors
describing the DMN do not. More generally, the finding
can be interpreted as higher coupling reflecting a greater ben-
efit from a relevant cue, suggesting that network dynamics
may index mechanisms relevant to neural compensation
and/or incipient dysfunction.
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