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Abstract: We evaluate a fully automatic technique for labeling hippocampal subfields and cortical sub-
regions in the medial temporal lobe in in vivo 3 Tesla MRI. The method performs segmentation on a
T2-weighted MRI scan with 0.4 3 0.4 3 2.0 mm3 resolution, partial brain coverage, and oblique orien-
tation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline
that combines multi-atlas label fusion and learning-based error correction. In contrast to earlier work
on automatic subfield segmentation in T2-weighted MRI [Yushkevich et al., 2010], our approach
requires no manual initialization, labels hippocampal subfields over a greater anterior-posterior extent,
and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accu-
racy of the automatic segmentation relative to manual segmentation is measured using cross-validation
in 29 subjects from a study of amnestic mild cognitive impairment (aMCI) and is highest for the den-
tate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797), and entorhinal cortex (0.786)
labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region
using both subfield volume and regional subfield thickness maps. Most significant differences between
aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35.
Thickness analysis results are consistent with volumetry, but provide additional regional specificity
and suggest nonuniformity in the effects of aMCI on hippocampal subfields and MTL cortical subre-
gions. Hum Brain Mapp 36:258–287, 2015. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

There has been increased interest in the recent literature
in imaging the subfields of the hippocampal formation
using MRI. Greater focus on subfields is driven, in part,
by the desire to better characterize the complex brain net-
works that involve the hippocampus, and to more effec-
tively detect the presence and progression of brain
disorders to which the hippocampal region is particularly
vulnerable, such as Alzheimer’s disease (AD), semantic
dementia, and temporal lobe epilepsy. In most applica-
tions, interest is not restricted to the hippocampus alone
and extends to imaging and quantification of the function-
ally related cortical subregions, particularly the entorhinal
cortex (ERC), perirhinal cortex (PRC), and parahippocam-
pal cortex (PHC), which together form the parahippocam-
pal gyrus (PHG). These cortical regions are tightly
interconnected with the hippocampus as part of the
medial temporal memory networks [Ranganath and
Ritchey, 2012; Squire et al., 2004; van Strien et al., 2009;
Yassa and Stark, 2011; Wolk et al., 2011]. While the cortical
medial temporal lobe (MTL) regions appear to support
episodic memory function in conjunction with the hippo-
campus, a number of memory models suggest dissociable
representations and processes linked to these subregions
[Norman, 2010; Eichenbaum et al., 2007; Yonelinas et al.,
2010]. For example, one particularly influential model has
suggested that PRC supports object representations while
the PHC supports contextual aspects of prior experience,
particularly spatial. The hippocampus then binds this
information together to represent rich, episodic informa-
tion [Eichenbaum et al., 2007]. An additional motivation
for more granular measurement of MTL cortical subre-
gions is that the PRC and ERC are amongst the earliest
sites of neurodegeneration in AD [Braak and Braak, 1995;
Bobinski et al., 1997; Simić et al., 1997; West et al., 2004].
Similarly, hippocampal subfields are variably affected by
AD pathology and also may differentially support critical
memory processes, such as pattern separation and pattern
completion [Yassa and Stark, 2011]. Whereas hippocampal
volumetry and morphometry are well-established techni-
ques in quantitative neuroimaging, obtaining such meas-
ures at the level of hippocampal subfields and subregions
of the PHG has proven to be a greater technological chal-
lenge due to their small size, complex shape, and consider-
able anatomical variability.

Prior work on quantitative in vivo imaging of hippo-
campal subfields can be categorized in terms of MRI
acquisition. Although MRI parameters vary widely in the
subfield literature, two broad categories can be defined. In
one category, there are the approaches that operate on
what we will refer to as “routine” T1-weighted 1.5 or 3
Tesla MRI scans, with resolution on the order of 1 3 1 3

1 mm3 and whole-brain field of view. Such scans are

acquired almost universally in today’s neuroimaging stud-
ies. In the other category are the approaches that require
more “dedicated” MRI scans that target the hippocampal
region specifically. An example of the “routine” and
“dedicated” scans in the same subject is given in Figure 1.

The appearance of the hippocampus in the “routine”
T1-weighted scans tends to be nearly homogeneous, mak-
ing it difficult to see anatomical details, such as the lami-
nar organization of the hippocampus, that are necessary
for manually labeling subfields. In fact, we are not aware
of any published study that has implemented and vali-
dated a manual hippocampal subfield segmentation proto-
col in the “routine” T1-weighted scans. Instead, most
subfield imaging work in the “routine” scans relies on
computational morphological techniques. These include
template-based approaches [Apostolova et al., 2006; Bakker
et al., 2008; Yushkevich et al., 2009; Wang et al., 2006],
which segment the hippocampus as a single structure,
deform the segmented hippocampi to a volumetric or sur-
face template, and associate regional statistics (e.g., group
differences in thickness, or differences in task-related fMRI
activation) with specific subfields by defining anatomical
regions of interest directly in template space. A more
recent class of papers uses the automatic segmentation
algorithm provided by the FreeSurfer software [Iglesias
et al., 2013; Fischl, 2012; Van Leemput et al., 2009] to esti-
mate hippocampal subfield volumes directly in the
“routine” T1-weighted scans. The underlying technique
was developed and validated in what we would term
“dedicated” T1-weighted MRI scans with 0.4 3 0.4 3

0.8 mm3 resolution and acquisition time of 35 min [Van
Leemput et al., 2009]. However, nearly all published appli-
cations of this technique have been to T1-weighted MRI
with “routine” resolution on the order of 1 3 1 3 1 mm3

[e.g., Engvig et al., 2012; Hanseeuw et al., 2011; Iglesias
et al., 2013; Lim et al., 2012; Pereira et al., 2013; Teicher
et al., 2012]. To our knowledge, the accuracy of the Van
Leemput et al. [2009] technique relative to manual seg-
mentation has not been evaluated at this lower resolution.

The “dedicated” MRI sequences targeting the hippocam-
pus tend to have high resolution in the plane orthogonal
to the hippocampal main axis (usually< 0.5 3 0.5 mm2),
attained at the cost of increased slice thickness, greater
acquisition time, or higher MRI field strength [Bonnici
et al., 2012; Ekstrom et al., 2009; Henry et al., 2011; Ker-
chner et al., 2010; Kirov et al., 2013; La Joie et al., 2013;
Malykhin et al., 2010; Mueller et al., 2007a; Mueller and
Weiner, 2009; Olsen et al., 2013; Pluta et al., 2012; Van
Leemput et al., 2009; Wisse et al., 2012; Winterburn et al.,
2013; Yassa et al., 2010; Zeineh et al., 2003]. The majority
of the “dedicated” sequences in the literature use T2 or
T2* weighting and a field of view that covers only a por-
tion of the brain. In most subjects, such scans reveal a thin
hypointense band formed by the inner lamina of the CA
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subfield (stratum radiatum and stratum lacunosomolecu-
lare), the outer lamina of the dentate gyrus (DG), and the
vestigial hippocampal sulcus that separates them. Abbrevi-
ated as SRLM-HS, this hypointense band can serve as a
visual cue for subfield labeling. At 7 Tesla, the ability to
distinguish subfield layers improves further [Breyer et al.,
2010; Cho et al., 2010; Henry et al., 2011; Kerchner et al.,
2010; Kirov et al., 2013; Prudent et al., 2010; Thomas et al.,
2008; Wisse et al., 2012], making it possible to isolate spe-
cific strata within hippocampal subfields [Kerchner et al.,
2010; Kirov et al., 2013]. A number of manual segmenta-
tion protocols for “dedicated” MRI have been imple-
mented in the literature [Ekstrom et al., 2009; Kerchner
et al., 2010; La Joie et al., 2010; Libby et al., 2012; Malykhin
et al., 2010; Mueller and Weiner, 2009; Olsen et al., 2013;
Preston et al., 2010; Pluta et al., 2012; Winterburn et al.,
2013; Wisse et al., 2012]. However, there has been limited

work on automatic subfield segmentation in these
“dedicated” T2-weighted MRI scans [Flores et al., 2012;
Pipitone et al., 2014]. Given that manual segmentation is
very time consuming, requires extensive training and eval-
uation, and can be subject to rater bias, there is a pressing
need for an effective automatic segmentation method.

In [Yushkevich et al., 2010], we presented an automated
subfield segmentation technique targeting “dedicated” T2-
weighted oblique coronal MRI of the hippocampal region,
and showed that the agreement between the automatic
segmentation and manual segmentation was comparable
to the inter-rater reliability of manual segmentation. How-
ever, our prior work had a significant limitation: the sub-
fields were labeled only on a few MRI slices in the body
region of the hippocampus. This restriction caused more
than two thirds of the hippocampal formation to be
ignored by the subfield measurements, which may weaken

Figure 1.

Example slices from the T1-weighted (left) and T2-weighted

(right) images of the hippocampal region from one of the sub-

jects in this study. The bottom panel is a zoomed in region

around the right hippocampus. The T1-weighed image is repre-

sentative of what we describe as “routine” MRI in the text while

the T2-weighted image is an example of a “dedicated” MRI scan

tailored for hippocampal subfield imaging. The slice plane is cor-

onal for the T1-weighted image and oblique coronal (orthogonal

to the hippocampal main axis) for the T2-weighted image.
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the sensitivity of the subfield measurements to hippocam-
pal neurodegeneration, as the reduction in size along the
main axis of the hippocampus is not reflected by the meas-
urements. Restricting the segmentation to the hippocampal
body also required the user to manually tag slices as
belonging to the body, head, or tail region, rendering the
method not fully automatic. This article addresses these
limitations by extending subfield segmentation to the
whole length of the hippocampus. It also expands the
number and extent of cortical subregions that are labeled,
including the PRC, which is further subdivided into Brod-
mann areas 35 and 36.

Our approach, which we call automatic segmentation of
hippocampal subfields (ASHS), leverages multi-atlas seg-
mentation and machine learning techniques. As illustrated
in Figure 2, ASHS consists of a training pipeline and a seg-
mentation pipeline. The ASHS training pipeline takes as
its input manually labeled “dedicated” T2-weighted MRI
scans and whole-brain “routine” T1-weighted scans from a
set of subjects and generates a dataset called an atlas pack-
age. The ASHS segmentation pipeline uses this atlas pack-
age to label T2-weighted MRI scans of new subjects
automatically. In this article, we train and evaluate ASHS
using a specific T2-weighted MRI sequence and a specific
manual segmentation protocol. However, the structure of
ASHS allows it to be easily retrained use data acquired
with a different MRI sequence and labeled with a different
segmentation protocol. Given the large variability in the
imaging protocols and subfield labeling schemes proposed
in the MRI literature, we view this inherent adaptability as
an important strength of ASHS. An open-source imple-
mentation of ASHS is provided.1

In addition to extending the earlier segmentation
approach to more slices and structures, we present a tech-
nique for regional thickness analysis of the substructures
labeled by ASHS. Inspired by the hippocampus unfolding
work by Zeineh et al. [2003] and Ekstrom et al. [2009], we
use a smooth surface representation to model the strip of
gray matter formed by the CA subfields, subiculum (SUB),
ERC and PRC in each subject, and extract maps of point-
wise thickness, which are then analyzed statistically in the
space of an unbiased population template. Such thickness
analysis provides greater regional specificity than volume-
try and can also mitigate the uncertainty of anatomical
boundaries that is inherent in any volumetric subfield
analysis based on in vivo MRI.

This article evaluates ASHS in the context of amnestic
mild cognitive impairment (aMCI), a population enriched
in patients with prodromal AD. First, cross-validation
analysis is carried out on a set of 29 manually labeled MRI
scans from a study of aMCI (Evaluation of ASHS Accuracy
Using Cross-Validation section). Second, the ability of sub-
field volume features derived from ASHS to discriminate

between aMCI and normal controls is evaluated, com-
pared to the discriminative ability of whole-hippocampus
and subfield-specific measures extracted from T1-weighted
MRI (Evaluation Of ASHS in the Context of Volumetric
Group Difference Analysis in AMCI section). Lastly,
regional thickness analysis is carried out on the ASHS seg-
mentations to further localize aMCI effects in the hippo-
campal region (Regional Subfield Thickness Analysis
Using ASHS section).

MATERIALS AND METHODS

Subjects

MRI were acquired in 92 participants from a research
study of aging and cognitive impairment conducted at the
Penn Memory Center (PMC) at the University of Pennsyl-
vania. The subjects include 45 patients with diagnosis of
aMCI (established using the Petersen [2004] criteria) and
47 cognitively normal controls recruited from the commu-
nity. All subjects were recruited from the PMC/Alzhei-
mer’s Disease Center (ADC). The human subjects’ research
in this study was performed in compliance with the Code
of Ethics of the World Medical Association (Declaration of
Helsinki) and the standards established by the University
of Pennsylvania Institutional Review Board and the
National Institutes of Health. All subjects provided
informed consent for this study.

Image Acquisition

MRI scans were acquired on a 3T Siemens Trio scanner
at the Hospital of the University of Pennsylvania over the
course of 3.5 years. Most of the scans (n 5 77, 40 NC, 37
MCI) were acquired using an 8-channel array coil.
Approximately 2.75 years into the study, the MRI protocol
was changed, and scans began to be acquired using a 32-
channel coil (n 5 15, 7 NC, 8 MCI). Both protocols include
a “routine” T1-weighted (MPRAGE) whole-brain scan and
a “dedicated” T2-weighted (TSE) scan with partial brain
coverage and an oblique coronal slice orientation (posi-
tioned orthogonally to the main axis of the hippocampus),
adapted from [Mueller et al., 2007b; Thomas et al., 2004;
Vita et al., 2003]. The parameters of the T2-weighted scan
with the 8-channel coil are {TR/TE: 5310/68 ms, echo train
length 15, 18.3 ms echo spacing, 150� flip angle, 0% phase
oversampling, 0.4 3 0.4 mm2 in plane resolution, 2 mm
slice thickness, 30 interleaved slices with 0.6 mm gap,
acquisition time 7:12 min}; with the 32-channel coil, the
parameters are {TR/TE: 7200/76 ms, echo train length 15,
15.2 ms echo spacing, 150� flip angle, 75% phase oversam-
pling, 0.4 3 0.4 mm2 in plane resolution, 2 mm slice thick-
ness, 30 interleaved slices with no gap, acquisition time
6:29 min}. The parameters of the T1-weighted scan on the
8-channel coil are {TR/TE/TI 5 1600/3.87/950 ms, 15� flip
angle, 1.0 3 1.0 3 1.0 mm3 resolution, acquisition time

1The ASHS programs, atlas packages and documentation are avail-
able at http://www.nitrc.org/projects/ashs.
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5:13 min}; for the 32-channel coil, the parameters are {TR/
TE/TI 5 1900/2.89/900 ms, 9� flip angle, 1.0 3 1.0 3

1.0 mm3 resolution, acquisition time 4:26 min}.

Image Quality Assessment

The oblique coronal T2-weighted MRI sequence used in
this work is susceptible to subject motion, which can cause
severe blurring of the images. As we discuss in Limitations
and Opportunities for Improvement section, this is one of
the disadvantages of “dedicated” T2-weighted subfield
imaging, relative to “routine” T1-weighted MRI. Images
were examined visually for the presence of artifacts, and
those with severe or moderate artifact were excluded from
subsequent analysis. Images with incorrectly placed field of
view that fail to cover the full anterior-posterior extent of
the hippocampus were also excluded. Overall, 5 of the 92
images were excluded due to motion artifact and one was
excluded due to partial field of view.

Manual Segmentation

Author JP performed manual segmentation of the hip-
pocampal subfields and the anterior subregions of the
PHG in T2-weighted scans of 29 subjects (15 controls, 14
aMCI). We refer to these 29 subjects as the “atlas subset.”
These subjects were selected early in the study on the
basis of JP’s judgment that their manual segmentation
would be feasible. Due to this selection process, the image
quality of the scans in the atlas set is higher than in the
full dataset. All images in the atlas set were acquired
using the 8-channel MRI coil.

A segmentation protocol was developed with the realiza-
tion that in vivo T2-weighted MRI only offers limited vis-
ual features for differentiating between hippocampal
subfields and PHG subregions. Like earlier in vivo subfield
segmentation protocols [Ekstrom et al., 2009; Kerchner
et al., 2010; La Joie et al., 2010; Libby et al., 2012; Mueller
and Weiner, 2009; Malykhin et al., 2010; Olsen et al., 2013;
Pluta et al., 2012; Preston et al., 2010; Winterburn et al.,
2013; Wisse et al., 2012], it relies on the combination of
intensity features and geometrical rules to specify subfield
boundaries. The document outlining the segmentation pro-
tocol is included as Supporting Information Material. The
set of anatomical labels used in the segmentation is
described briefly in Table I. For the subfields of the hippo-
campus, the protocol used in our previous study [Yushke-
vich et al., 2010] was extended to include anterior and
posterior portions of the hippocampus that were previously
assigned summary “head” or “tail” labels. This extension
was informed by the use of printed atlases [Duvernoy,
2005] as well as by visual examination of postmortem MRI
and histology images from [Adler et al., 2013].

In the PHG, the segmentation protocol includes the ERC
and the PRC subregions, with the PRC further divided
into Brodmann areas 35 and 36 (BA36/BA36). The PHC,

which forms the posterior portion of the PHG, was not
labeled and will be included in future work. The protocol
for labeling the ERC and PRC was derived from [Ding
and Van Hoesen, 2010]. Author SLD served as the consul-
tant for the segmentation effort, and provided detailed
feedback on the segmentation of the ERC and PRC regions
in each of the atlas datasets.

Extent of the subfields in the MRI slice direction

Although the T2-weighted MRI offers excellent resolu-
tion in the oblique coronal plane, the relatively thick slices
and highly anisotropic voxels pose a challenge when
defining the anterior and posterior extents of certain struc-
tures. Because the resolution along the anterior-posterior
axis is low, slice boundaries are used to define the extents
of several structures. The relative extent of the different
labels along the T2-weighted MRI slice direction is illus-
trated in Figure 1. We first designate MRI slices as being
in the hippocampal head, body, or tail. The most posterior
head slice is the slice in which the uncus first appears. The
division between body and tail is defined on the basis of
shape, but frequently coincides with the appearance of the
wing of the ambient cistern (see Supporting Information
Material). Whereas the division into CA and DG labels is
carried out along the entire length of the hippocampus,
subfields CA2 and CA3 are only traced in the posterior
portion of the head and in the body and are merged into
the CA1 label elsewhere. The SUB is traced in the head
and body, but not in the tail. ERC, PRC, and the collateral
sulcus are traced in the slices beginning one slice anterior
of the head, and ending one slice posterior of the head. It
is important to note that these slice boundaries are some-
what artificial, and that the actual structures extend
beyond the designated slice boundaries. The need to
impose these boundaries is one of the main limitations of
the anisotropic T2-weighted MRI modality.

Intra-rater reliability analysis

Approximately five months after the completion of the
segmentation of the atlas set, a subset of the subjects in the
atlas set (“reliability” subset) were randomly chosen and
resegmented by rater JP to compute intra-rater reliability.
The reliability subset includes data from 12 subjects (6
aMCI, 6 NC). The structures in the left hemisphere were
selected in half of the subjects (N 5 6, 3 aMCI, and 3 NC),
and in the other half, the right hemisphere was segmented.

Overview of ASHS Algorithm and Software

The open-source ASHS software implementation con-
sists of shell scripts that invoke image analysis algorithms
from publicly available software packages FSL [Smith
et al., 2004] and ANTS [Avants et al., 2008]. ASHS also
takes advantage of Convert3D (www.itksnap.org/c3d), a
command-line front-end to the Insight Toolkit [Yoo and
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Ackerman, 2005], and open-source implementations of the
joint label fusion (JLF) [Wang et al., 2013] and corrective
learning (CL) [Wang et al., 2011] algorithms. ASHS scripts
utilize the Sun/Oracle Grid Engine to achieve paralleliza-
tion in a computing cluster environment.

ASHS can operate in two modes, “training” and
“segmentation.” In training mode, ASHS is given a set of
“atlases” (representative images with corresponding man-
ual segmentations), along with configuration files describ-
ing the segmentation protocol and the parameters of the

Figure 2.

Graphical illustration of the training and segmentation pipelines

in ASHS. The ASHS training pipeline takes as its input a set of

“atlas” datasets, each consisting of a T1-weighted and T2-

weighted MRI scans of the same subject, and a manual segmen-

tation of the T2-weighted MRI scan. The training pipeline out-

puts an “atlas package,” which is then used as the input to the

ASHS segmentation pipeline. The segmentation pipeline uses the

atlas package to automatically label the T2-weighted MRI of a

new subject, using that subject’s T1-weighted MRI as an addi-

tional input. The steps listed in the ASHS training pipeline, as

well as the composition of the atlas package, are described in

ASHS Training Pipeline section and further detailed in Appendix

A. The steps of the ASHS segmentation pipeline are described

in ASHS Segmentation Pipeline section and Appendix B. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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algorithm. The output of the training mode is a dataset
referred to as an “atlas package,” which can subsequently
be used to label new images using the ASHS segmentation
mode. In segmentation mode, ASHS takes as input the
raw image data to be segmented, along with an atlas pack-
age, and produces segmentations of the desired anatomical
structures.

ASHS Core Algorithms

Prior to describing the steps of the ASHS training and
segmentation pipelines, we summarize the core algorithms
used in ASHS: JLF and CL. Along with the image registra-
tion algorithms ANTS [Avants et al., 2008] and FSL/FLIRT
[Smith et al., 2004], these algorithms form the essential
building blocks of the ASHS pipelines.

Joint label fusion

JLF is a multi-atlas image segmentation algorithm
[Wang et al., 2013]. To obtain a segmentation of a set of
structures in a target image, it performs deformable regis-
tration (using ANTS) between the target image and a set
of labeled atlas images. At each voxel in the target image,
each registered atlas provides a “weak” segmentation. JLF

combines these weak segmentations by assigning each
atlas a weight (a different set of weights is assigned at
each voxel) and applying weighted voting to derive a con-
sensus “strong” segmentation for the target image. The
unique feature of JLF compared to earlier multi-atlas seg-
mentation methods that use weighted voting [Aljabar
et al., 2009; Artaechevarria et al., 2009; Heckemann et al.,
2010; Landman and Warfield, 2012; Sabuncu et al., 2010] is
that when atlas weights are computed, an attempt is made
to estimate the correlation between pairs of atlases, and
the weights between correlated atlases are reduced. This
allows the method to account for redundant information
in the atlas set, and leads to improved segmentation per-
formance. Combined with the CL algorithm described
below, JLF achieved the best segmentation performance
among 25 methods in a recent challenge on multilabel
brain segmentation [Landman and Warfield, 2012].

Corrective learning

CL is a general-purpose segmentation post-processing
technique [Wang et al., 2011]. It serves as a wrapper
around a given “host” automatic segmentation method.
After applying the host method to a target image, CL tries
to detect the voxels mislabeled by the host method, and

TABLE I. Summary of the anatomical labels used in the manual segmentation protocol

Abbr. Name Comments

Primary labels
CA1 CA2 CA3 Cornu ammonis Fields CA1-3 CA labels include stratum pyramidale and stratum oriens. The

hypointense layer of voxels (understood to combine the CA
strata radiatum, lacunosum and moleculare [SRLM]; the vestig-
ial hippocampal sulcus [HS]; and stratum moleculare of the
DG) is split evenly between the CA and DG labels. The CA2
and CA3 subfields are labeled in the posterior portion of the
hippocampal head and in the body; elsewhere they are merged
into the CA1 label.

DG Dentate gyrus Includes the inner half of the hypointense band; the polymorphic
and granular cell layers; and the hilus, which some authors con-
sider to be CA4. [Duvernoy, 2005; Lorente de N�o, 1934]

SUB Subiculum Includes subiculum proper, presubiculum and parasubiculum.
SUB is labeled in the head and body, but not in the tail of the
hippocampus.

MISC Miscellaneous Used to label cysts and cerebrospinal fluid in the hippocampus.
ERC Entorhinal cortex The ehMTL structures are labeled beginning at the most anterior

slice of the hippocampal body and ending one slice past the
most anterior slice of the hippocampal head.

BA35 Brodmann area 35
BA36 Brodmann area 36
CS Collateral Sulcus

Compound labels (only used for analysis)
CA Cornu ammonis Combines labels CA1, CA2, and CA3
HIPP Hippocampus Combines labels CA, DG, and SUB
PRC Perirhinal cortex Combines labels BA35 and BA36

Details of the segmentation protocol are provided in the Supporting Information Material. The top portion of the table lists the
“primary” labels, that is, those assigned to voxels by manual segmentation. The bottom portion lists derived “compound” labels, which
are only used in the analysis. Compound labels are derived by merging groups of primary labels (e.g., CA merges labels CA1, CA2,
and CA3).
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assign correct labels to those voxels. For each anatomical
label l, we train an AdaBoost classifier [Freund and Scha-
pire, 1995] using a set of training images for which both
manual and automatic segmentations by the host method
are available. The training examples for each classifier are
voxels in the region of interest (ROI) obtained by dilating
the host method’s segmentation of the label l with a small
structuring element, pooled across all training images.
Voxels assigned label l in the manual segmentation serve
as training examples for the “positive” class, and voxels
assigned any other label are examples of the “negative”
class. The features used to train the classifier include the
intensity of the training image in a patch centered on a
voxel; the posterior probability maps produced by the host
method in the same patch; the position of the voxel rela-
tive to the center of mass of the host method’s segmenta-
tion of label l. When segmenting a target image, the host
method is first applied, and then each voxel in the ROI
surrounding the automatic segmentation result is fed into
each classifier. The voxel is then assigned the label of the
classifier for which the largest probability of belonging to
the positive class is obtained.

ASHS Training Pipeline

The ASHS training pipeline is used to produce a dataset,
called an atlas package, which is subsequently used by the
ASHS segmentation pipeline to automatically label ana-
tomical structures in MRI scans. The input to the ASHS
training pipeline consists of a set of N atlases. Each atlas
contains data from a single subject and includes a
“routine” whole-brain T1-weighted MRI scan; a
“dedicated” oblique coronal T2-weighted MRI scan and
the manual segmentation of the structures of interest in
the T2-weighted scan. The ASHS training pipeline consists
of four steps that are summarized below. Additional
details on the implementation of each step are given in
Appendix A.

1. In each atlas, the T2-weighted MRI scan is aligned to
the T1-weighted MRI scan using rigid registration.

2. The T1-weighted MRI scans from all N atlases are
registered to an unbiased template using ANTS
deformable registration. This template is included in
the atlas package and is used by the ASHS segmenta-
tion pipeline for finding the hippocampal region.

3. Separate left and right hippocampal ROI are obtained
in the unbiased template. For each side, the ROI is
obtained by merging the anatomical labels from that
side in each atlas into a single label, mapping the
resulting binary segmentations into the template
space, and extracting a rectangular box that covers all
the segmentations in the template space. The left and
right template ROIs are supersampled to isotropic
resolution matching the in-plane resolution of the T2-
weighted scans (0.4 3 0.4 3 0.4 mm3). The T1-

weighted and T2-weighted MRI scans from all atlases
are resampled into the space of the left and right
template ROIs and included in the atlas package.

4. CL classifiers are trained by comparing the leave-one-
out automatic segmentations of the T2-weighted MRI
scans in the atlas to their corresponding manual seg-
mentations. Leave-one-out segmentations are
obtained by performing deformable registration
between the T2-weighted MRI in each atlas and the
T2-weighted MRIs in all other atlases, and then
applying the JLF algorithm to the warped T2-
weighted MRIs and the corresponding warped seg-
mentations. To reduce computational cost, registra-
tion between pairs of T2-weighted scans is performed
in the space of the left and right template ROIs and
is initialized by the transformation between each atlas
and the template. CL classifiers are trained separately
for the left and right sides. The parameters of the
trained CL classifiers are included in the atlas
package.

ASHS Segmentation Pipeline

The ASHS segmentation pipeline is used to automati-
cally segment the structures of interest in T2-weighted
MRI scans of new subjects. The inputs to the ASHS seg-
mentation pipeline are the T1 and T2-weighted scans of
the new subject, and the atlas package created by the
ASHS training pipeline. The ASHS segmentation pipeline
consists of four steps that are summarized below. Addi-
tional details on the implementation of each step are given
in Appendix B.

1. The T2-weighted MRI scan of the new subject is
aligned to his or her T1-weighted MRI scan using
rigid registration.

2. The T1-weighted scan of the new subject is registered
to the unbiased population template contained in the
atlas package using ANTS deformable registration.
The deformation fields obtained by this registration
are used to resample the T1-weighted and T2-
weighted scans of the new subject into the space of
the left and right template ROIs.

3. Within each template ROI, each of the T2-weighted
scans in the atlas package is registered to the T2 scan
of the new subject using ANTS deformable registra-
tion. The manual segmentations of the T2-weighted
scans in the atlas package are mapped into the space
of the new subject’s T2-weighted scan. A consensus
multi-atlas segmentation of the new subject’s T2-
weighted scan is computed using JLF.

4. The CL classifiers contained in the atlas package are
applied to the consensus segmentation produced by
JLF. The output of this step is a “corrected” segmen-
tation of the new subject’s T2-weighted scan.
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5. Steps 3 and 4 are repeated, with the registration
between the T2-weighted scans in the atlas package
and the new subject’s T2-weighted scan initialized by
the segmentations produced in Step 4. Such an initial-
ization results in improved registration quality, which
in turn improves the quality of JLF/CL segmentation.
We refer to this step as bootstrapping.

Post-Processing of ASHS Segmentations

The manual segmentation protocol only traces the ante-
rior subregions of the PHG (ERC, PRC) on a fixed range
of T2 MRI slices, starting one slice anterior of the hippo-
campal head, and ending one slice posterior of the head
(Fig. 3). We chose this range of slices as because we
believe that they could be most reliably segmented man-
ually, recognizing that the ERC and PRC actually extend
further in the anterior and posterior directions. However,
the JLF and CL algorithms that form ASHS operate on a
voxel by voxel basis, and thus produce ERC/PRC seg-
mentations whose anterior and posterior extents do not
fall on a slice boundary. To make the boundaries of ASHS
segmentations more consistent with manual segmenta-
tions, we apply a simple heuristic post-processing opera-
tion to remove slices with partial labeling of ERC/PRC
from the ASHS output. The heuristic rule examines the
total number of voxels labeled as ERC, BA35, or BA36 in
each slice, and if a slice has fewer than 25% of the median
number of such voxels per slice for that subject, it is
cleared, that is, the ERC/PRC voxels in the slice are

replaced by the background label. For example, if the
ASHS output has five slices in which PRC and ERC are
labeled, and the number of voxels with either the ERC,
BA35, or BA36 labels in these slices are 10, 90, 80, 75, and
25, then applying the heuristic would clear slice 1 (10 is
less than 25% of 80, the median) while the rest of the sli-
ces would not be affected.

A side effect of the artificial slice boundaries being
imposed onto the ERC/PRC segmentations in the manual
and automatic protocols is that the extent of these cortical
regions in the MRI slice direction is not indicative of their
actual size, and may actually be confounded by the
anterior-posterior extent of the hippocampal head. Thus,
for the purposes of statistical analysis, the volumes of the
ERC and the PRC substructures are normalized by the
extent of their segmentation in the slice direction, as
follows:

½normalized volume�5 ½volume�
½extent in slices� � ½slice thickness� :

(1)

Additional Measurements

Intracranial volume

Intracranial volume was estimated using deformation
fields obtained when warping each subject’s T1-weighted
MRI to the whole-brain template. The FSL Brain Extraction
Tool [Smith, 2002] was applied to the template to create a
mask, and the mask was deformed to each subject’s MRI
to obtain a volume measurement.

Figure 3.

The extent along the anterior-posterior axis (A–P in the figure) of

the different anatomical labels included in the manual segmentation

protocol. Dashed vertical lines outline MRI slices (the number of

slices is variable from subject to subject). A 3D rendering of the

manual segmentation viewed from a location superior to the hip-

pocampus is shown for reference. Abbreviations: CA: cornu

ammonis; DG: dentate gyrus; SUB: subiculum; ERC: entorhinal cor-

tex; BA35/36: Brodmann area 35/36 (which together form the peri-

rhinal cortex); CS: collateral sulcus. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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T1-weighted MRI volumetry

To assess the added value of subfield-specific hippocam-
pal volumetry over whole-hippocampus volumetry, we
obtained MTL structure and substructure volumes using
FreeSurfer 5.1 software [Fischl, 2012]. T1-weighted images
were examined for artifacts, and then passed to the Free-
Surfer application. The left and right whole-hippocampus
volume and ERC gray matter volumes were extracted
from the main FreeSurfer pipeline. Additionally, the out-
put of the [Van Leemput et al., 2009] algorithm was used
to extract volumes of hippocampal subfields. Output was
examined visually to check for segmentation failures, and
these cases were excluded from the subsequent analysis.

EVALUATION OF ASHS ACCURACY USING

CROSS-VALIDATION

Overlap Analysis

Relative overlap between corresponding manual and
automatic segmentations was measured for individual
labels using the Dice similarity coefficient (DSC). Addition-
ally, we measured the generalized Dice coefficient (GDSC),
an overall measure of agreement between multilabel seg-
mentations [Crum et al., 2006]. Appendix C gives formal
definitions of these metrics. As we are not interested in
measuring overlap in the nontissue voxels, GDSC was
computed for the set of foreground labels (CA1, CA2,
CA3, DG, SUB, ERC, BA35, and BA36). DSC and GDSC
were computed separately for the left and right sides in
each subject in each ASHS cross-validation experiment.
DSC and GDSC between repeated manual segmentation
attempts were also computed and used to estimate intra-
rater reliability.

Table II reports the overall cross-validation accuracy of
ASHS segmentation relative to the manual rater after the
different stages of the algorithm, measured in terms of
GDSC across all substructures. Whereas, on average,
single-atlas segmentations produced by warping individ-

ual atlases into the target image have very poor perform-
ance, combining them with JLF offers a very sizable
improvement in mean GDSC (from 0.563 to 0.752). The
bootstrap step increases the mean GDSC by 0.017 to 0.769,
and the subsequent CL error correction step improves the
GDSC by another 0.01 to 0.779. All improvements are
highly significant on the paired t-test.

Figure 4 shows representative results of applying auto-
matic segmentation in three of the 90 cross-validation seg-
mentation experiments that were performed on the atlas
set. For each example, the ASHS result is shown side by
side with a cropped region from the T2-weighted MRI and
the manual segmentation. The three examples represent
the full range of segmentation performance relative to the
manual segmentation, showing the cases with the worst,
median, and best GDSC. Notably, even in the worst case
(Fig. 4), the overall location of the anatomical structures is
consistent with the manual segmentation, and the errors
are largely local. The greatest errors occur in voxels
assigned the CA2 and CA3 label by the manual segmenta-
tion, as well as in the lateral extent of BA36. Figure 4 illus-
trates a frequent area of mismatch: the set of slices on
which ASHS labels ERC and PRC is in disagreement with
the set of slices where these structures are labeled by the
expert.

For individual substructures, the cross-validation accu-
racy of the ASHS final output relative to the manual seg-
mentation is presented in Table III. Table III also reports
the intra-rater reliability of the manual segmentation. Both
the ASHS-manual agreement and the intra-rater reliability
are averaged over all subjects, as well as averaged sepa-
rately for the aMCI and NC groups. ASHS average accu-
racy exceeds DSC of 0.8 for the CA1 and DG subfields,
and is between 0.75 and 0.8 for the SUB, ERC, and BA36
labels, as well as the compound labels CA and PRC (see
Table I for the definitions). Overlap is lowest for the small-
est subfields CA2 and CA3. The intra-rater reliability of
manual segmentation is much higher than the ASHS-
manual agreement, exceeding 0.9 for CA1, CA, DG, and
PRC, and exceeding 0.8 for all substructures. There are

TABLE II. Overall agreement between automatic and manual segmentation after the different stages of the ASHS

algorithm

Left side Right side

ASHS stage Mean S.D. Min Max Mean S.D. Min Max

Single atlas (average) 0.562 0.037 0.466 0.627 0.564 0.037 0.472 0.625
Initial joint label fusion (JLF) 0.750*** 0.038 0.625 0.834 0.753*** 0.038 0.649 0.821
Bootstrapped JLF 0.770*** 0.028 0.677 0.843 0.767*** 0.037 0.670 0.836
Corrective learning 0.780*** 0.027 0.701 0.853 0.777*** 0.034 0.689 0.847

For each stage, the table lists the mean, standard deviation, and range of the generalized Dice similarity coefficient (DSC) between man-
ual and automatic segmentations of the 29 subjects in the cross-validation experiments. Generalized DSC is a measure of overall overlap
across the subfields CA1-3, DG, SUB, ERC, BA35, and BA36. Asterisks indicate significant difference on the paired t-test between the
current stage and the previous stage (*** indicates one-sided P-value below 0.001).
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Figure 4.

Examples of automatic segmentation results from the cross-

validation experiment with the worst, median (middle panel), and

best (bottom panel) overall performance relative to the manual

segmentation, as measured by generalized DSC. The first five col-

umns in each panel show coronal slices taken through the hippo-

campal region from anterior to posterior. The last column shows

a sagittal slice through the hippocampus. The worst and median

segmentation results are in the right hemisphere; the best result

in the left hemisphere. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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few statistically significant differences in overlap between
the aMCI and NC groups in either ASHS-manual agree-
ment or intra-rater reliability. In structures where there are
significant differences (CA3 and HIPP for ASHS-manual
agreement; BA35 and BA36 for intra-rater), the overlap is
higher for the aMCI group.

Additionally, we compute the agreement between
ASHS and manual segmentation separately for the head,
body, and tail sections of the hippocampus. For each
hemisphere in each subject, we tag the T2-weighted MRI
slices as belonging to the hippocampal head, body, tail,
or neither (for slices anterior of the head and posterior of
the tail) based on the manual segmentation, following
the schematic shown in Figure 3. Then, for each cross-
validation experiment, the DSC between the ASHS result
and the manual segmentation is measured just in the
head, body, or tail subset of slices. The average DSC for
head, body, and tail is reported in Table IV. The table
also reports the average head/body/tail DSC for the
intra-rater reliability analysis. Overall, ASHS overlap
with manual segmentation is highest in the hippocampal
body and is considerably lower in the head and tail sli-
ces. This is likely explained by (1) the fact that the ana-
tomical complexity of the hippocampal head and tail is
greater than in the body and (2) the fact that the errors
in the head and tail include disagreement in the anterior-
posterior extent of the subfields (e.g., the DG may
occupy a different number of slices in the tail for the
manual and automatic segmentations), whereas in the
body the error is primarily due to the in-plane disagree-
ment. Notably, for manual intra-rater reliability, the dif-
ference between head, tail, and body is much smaller
than for ASHS.

In the case of the ERC and the PRC subregions, the
average overlap between ASHS and manual segmentation
is much higher in the subset of slices tagged “head” than
for the whole 3D extent of these structures, as listed in
Table III (0.831 vs. 0.786 for ERC, 0.747 vs. 0.702 for BA35,
0.827 vs. 0.777 for BA36; 0.850 vs. 0.797 for PRC). As
shown in the schematic in Figure 3, the segmentation of
the ERC and PRC extends one slice past the “head” slices
in both the anterior and posterior directions. By restricting
the overlap comparison to just the “head” slices, we elimi-
nate most of the disagreement due to the ERC/PRC labels
occupying a different set of slices in the manual and auto-
matic segmentations. The substantial differences in DSC
between the two ways of measuring overlap suggest that a
significant amount of the segmentation error for the ERC
and PRC may be explained by the variability in the extent
of the segmentation along the slice dimension.

Volume Agreement

Figure 5 uses Bland–Altman plots [Bland and Altman,
2007] to illustrate the agreement between substructure vol-
umes extracted using ASHS and manual segmentation.
The differences between the ASHS and manual volume
measurements are plotted on the vertical axis, against the
average of the two types of measurements on the horizon-
tal axis. The mean difference (bias) between the ASHS and
manual volumes and the limits of agreement are also plot-
ted. Additionally, the figure reports the interclass correla-
tion coefficient (ICC) for each substructure. ICC is
computed using the ICC(2,1) method in [Shrout and Fleiss,
1979]. For labels whose extent in the slice direction is

TABLE III. ASHS segmentation performance and manual intra-rater reliability measured in terms of overlap, com-

puted as generalized DSC and perlabel DSC

ASHS vs. manual rater Manual intra-rater reliability

All (n 5 29) aMCI (n 5 14) NC (n 5 15) All (n 5 12) aMCI (n 5 6) NC (n 5 6)

GDSC 0.779 (0.031) 0.780 (0.034) 0.778 (0.027) 0.886 (0.018) 0.895 (0.011) 0.878 (0.020)
CA1 0.803 (0.036) 0.807 (0.030) 0.799 (0.042) 0.905 (0.017) 0.903 (0.020) 0.907 (0.016)
CA2 0.552 (0.136) 0.541 (0.143) 0.564 (0.126) 0.817 (0.080) 0.790 (0.094) 0.844 (0.059)
CA3 0.525 (0.107) 0.547 (0.102)** 0.500 (0.107) 0.863 (0.036) 0.879 (0.024) 0.846 (0.040)
CA 0.797 (0.035) 0.801 (0.029) 0.793 (0.040) 0.905 (0.017) 0.904 (0.021) 0.906 (0.015)
DG 0.823 (0.030) 0.827 (0.030) 0.819 (0.029) 0.923 (0.017) 0.922 (0.020) 0.924 (0.015)
SUB 0.750 (0.042) 0.746 (0.039) 0.755 (0.046) 0.828 (0.025) 0.830 (0.027) 0.827 (0.026)
ERC 0.786 (0.049) 0.781 (0.051) 0.791 (0.045) 0.856 (0.034) 0.876 (0.011) 0.836 (0.039)
BA35 0.702 (0.076) 0.708 (0.092) 0.696 (0.054) 0.822 (0.037) 0.847 (0.006)* 0.796 (0.037)
BA36 0.777 (0.059) 0.776 (0.067) 0.779 (0.049) 0.897 (0.019) 0.909 (0.008)* 0.886 (0.021)
PRC 0.797 (0.053) 0.791 (0.061) 0.804 (0.041) 0.906 (0.014) 0.913 (0.005) 0.899 (0.017)
HIPP 0.893 (0.019) 0.896 (0.015)** 0.888 (0.022) 0.942 (0.009) 0.943 (0.008) 0.941 (0.010)

Table I provides brief definitions of the primary and compound (in italics) anatomical labels used in this table. For the ASHS-to-manual
performance, DSC is averaged over all 10 cross-validation experiments; each performed using 20 out of the 29 subjects as atlases and
the remaining nine subjects as test subjects. The columns “aMCI” and “NC” report the average DSC for test subjects in the respective
group. Asterisks indicate statistically significant difference in overlap between aMCI and NC groups (*: P< 0.05; **: P< 0.01)
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specified in the protocol to fall on a slice boundary (i.e.,
ERC, BA35, BA36, and the compound label PRC), Figure 6
provides Bland–Altman plots and ICC for the normalized
volume, defined in (1). Agreement between automatic and
manual volume measurements is highest for the DG and
CA1 subfields (ICC 5 0.836 for CA1 and 0.893 for DG),
while CA2 and CA3 have the lowest values. Normalized
volumes have better agreement than unnormalized vol-
umes for BA35 (ICC 5 0.718 vs. 0.693) and BA36
(ICC 5 0.790 vs. 0.720), although interestingly not ERC
(ICC 5 0.731 vs. 0.744). Bias is low for all subfields.

EVALUATION OF ASHS IN THE CONTEXT OF

VOLUMETRIC GROUP DIFFERENCE ANALYSIS

IN AMNESTIC MCI

Subcohort Selection for Volumetry Analysis

Figure 7 illustrates the composition of the larger cohort
used in the volumetric group difference analysis. Of the 92
subjects enrolled in the study, 29 were atlas subjects. Of the
remaining 63 subjects, 57 passed image quality control for
both T1-weighted and T2-weighted images; five had T2-
weighted MRI with significant motion artifact; and one had
a T2-weighted MRI with only partial coverage of the hippo-
campus. ASHS was trained using the 29 atlas subjects, and
applied to segment the 57 non-atlas subjects who passed
quality control. Visual inspection of ASHS segmentation
results was performed, and in one subject, ASHS failed to
label the hippocampal region (i.e., segmentation labels
appeared elsewhere in the brain, as shown in Fig. 7). The
ASHS segmentations of the remaining 56 non-atlas subjects
were available for analysis. Additionally, for the 29 subjects
in the atlas set, the results of the cross-validation experi-
ments were averaged to produce a single segmentation per
subject. Specifically, if a subject had been segmented multi-

ple times during cross-validation (as there were 90 experi-
ments with 29 subjects, on average each subject had three
segmentation attempts), the label posterior probability maps
after the CL error correction step from the different segmen-
tation attempts were averaged and used to produce a single
consensus segmentation. Then, the heuristic ERC/PRC
post-processing step in Post-Processing of ASHS Segmenta-
tions section was applied to this consensus segmentation.
After combining these averaged cross-validation segmenta-
tions of the 29 atlas subjects with the segmentations of the
56 non-atlas subjects, a total of 85 subjects with ASHS seg-
mentations were available for analysis.

For extracting comparison measures, FreeSurfer was used
to segment the T1-weighted MRI scans of these 85 subjects.
Results were examined visually; and in two subjects (one
atlas subject, one non-atlas subject), the FreeSurfer segmen-
tations only partially covered the hippocampus. These two
subjects were excluded from the subfield volumetry experi-
ments. Thus, volumetry experiments were performed in the
cohort of 83 subjects. The demographic characteristics of
this set of 83 subjects are presented in Table V.

Subfield Volumetry Analysis Results

ASHS-derived volumes of hippocampal subfields and
normalized volumes of the cortical subregions were com-
pared statistically between the aMCI and NC groups. For
each anatomical label, a general linear model (GLM) was
fitted to the volumetric measurement of interest (i.e., vol-
ume or normalized volume), with group membership as
the factor of interest. Age and ICV were included as cova-
riates. The Student’s t-statistic and the P-value for the NC-
aMCI contrast were computed from the fitted GLM for
each anatomical label. Additionally, we computed the area
under ROC curve (AUC) statistics for the NC-aMCI com-
parison after normalizing the dependent variable by age

TABLE IV. ASHS segmentation performance and manual intra-rater reliability computed in the slices spanning the

head, body, and tail of the hippocampus

ASHS vs. manual rater Manual intra-rater reliability

Head Body Tail Head Body Tail

CA1 0.777 (0.040) 0.878 (0.029) 0.805 (0.088) 0.905 (0.017) 0.911 (0.020) 0.894 (0.031)
CA2 0.482 (0.192) 0.594 (0.157) 0.820 (0.081) 0.815 (0.113)
CA3 0.537 (0.117) 0.431 (0.168) 0.881 (0.034) 0.743 (0.103)
CA 0.770 (0.038) 0.869 (0.032) 0.904 (0.017) 0.911 (0.022)
DG 0.788 (0.036) 0.892 (0.030) 0.796 (0.080) 0.922 (0.016) 0.929 (0.025) 0.912 (0.029)
SUB 0.761 (0.051) 0.747 (0.057) 0.815 (0.034) 0.846 (0.033)
ERC 0.831 (0.038) 0.850 (0.036)
BA35 0.747 (0.073) 0.818 (0.048)
BA36 0.827 (0.046) 0.896 (0.020)
PRC 0.850 (0.036) 0.906 (0.017)
HIPP 0.891 (0.018) 0.920 (0.017) 0.877 (0.071) 0.941 (0.009) 0.946 (0.013) 0.938 (0.013)

For each subject/side, the T2-weighted slices marked as head, body, or tail in the manual segmentation are extracted and DSC is com-
puted only within those slices. Average DSC is reported across all cross-validation experiments.

r Yushkevich et al. r

r 270 r



and ICV. This normalization was performed by fitting a
GLM with the volumetric measurement as the dependent
variable, age and ICV as independent variables, and taking
the residuals.

The results of this statistical analysis are reported in the
top panel of Table VI. On the left side, a significant group
effect is found in all substructures except CA2, CA3, and
SUB. The measures with the largest t-statistic and AUC
values on the left side are the normalized volume of BA35
(t 5 4.80, AUC 5 0.784), the volume of the CA (t 5 4.45,
AUC 5 0.785), followed by the PRC normalized volume
(t 5 3.76, AUC 5 0.727), and the DG volume (t 5 3.58,
AUC 5 0.730). The group difference for the left HIPP label
(which combines CA, DG, and SUB labels) is also very

strong (t 5 4.20, AUC 5 0.763). On the right side, a similar
picture emerges in the hippocampus, with largest group
difference in CA (t 5 4.07, AUC 5 0.736) followed by DG
difference (t 5 2.82, AUC 5 0.667). However, the strong
effect in the BA35 is no longer present on the right side
(t 5 1.58, AUC 5 0.622); in fact none of the right ERC/PRC
measures reach significance.

The bottom panel of Table VI includes the results of
group comparison using whole hippocampal volume, ERC
grey matter volume, and hippocampal subfield volumes
computed by FreeSurfer from the T1-weighted MRI in the
same group of 83 subjects. The t-statistics obtained for the
FreeSurfer whole hippocampal volume are slightly below
those for the ASHS HIPP label (4.05 vs. 4.20 on the left,

Figure 5.

Bland–Altman plots comparing substructure volumes computed

by ASHS to the corresponding volumes from manual segmenta-

tion. The x-axis plots the average of the two volume measure-

ments, and the y-axis plots their difference. The mean difference

between ASHS and manual volumes (bias) is shown as a solid

horizontal line, and the limits of agreement are plotted as

dashed lines. Each plot also reports the ICC between the ASHS

and manual volume measurements. In addition to the subfields

listed in Figure 3, the plots include “compound” labels CA

(CA1 1 CA2 1 CA3), PRC (BA35 1 BA36), and whole hippo-

campus (HIPP: CA 1 DG 1 SUB).
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Figure 6.

Bland–Altman plots and intraclass correlation coefficients (ICC) for the normalized volume of

the ERC and the PRC subregions BA35 and BA36.

Figure 7.

Composition of the “full” cohort used in the volumetry and

thickness analyses. The cohort combines the atlas set, for which

segmentations produced using cross-validation are used, and

most of the non-atlas subjects, which are segmented using ASHS

trained on the atlas set. The bottom portion of the figure shows

examples of the images excluded from the analysis. Please see

text for details. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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3.07 vs. 3.65 on the right). The FreeSurfer ERC volume is
significantly different between the groups only on the left,
and the t-statistic for the left FreeSurfer ERC (2.82) is
greater than for the ASHS ERC label (2.51) but smaller
than for the ASHS BA35 label (4.80). Interestingly, for both
the FreeSurfer ERC and the T2-based ERC/PRC, the group
effect is only significant on the left side.

For the group differences computed using the Van
Leemput et al. [2009] algorithm in FreeSurfer, t-statistics
and AUCs for subfields in the left hippocampus are lower
than those for FreeSurfer whole-hippocampus volume (the
left SUB subfield has the highest statistics, with t 5 3.43,
AUC 5 0.706 vs. t 5 4.05, AUC 5 0.744 for the whole hip-
pocampus). On the right, the FreeSurfer CA23 subfield has
higher t-statistic and AUC than FreeSurfer whole-
hippocampus volume (t 5 3.29, AUC 5 0.706 vs. t 5 3.07,
AUC 5 0.693), and those statistics are just slightly less than
for the ASHS CA volume (t 5 4.07, AUC 5 0.736).

The covariates in the GLM (age and ICV) were selected a
priori, matching the statistical analysis performed in [Muel-
ler et al., 2010]. However, stepwise regression analysis
using age, gender, education, MRI coil, and ICV as covari-
ates and combined left and right hippocampal volume
(computed using either FreeSurfer or ASHS) as dependent
variables resulted in age, ICV, and MRI coil being retained
in the best fitting model, that is, the model that yielded the
lowest Bayesian Information Criterion. When the statistical
analysis above was repeated with age, ICV, and MRI coil
as covariates, the results were highly consistent with the
ones reported in Table VI, with an overall slight increase in
t-statistic and AUC for most structures. The largest overall
t-statistics and AUCs remained in the left ASHS BA35
(t 5 4.95, AUC 5 0.785) and left ASHS CA (t 5 4.62,
AUC 5 0.797) subfields, but on the right, the statistics for
the FreeSurfer measures increased substantially more than
for ASHS measures, bringing the two sets of measures
much closer (right ASHS CA: t 5 4.29, AUC 5 0.743; right
FreeSurfer CA23: t 5 3.89, AUC 5 0.749; right FreeSurfer
DG: t 5 3.50, AUC 5 0.730).

Lastly, repeating the statistical analysis without covary-
ing for age and ICV resulted in a slight reduction in the t-
statistics and AUCs for most ASHS and FreeSurfer meas-
urements, with the overall order of the statistics highly
consistent with the results presented in Table VI.

REGIONAL SUBFIELD THICKNESS ANALYSIS

USING ASHS

In addition to providing volume measures analyzed
above, ASHS makes it possible to extract regional meas-
ures of subfield thickness and to analyze them in a com-
mon template space. This section describes the approach
for thickness estimation (Subcohort Selection for Volume-
try Analysis section) and gives the results of regional com-
parison of subfield thickness between the aMCI and NC
subjects (Subfield Volumetry Analysis Results section).

Methods for Regional Thickness Estimation in

ASHS Output Segmentations

To complement global substructure volume measure-
ments provided by ASHS with localized structural meas-
urements, we perform additional image processing steps
on the ASHS output. These steps include approximating
ASHS segmentations with smooth boundaries, establishing
correspondences between subjects, and extracting regional
thickness maps.

Template-based smooth approximation for ASHS
segmentations

Because of the high voxel aspect ratio of the T2 images,
the segmentations produced by ASHS (as well as manual
segmentations) have a highly discontinuous surface with
step edges (Fig. 8A). Such discontinuities, pose a challenge
for shape analysis and extraction of thickness measures.
Furthermore, statistical analysis of pointwise feature maps

TABLE V. Summary of the composition of the full cohort and the atlas subset, including demographics, MRI coil

used (8-channel or 32-channel), and cognitive testing

Full cohort (n 5 83) Atlas subset (n 5 29)

NC (n 5 43) aMCI (n 5 40) NC (n 5 15) aMCI (n 5 14)

Mean 6 S.D. Range Mean 6 S.D. Range P Mean 6 S.D. Range Mean 6 S.D. Range P

Sex (male/female) 25/18 18/22 0.2752 7/8 6/8 1.0000
Age 71.0 6 9.6 54288 71.8 6 7.0 56285 0.6737 66.3 6 9.5 54284 71.9 6 6.2 63280 0.0696
Education (years) 16.5 6 2.9 12220 16.6 6 2.7 12220 0.9179 15.6 6 2.6 12220 16.9 6 2.8 12220 0.1994
MRI coil (8 ch/32 ch) 37/6 32/8 0.5624 15/0 14/0 1.0000
MMSE 29.4 6 0.9 27230 27.3 6 1.8 22230 0.0000 29.5 6 1.0 27230 26.9 6 1.7 24230 0.0001
CERAD word list total 23.8 6 3.6 16230 16.4 6 4.1 8224 0.0000 24.7 6 2.9 21229 16.2 6 3.2 11223 0.0000
Delayed recall 8.4 6 1.6 4210 3.6 6 2.1 028 0.0000 8.7 6 1.8 4210 3.4 6 2.1 028 0.0000

The P-values are two-tailed and computed using the t-test for numerical variables and using the Fisher exact test for sex and MRI coil.
Abbreviations: MMSE: Mini-Mental State Examination; CERAD: Consortium to Establish a Registry for Alzheimer’s Disease.
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TABLE VI. Comparison of the size of hippocampal subfields and parahippocampal gyrus subregions between aMCI

patients and controls, with age and ICV as covariates

ASHS

Volume Normalized volume

CA1 CA2 CA3 CA DG SUB HIPP ERC BA35 BA36 PRC

Left side
Mean (NC) 1241.80 14.86 62.30 1318.96 760.79 343.22 2422.97 25.04 19.82 80.75 100.47
Mean (MCI) 1089.93 13.81 56.68 1160.42 675.28 323.43 2159.12 22.84 16.16 71.01 87.13
SD (NC) 115.40 5.58 18.03 118.15 86.89 46.07 204.26 2.66 3.33 15.03 16.23
SD (MCI) 193.09 5.90 17.47 196.97 126.67 55.19 349.46 5.00 3.56 14.14 15.82
T-stat 4.35 0.83 1.43 4.45 3.58 1.76 4.20 2.51 4.80 3.01 3.76
P-value 4.0 e2 05 0.41 0.16 2.8 e2 05 0.00060 0.082 6.9 e2 05 0.014 7.3 e2 06 0.0035 0.00033
AUC 0.783 0.572 0.581 0.785 0.730 0.615 0.763 0.668 0.784 0.685 0.727
AUC 95% C.I. radius 0.102 0.126 0.125 0.101 0.111 0.123 0.108 0.121 0.102 0.116 0.109

Right side
Mean (NC) 1258.97 21.29 72.43 1352.68 760.47 341.84 2455.00 24.26 19.42 69.38 88.74
Mean (MCI) 1117.07 18.27 64.17 1199.51 691.88 319.05 2210.44 22.95 17.94 69.66 87.51
SD (NC) 134.38 5.22 20.86 138.93 95.85 45.81 240.49 3.93 4.09 14.47 16.74
SD (MCI) 187.65 5.01 23.12 197.77 122.89 58.81 357.78 5.19 4.35 15.29 17.87
T-stat 3.95 2.66 1.70 4.07 2.82 1.96 3.65 1.29 1.58 20.09 0.32
P-value 0.00017 0.0094 0.094 0.00011 0.0060 0.054 0.00047 0.20 0.12 0.93 0.75
AUC 0.726 0.645 0.605 0.736 0.667 0.615 0.709 0.585 0.622 0.478 0.504
AUC 95% C.I. radius 0.110 0.119 0.126 0.108 0.117 0.123 0.112 0.126 0.124 0.127 0.127

FreeSurfer

PreSub CA1 CA23 Fimb Sub DG H. Fissure H. Other HIPP (FS) ERC (FS)

Left side
Mean (NC) 423.54 303.80 870.93 59.50 575.99 488.49 40.47 320.14 3727.28 1983.02
Mean (MCI) 382.88 300.66 800.24 47.14 518.65 445.27 45.21 306.60 3311.30 1747.60
SD (NC) 56.42 38.52 96.95 24.62 61.98 56.24 16.20 60.79 331.64 360.22
SD (MCI) 68.70 41.25 117.88 23.60 87.86 69.82 27.43 68.27 573.46 393.33
T-stat 2.93 0.36 2.97 2.31 3.43 3.09 20.96 0.95 4.05 2.82
P-value 0.0044 0.72 0.0040 0.023 0.0010 0.0028 0.34 0.35 0.00012 0.0060
AUC 0.660 0.542 0.678 0.633 0.706 0.688 0.492 0.638 0.744 0.688
AUC 95% C.I. radius 0.119 0.128 0.117 0.121 0.116 0.117 0.130 0.125 0.110 0.119

Right side
Mean (NC) 406.80 314.29 928.21 34.41 561.43 517.39 46.01 340.73 3710.02 1768.22
Mean (MCI) 390.77 304.59 844.73 28.73 527.25 473.94 47.65 325.60 3382.20 1698.44
SD (NC) 51.90 38.72 108.96 16.27 55.40 64.23 20.03 51.95 430.72 357.83
SD (MCI) 72.09 41.89 120.13 18.03 84.00 70.80 21.28 58.56 531.40 436.49
T-stat 1.16 1.09 3.29 1.49 2.18 2.91 20.36 1.24 3.07 0.79
P-value 0.25 0.28 0.0015 0.14 0.032 0.0047 0.72 0.22 0.0029 0.43
AUC 0.566 0.576 0.706 0.598 0.642 0.683 0.485 0.595 0.693 0.526
AUC 95% C.I. radius 0.127 0.125 0.113 0.124 0.126 0.116 0.129 0.125 0.116 0.128

The top panel of the figure lists summary statistics and group difference statistics for the different anatomical labels generated by
ASHS, and the bottom panel lists corresponding statistics for the different FreeSurfer labels, which include substructures segmented by
the Van Leemput et al. [2009] algorithm, as well as the whole hippocampus volume and ERC gray matter volume. For ASHS hippocam-
pal subfield labels and all FreeSurfer labels, the statistics are computed on volume measurements. For ASHS parahippocampal gyrus
subregions, the statistics are computed on volumes normalized by their extent in the slice direction [Eq. (1)]. For each label, the table
lists the mean and standard deviation of the measurement of interest (volume or normalized volume) in the aMCI (n 5 41) and NC
(n 5 44) groups. These means and standard deviations are computed after the measures are corrected for age and ICV, as described in
the text. For each label, the table also gives the t-statistic for the group difference between NC and aMCI, with age and ICV as covari-
ates (82 degrees of freedom), as well as the corresponding P-value for a one-sided alternative hypothesis (aMCI<NC). Lastly, for each
label, the table lists the area under the receiving operator characteristic curve (AUC). The AUC reflects the ability of the age and ICV-
corrected measurements to discriminate between aMCI and NC conditions. The radius (half width) of the 95% confidence interval on
the AUC, computed using the [DeLong et al., 1988] bootstrap-based method, is also given for each anatomical label.
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requires pointwise correspondences between all subjects’
segmentations, which are not produced by ASHS.

To enable shape analysis, we apply a computational
anatomy algorithm similar in spirit to the whole-
hippocampal morphometry carried out in [Miller et al.,
2005; Wang et al., 2007]. For each hemisphere, an unbiased
population template is constructed from the multilabel
segmentations produced by ASHS. The approach is similar
to the one used to build a template from the T1-weighted
images in Deformable registration of T1-weighted MRI to
an unbiased template section, except that as the input
images are multilabel segmentations rather than intensity
images, a different image similarity metric is used. Specifi-
cally, the mean square intensity difference metric is com-
puted for each label separately, and the sum of these per-
label metrics is minimized by the registration. The tem-
plate resulting from this procedure has a very smooth sur-
face, compared with the input segmentations (Fig. 8B). By
warping the template surface into the space of each input
segmentation (using the diffeomorphic deformation fields
generated during the construction of the unbiased tem-

plate), we obtain a smooth and topologically consistent
approximation of each input multilabel segmentation that
is suitable for measuring regional thickness (Fig. 8C,D).

Thickness maps

Thickness maps are computed in the space of each subject
from the smooth surfaces obtained above. Rather than com-
puting a separate thickness map for each individual subfield
or substructure, which would be problematic for smaller sub-
structures and would cause a discontinuity in the thickness
measurement along substructure boundaries, we combine
substructures into two groups corresponding to the layered
structure of the hippocampus. One group consists just of the
DG subfield, while the other group, analogous to the
[Ekstrom et al., 2009; Zeineh et al., 2003] hippocampus
unfolding approach, combines all other subfields, that is, the
strip of gray matter encompassing the CA subfields, SUB,
ERC, and PRC (Fig. 8B). Left and right hemispheres are ana-
lyzed separately. Given a smooth surface-based representa-
tion of a group of structures in a given subject’s space,
thickness is computed for each surface point by extracting
the Voronoi skeleton of the surface, pruning the skeleton to
remove extraneous branches [Ogniewicz and K€ubler, 1995],2

and computing the distance from each point on the surface
to the closest point on the pruned skeleton (Fig. 8E,F). Lastly,
thickness maps computed for each subject are mapped back
into the space of the unbiased template for statistical analysis.

Results of Subfield Thickness Analysis in aMCI

Regional thickness analysis was applied to the output of
ASHS segmentation in the cohort of 85 subjects (83 sub-
jects analyzed in Volume Agreement section plus the two
subjects for whom FreeSurfer segmentation failed but the
ASHS segmentation was acceptable). Surface representa-
tions of the DG label and the strip of tissue formed by
combining the CA, SUB, ERC, BA35, and BA35 labels
were extracted in template space and warped into the sub-
ject space, serving as a smooth interpolation of the corre-
sponding structures in the ASHS segmentation output.
The accuracy of the smooth interpolation was measured
symmetric root mean square (RMS) surface distance [Gerig
et al., 2001]. For the surface combining the CA, SUB, ERC,
BA35, and BA35 labels, the average symmetric RMS sur-
face distance between the smooth interpolated surface
(cyan surface in Fig. 8D) and the surface of the ASHS seg-
mentation (brown surface in Fig. 8D) is 0.27 6 0.05 mm.
For the surface of the DG, the average symmetric RMS dis-
tance is 0.19 6 0.04 mm.

Figure 8.

Steps in the thickness computation pipeline. (A) A surface mesh

of the combined segmentation of the CA, SUB, ERC, and PRC

structures in the right hemisphere in one subject; the step edges

in the segmentation can be observed. (B) The surface mesh for

the same set of structures in the unbiased population template

constructed from 85 ASHS segmentations; the surface of the

mesh is much smoother. (C) The smooth template surface warped

to the space of the subject’s segmentation. (D) Superimposition of

the segmentation (A) and the warped template (C) showing that

(C) provides a smooth approximation to (A). (E) Pruned Voronoi

skeleton computed from the warped template surface. (F) Thick-

ness (distance to the skeleton) mapped onto the boundary of the

warped template. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

2The pruning criteria for the Voronoi skeleton are (a) a face F in the
Voronoi skeleton is eliminated if the number of edges in the shortest
path on the boundary surface between the generating points is below
6; (b) if the ratio of the length of the shortest path between the gener-
ating points to the distance from the generating points to the face F is
below 2.4.

r Automatic Morphometry of MTL Subfields in MCI r

r 275 r

http://wileyonlinelibrary.com


Regional thickness maps computed for each subject
using the smooth surface representations of the ASHS seg-
mentations were brought back into the template space for
statistical analysis. At each surface point, a GLM was fit-
ted, with thickness at that point as the dependent variable,
disease status as the factor of interest, and age and ICV as
covariates. Figure 9 plots the map of the t-statistic for the
NC-aMCI contrast derived from these point-wise GLMs.
Uncorrected P-values were pooled across the four surfaces,
and corrected for multiple comparisons using the false dis-
covery rate (FDR) approach [Benjamini and Yekutieli,
2001]. The uncorrected P-value corresponding to the FDR
correction threshold of 0.05 is P 5 0.0122, and corresponds
to t 5 2.29. Surface regions where the t-statistic exceeds
this threshold are outlined by a bold black curve in Figure
9. The largest supra-threshold regions are (a) a region that
includes most of the left BA35 and a large portion of the
left ERC; and (b) a region along the infero-lateral aspect of
the left CA, extending along most of the hippocampal
head and body. The corresponding regions on the right
are smaller: there are two large supra-threshold regions
located in the right ERC, and two large regions along the
inferio-lateral aspect of the right CA, one in the head, and
another in the posterior part of the body and anterior part
of the tail. Two small regions with high t-values are
located on the superior portion of the right CA in the
head, with smaller corresponding regions on the left. Also,
the DG contains supra-threshold regions bilaterally in the
posterior half of the structure. Overall, the thickness maps
are consistent with the volumetric findings, but offer
greater regional specificity.

DISCUSSION

Segmentation of hippocampal subfields and PHG subre-
gions in in vivo MRI is a challenging problem and a sub-
ject of some debate. Recently, van Strien et al. [2009]
argued that this problem is ill-posed because the features
used by neuroanatomists to define subfield boundaries are
primarily cytoarchitectonic and are not visible in MRI
even at the highest possible resolution. For example, the
anatomical boundary between CA1 and CA2 subfields is
defined based on the differences in the size and density of
pyramidal cells [Duvernoy, 2005]. Such differences clearly
cannot be observed using MRI. Van Strien et al. also cau-
tion against estimating subfield boundaries based on geo-
metric rules because the location of the cytoarchitectonic
boundaries relative to morphological features varies
between individuals. Long-term efforts are currently under
way to better relate 3D shape and appearance features
extractable from postmortem MRI to the subfield bounda-
ries extracted from histological data [Adler et al., 2013;
Augustinack et al., 2013]. If these efforts succeed in charac-
terizing the relationship between MRI features and true
histologically derived boundaries, in the future it may be
possible to infer true subfield boundaries from MRI scans

in a probabilistic way with certain guarantees of anatomi-
cal correctness.

However, the challenges identified by van Strien et al.
[2009] have not prevented a number of groups from defin-
ing subfield segmentation protocols for in vivo MRI. These
protocols are only approximations of the underlying ana-
tomical truth, and must necessarily rely on a combination
of available image intensity features and heuristic geomet-
rical rules to derive a labeling scheme that is reliable and
reproducible. One argument that can be made in favor of
these protocols is that even though the substructures that
they extract may be somewhat different in location and
shape from the underlying true anatomical subfields, as
long as such substructures yield additional information
about the effects of disease on the hippocampus and MTL,
or offer greater statistical power compared to alternative
measures, they are useful as biomarkers. Moreover, these
protocols are not completely removed from the underlying
anatomy: even though some boundaries might be off with
respect to the true anatomical boundaries, the subfields
extracted from MRI overlap substantially with their true
anatomical counterparts, particularly for larger subfields.
Thus, as long as the results reported on the basis of MRI-
derived subfield measurements are interpreted with the
understanding that the measurements themselves are
approximate, they are still useful for understanding MTL
structure and function. Indeed, the uncertainty of anatomi-
cal boundaries is not unique to hippocampal subfields,
and the critical points raised by van Strien et al. [2009] can
also be directed at in vivo MRI segmentation of many
other brain structures and cortical regions. Although
uncertainty is a concern, it does not invalidate the use of
in vivo MRI for studying brain structure and function.

Accepting the fact that there is a place in the field for in
vivo MRI subfield measurements (as long as their approxi-
mate nature is properly recognized), it is natural to seek
for such measurements to be obtained automatically.
Although no algorithm will likely ever be able to mimic
the deep intellectual process used by a human expert when
inferring and approximating subfield boundaries, manual
segmentation also has significant limitations: it is far too
costly for large datasets, is difficult to replicate between
research groups, and is subject to various rater biases and
temporal drifts. By contrast, automatic segmentation scales
well to large datasets and is completely reproducible. Thus,
any additional inaccuracy arising from the use of automatic
segmentation over the standard of manual segmentation
must be weighted carefully against these benefits.

On the whole, our results show that ASHS has good
consistency with manual segmentation, although there is
room for improvement relative to the very high intra-rater
reliability of the manual segmentation. Of course, echoing
the concerns of van Strien et al. [2009], that finding in itself
does not imply that ASHS is accurately segmenting the
true underlying anatomical boundaries. Given this uncer-
tainty, it is important to relate the ASHS results to knowl-
edge about the pathology of the underlying disease. It is,
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therefore, encouraging that our finding of significant CA1
and left BA35 atrophy in aMCI is consistent with the
expectations of AD-related change [Braak and Braak,
1995]. Furthermore, our regional thickness analysis miti-
gates some of the criticisms raised by van Strien et al.
[2009] because it is carried out on a region combining the
CA, SUB, ERC, and PRC substructures, and most of the
boundary of this region with the DG is formed by the
SRLM-HS, which is visible in the in vivo MRI. Thickness

analysis makes it possible to identify regions of atrophy
without having to assign them to a specific subfield label.

ASHS Performance in Cross-Validation

Experiments

Given the highly complex nature of the subfield seg-
mentation problem, we find the ability of ASHS to

Figure 9.

Surface-based statistical analysis of thickness differences between

controls and aMCI patients, performed in the space of an unbiased

population template derived from ASHS segmentation, and visual-

ized from two different viewpoints. The top row shows the com-

bined surface model composed of the CA, SUB, ERC, BA35, and

BA36 subfields, with each vertex assigned the corresponding sub-

field label. The second row shows the DG, which is modeled as a

separate surface. The third and fourth rows plot the t-statistic

maps for the statistical comparison of thickness, with age and

intracranial volume (ICV) as covariates, between NC and aMCI

groups, carried out on these surface models. The dark outline on

the t-statistic maps indicates the regions where the P-value is

below 0.05 after FDR correction. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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replicate manual segmentation of a number of structures
(CA1, DG, PRC) with average DSC near or above 0.8
(Table III) to be very encouraging. Nevertheless, there
remains a considerable gap between these results and the
intra-rater reliability of manual segmentation by rater JP,
which for many subfields is in excess of 0.9. It is important
to note that JP is the primary developer of our manual
segmentation protocol and has been involved in labeling
hippocampal subfields in both in vivo and postmortem
data for over 7 years. On average, he spent over 8 h to
segment each MRI scan. His intra-rater reliability is prob-
ably considerably higher than would be expected for a
typical technician performing manual segmentation.

In fact, although the agreement between ASHS and
manual segmentation falls short of the intra-rater reliabil-
ity of rater JP, it is quite similar to the intra-rater reliability
of manual segmentation reported elsewhere in the litera-
ture. For instance, Olsen et al. [2013] report mean DSC of
0.80 for CA1, 0.85 for combined DG, CA2, and CA3, and
0.78 for SUB for intra-rater reliability as well as 0.73 for
CA1, 0.83 for DG/CA2/CA3, and 0.69 for SUB for inter-
rater reliability. These subfields are traced through 3=4 of
the anterior-posterior extent of the hippocampus. The MRI
protocol in Olsen et al. [2013] is similar to ours. Winter-
burn et al. [2013] report mean intra-rater reliability with
DSC of 0.78 for CA1, 0.83 for CA4/DG, and 0.75 for SUB.
Winterburn et al. [2013] performed manual segmentation
in “dedicated” T2-weighted MRI scans with longer acqui-
sition times and significantly lower slice thickness than the
scans used in our article. They segmented the hippocam-
pus along its entire length, and their protocol includes a
separate label for the SRLM-HS. Higher intra-rater over-
laps (DSC of 0.85 for CA1, 0.84 for DG and SUB, 0.83 for
CA2) are reported by Wisse et al. [2012] but in scans
acquired at 7 Tesla with isotropic 0.7 3 0.7 3 0.7 mm3

resolution. We emphasize that measures such as DSC can-
not be directly compared between papers utilizing differ-
ent MRI sequences and segmentation protocols, as the
voxel size, number, and complexity of the labels, and other
factors can affect DSC significantly. Nonetheless, the fact
that ASHS accuracy for larger subfields falls in the “ball
park” of the intra-rater reliability reported by other
authors is encouraging.

The agreement of ASHS and manual segmentation in
the hippocampal body (Table IV: DSC of 0.878 for CA1,
0.594 for CA2, 0.431 for CA3, 0.892 for DG, 0.747 for SUB)
is consistent with our earlier body-only automatic segmen-
tation results [Yushkevich et al., 2010] and close to the
inter-rater reliability reported in that paper (DSC of 0.883
for CA1, 0.522 for CA2, 0.668 for CA3, 0.885 for DG, 0.768
for SUB). The only exception is the CA3 subfield, for
which reliability is much lower for ASHS; this is likely
explained by the changes to the manual segmentation pro-
tocol that resulted in a smaller and thinner CA3 in the
body, compared with the earlier protocol.

The agreement between ASHS and manual segmentation
for the subfields in the head of the hippocampus (Table IV:

DSC of 0.777 for CA1, 0.788 for DG) and the tail of the hip-
pocampus (0.805 for CA1, 0.796 for DG) is considerably
lower than in the hippocampal body (0.878 for CA1, 0.892
for DG). Certainly, the segmentation problem in the head
and tail is more challenging than in the body because of
much more complex shape of the subfields and the less con-
sistent agreement between the slice direction and the hippo-
campal anatomy. In the tail, the intra-rater reliability of
manual segmentation is also lower than in the body. How-
ever, in the head and body, the manual segmentation intra-
rater reliability is approximately the same. Thus, there is
apparent room for improvement in the segmentation of
head, which perhaps may be achieved using a larger num-
ber of atlases or through algorithmic enhancements.

For the ERC and the PRC subregions, the agreement of
ASHS and manual segmentation reported in Table III
(DSC 5 0.786 for ERC, 0.702 for BA35, 0.777 for BA36,
0.797 for PRC) are not quite as high as for the larger hip-
pocampal subfields (DSC 5 0.803 for CA1, 0.823 for DG),
and substantially lower than intra-rater reliability for rater
JP. However, compared with other work, the reliability of
ASHS falls within the range of published intra-rater reli-
ability, and above published inter-rater reliability. For
instance, in oblique coronal T2-weighted MRI at 3 Tesla,
Olsen et al. [2013] report mean intra-rater DSC of 0.79 for
the ERC and 0.78 for the PRC, with the inter-rater DSC of
0.71 for the ERC and 0.75 for the PRC. However, the
anterior-posterior extent of the ERC/PRC segmentation is
larger in Olsen et al. [2013]. At 7 Tesla, Wisse et al. [2012],
report intra-rater DSC of 0.83 for the ERC.

Overall, for the larger subfields, ASHS appears to per-
form quite well relative to published data on inter-rater
reliability of manual segmentation, and is within the range
of some published data on intra-rater reliability.

ASHS Performance Compared With Other

Automatic Segmentation Methods

The literature on automatic segmentation of hippocam-
pal subfields and PHG subregions is relatively limited,
and ASHS appears to perform quite competitively com-
pared to earlier published methods.

Van Leemput et al. [2009] were the first to publish an
automatic subfield segmentation technique, which was
implemented and evaluated in ultra high-resolution T1-
weighted images, obtained by averaging a set of five high-
resolution T1-weighted MRI scans, acquired over the
course of 35 min, that were motion corrected and
resampled to 0.38 3 0.38 3 0.38 mm3 resolution. Van
Leemput et al. [2009] label hippocampal subfields along
the entire length of the hippocampus (except for about the
most posterior 1/6th of the hippocampus, which is not
partitioned into subfields). They evaluate their results
against manual segmentation in 10 cognitively normal sub-
jects. The largest mean DSC values reported by Van Leem-
put et al. [2009] (Fig. 3) are approximately 0.75 for the SUB
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and 0.74 for CA2–3, with the other subfields having DSC
below 0.7. ASHS accuracy relative to manual segmentation
is slightly higher, with DSC exceeding 0.8 for subfields
CA1 and DG, despite the fact that our evaluation is carried
out in a cohort that includes patients with aMCI. Of
course, any direct comparison of DSC between methods
must take into account the differences in the segmentation
protocol.

Although Van Leemput et al. [2009] technique was eval-
uated in ultra-high resolution MRI, its implementation in
FreeSurfer has been primarily used to perform subfield
volumetry in “routine” 1 mm3 isotropic T1-weighted MRI
scans [Engvig et al., 2012; Hanseeuw et al., 2011; Lim
et al., 2012; Teicher et al., 2012]. To our knowledge, the
accuracy of the FreeSurfer subfield segmentation at that
resolution relative to manual segmentation has not been
evaluated, making a comparison with ASHS difficult.
Given the difficulty in visualizing subfields at 1 mm3 iso-
tropic resolution (Fig. 1), we would expect accuracy to be
lower than what is reported by Van Leemput et al. [2009]
for ultra-high resolution MRI. However, an inherent
advantage of the FreeSurfer approach relative to ASHS is
that it does not require collecting a dedicated T2-weighted
MRI scan, which means that it can be applied to many
more studies and is more robust to motion and other MRI
artifacts. Furthermore, because it operates on scans with
isotropic or nearly isotropic resolution, the segmentation
approach in FreeSurfer does not have to account for heu-
ristic segmentation rules based on slice boundaries in the
way that ASHS does.

Flores et al. [2012] developed an automated technique
for labeling hippocampal subfields in 7 Tesla MRI. The
segmentation is performed in the hippocampal body, and
the best mean DSC reported is 0.7 for DG. Other subfields
have lower mean DSC, although the protocol used does
not trace all strata in the CA and SUB, which results in
thinner segmentations and thus lower DSC.

Recently, Chakravarty et al. [2013] developed a tech-
nique MAGeT-Brain that emulates multi-atlas segmenta-
tion in problems, where only a small number of expert-
labeled atlases are available. Pipitone et al. [2014] evaluate
this technique in the hippocampus and, in addition to
reporting competitive accuracy for whole-hippocampus
segmentation, demonstrate the feasibility of using
MAGeT-Brain to label hippocampal subfields in “routine”
0.9 3 0.9 3 0.9 mm3 T1-weighted MRI scans. To measure
accuracy, the authors perform cross-validation on man-
ually segmented high-resolution scans from [Winterburn
et al., 2013], resampled to the 0.9 3 0.9 3 0.9 mm3 resolu-
tion. Pipitone et al. [2014] report average DSC in the range
of 0.55 to 0.65, good accuracy given the errors introduced
by the resampling of the segmentations to lower resolu-
tion, as well as the fact that only three labeled atlases are
used by the method. The performance of MAGeT-Brain
hippocampal subfield segmentation directly in high-
resolution T2-weighted “dedicated” MRI has not been
reported, but if it could be shown to be comparable to that

of multi-atlas segmentation as was shown for the case of
whole-hippocampus segmentation, that would make
MAGeT-Brain an excellent alternative to ASHS, whose
requirement of approximately 20 manually segmented
atlas images for training may not always be practical or
cost-effective.

For the ERC and PRC, there are not many papers report-
ing overlap between manual and automatic segmentation.
Klein and Tourville [2012] report the mean DSC of 0.84
between FreeSurfer segmentation of the ERC [Desikan et al.,
2006] and manual segmentation. FreeSurfer uses T1-
weighted MRI and surface-based registration to infer the
ERC boundaries, and the underlying manual segmentation
leverages a surface-based protocol. Conversely, the best-
performing method in the 2012 Grand Challenge on Multi-
Atlas Labeling [Landman and Warfield, 2012], which used
volumetric registration of T1-weighted MRI, only attained
DSC of 0.75 for the “entorhinal area” label. ASHS attained
DSC of 0.786 for the ERC, although when overlap was com-
puted just in the set of slices spanning the hippocampus
head (Table IV), the DSC increased to 0.831. Overall, the
extent and definition of ERC is quite different between these
approaches, which makes it difficult to compare DSC val-
ues. However, the high accuracy reported by [Desikan et al.,
2006] for the FreeSurfer ERC suggests that ASHS segmenta-
tion of ERC and PRC could be improved by incorporating
features from surface-based analysis of cortical gray matter
in the isotropic T1-weighted MRI. As noted below, tighter
integration between T1-weighted and T2-weighted MRI is
one of the main directions for future work.

This article applied ASHS using a protocol that sepa-
rates PRC into Brodmann areas 35 and 36. The ability to
label BA35 was recently introduced into the FreeSurfer
framework by Augustinack et al. [2013], who leveraged
postmortem imaging to build a probability distribution on
the location of BA35 on the cortical surface. The reliability
of automatic segmentation of BA35 using surface-based
mapping relative to manual segmentation is evaluated by
Augustinack et al. [2013] in 7 postmortem tissue samples,
and reported in terms of median Hausdorff distance:
4.0 mm for the left BA35 and 3.2 mm for the right BA35.
The corresponding measures for ASHS, evaluated in the
29 images in the atlas set is 2.9 mm for the left BA35 and
2.9 mm for the right BA35. For BA36, the median Haus-
dorff distance is 3.5 mm on the left and 3.4 mm on the
right. Of course, too much cannot be read into a compari-
son of segmentation performance of different methods
using different protocols in different kinds of data (post-
mortem vs. in vivo), but the numbers above indicate that
ASHS does a reasonable job of mimicking the human’s
segmentation of BA35 and BA36.

Effects of aMCI on the Hippocampal Region

The volumetric analysis of the effects of aMCI on the
hippocampal subfields and the anterior subregions of the
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PHG using ASHS is generally consistent with the earlier
findings from in vivo T2-weighted MRI studies and with
neuropathology findings. Utilizing manual segmentation
of oblique coronal T2-weighted MRI in the body of the
hippocampus, [Mueller et al., 2010] reported a trend for
lower CA1 and SUB volume in MCI (not reaching signifi-
cance) and a significant effect in the CA1-2 transition
zone. La Joie et al. [2013] manually segmented CA1, SUB,
and “other” label consisting of CA2, CA3, and DG along
the whole length of the hippocampus, and reported
strong effects in the CA1 and SUB subfields, weaker
effects in the whole hippocampus, and no effects in the
“other” label. In this article, the largest group effects in
the hippocampus are observed in the left and right CA,
with smaller effects in the DG, and smaller yet effects in
SUB.

The finding of a strong group difference for the ASHS
CA label is in keeping with these earlier papers and the
pathological staging of AD by Braak and Braak [1995], who
identify CA1 as the earliest site of neurofibrillary tangle
(NFT) formation in the hippocampus. The overall strength
of the group difference in the ASHS DG label is somewhat
surprising. While we are unaware of any neuropathology
studies that examine regional volume loss in aMCI, in an
autopsy study of AD patients and age-matched controls,
Simić et al. [1997] report that all hippocampal areas undergo
volume loss, although this loss is most pronounced in the
CA1 (43% loss), followed by SUB and CA2/3 (36% loss),
and only then DG (16% loss). It is possible that ASHS is
more sensitive to DG changes because DG segmentation is
the most accurate, in terms of DSC and ICC, of all subfields.
Furthermore, our segmentation protocol splits the SRLM-HS
layer between CA1 and DG, rather than assigning this layer
a separate anatomical label as done by some authors, for
example, Winterburn et al. [2013]. In their analysis of 7
Tesla MRI, Kerchner et al. [2010] report that SRLM-HS vol-
ume was highly sensitive to AD status. Thus, the partial
inclusion of SRLM-HS into the DG label may explain its
sensitivity to aMCI status in our study. In future work, it
may prove useful to separately label SRLM-HS rather than
assign its voxels to CA1 and DG.

The strong bilateral CA1 effect obtained using ASHS
diverges from the findings of Hanseeuw et al. [2011] and
Lim et al. [2012], who analyzed subfield volumes in
“routine” T1-weighted MRI scans of aMCI patients and
age-matched controls using the FreeSurfer implementation
of the [Van Leemput et al., 2009] technique, and found dif-
ferences in CA2–3, SUB and, in the case of Lim et al., pre-
subiculum, but not CA1. This discrepancy can be
explained by the differences in the segmentation protocols
between FreeSurfer [Van Leemput et al., 2009] and ASHS.
The ASHS CA1 label is much larger, covering most of the
FreeSurfer CA1 and SUB labels, while the CA1 label in the
FreeSurfer protocol is relatively small and corresponds to
the most lateral portion of the CA1 in our protocol.

Our finding of a very strong effect in the left BA35 nor-
malized volume (t 5 4.80, AUC 5 0.784) is very in keeping

in pathology. Braak and Braak [1995] refer to BA35 as the
“transentorhinal region” and describe it as the earliest site
of NFT formation in the brain. Somewhat surprising is
that this effect is only detected on the left side in our
study. This asymmetry is also borne out in the FreeSurfer
ERC gray matter volumes and the ASHS regional thick-
ness analysis. Overall, all effects are stronger on the left
than on the right, which might be explained by the fact
that patients with left hippocampal atrophy whose verbal
memory is impaired more greatly tend to seek out medical
care more frequently than those with right hippocampal
atrophy. Memory testing at the PMC is weighted to the
verbal domain, as it is at many specialty clinics. The find-
ing of greater effects sizes in the left MTL than in the right
is relatively common in the literature for MCI and AD [Shi
et al., 2009].

In the comparison with the FreeSurfer subfield-specific,
whole-hippocampus and ERC volume measurements, the
highest AUC values and t-statistics for the aMCI and NC
comparison were observed using ASHS subfield measure-
ments (bilateral CA and left BA35). However, the differen-
ces in AUC are not large, and lie well within the width of
the 95% confidence intervals on the AUCs (Table VI). A
larger sample would be required to demonstrate that these
differences in AUC are statistically significant. In this sam-
ple, the DeLong et al. [1988] test yields P 5 0.3 comparing
the areas under the ROC curves for the ASHS measure-
ment with the highest AUC (left CA volume, AUC 5 0.785)
and the FreeSurfer measurement with the highest AUC
(left hippocampus volume, AUC 5 0.744). A more compre-
hensive comparison will be possible using ADNI2 data
[Mueller et al., 2013], which will have T1-weighted and
oblique coronal T2-weighted MRI scans in over 200
subjects.

Regional analysis of hippocampal thickness reveals sev-
eral “hot spots” for loss of thickness in aMCI relative to
controls. These are generally consistent with the volumet-
ric findings, with large clusters located on the left and
right CA, a large cluster spanning ERC and the left BA35
in the fundus of the collateral sulcus, and several other
smaller clusters. Although the idea of using surface maps
to examine the effects of disease on hippocampal subfields
is not new, previous surface-based techniques [Apostolova
et al., 2006; Wang et al., 2006] analyzed the surface of the
whole hippocampus, with the features projected on the
surface not differentiated between the CA and DG, mean-
ing that an effect detected on the hippocampal surface
could be equally attributable to either of these subfields.
By contrast, the surface maps in this article do not mix CA
and DG, and allow the attribution of thickness clusters to
specific subfields.

Limitations and Opportunities for Improvement

The key limitation of ASHS, which is also the key limita-
tion of the underlying manual segmentation protocol, is the
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reliance on highly anisotropic, T2-weighted MRI scans tai-
lored to imaging the MTL. Although these scans are becom-
ing more and more common, and have recently been made
part of the ADNI2 study [Mueller et al., 2013], they are
much less ubiquitous than the whole-brain isotropic 1 mm3

T1-weighted scans, which means that ASHS cannot be lever-
aged for many past and ongoing imaging studies. Including
such a T2-weighted scan adds 6–7 min to the MRI protocol,
which may be challenging in the age when structural MRI
has to compete for time with a host of functional and
diffusion-weighted scans. Furthermore, the T2-weighted
scans are much more affected by patient motion than the
T1-weighted scans, and they require additional training for
the MRI technicians. In our study, 6.5% of the scans had to
be rejected due to patient motion. The rejection rate may be
much higher in clinical settings. By contrast, none of the T1-
weighted scans had to be excluded. The anisotropic nature
of the T2-weighted scans poses challenges for defining the
anterior-posterior extents of many structures, and in this
work, heuristic slice boundaries and normalized volume
measurements for the ERC and the PRC substructures had
to be imposed to deal with this limitation.

One possible way to address this limitation is by taking
greater advantage of the isotropic T1-weighted MRI in the
segmentation pipeline. This approach uses T1-weighted
MRI for initial alignment of the hippocampal region, but
does not leverage it in later steps such as label fusion, CL,
and smooth interpolation. The isotropic nature of the T1
images can potentially complement the T2-weighted MRI,
particularly when segmenting cortical structures. Lastly, T1-
MRI can be useful for imposing sheet topology on the corti-
cal structures, which in turn can allow for geometrical fea-
tures to be leveraged during segmentation. Incorporating
T1-MRI would require additional methodological develop-
ment, such as multimodality versions of the JLF and CL
algorithms. Furthermore, if both modalities are used during
atlas-to-target registration, one must either determine the
proper weighting for these modalities in the registration
objective function, or pass as input to label fusion the
results of multiple atlas-to-target registrations performed
with different weighting. Furthermore, for T1-MRI to be
useful in avoiding partial volume effects in cortical struc-
tures due to thick slices in T2-MRI, the manual segmenta-
tions, which themselves currently suffer from the partial

volume problem, would have to be done in a combination
of the two modalities, which is a nontrivial problem.

For small structures, such as CA2 and CA3, the accuracy of
ASHS segmentation relative to manual segmentation is low,
as measured in terms of volumetric overlap (DSC) and vol-
ume agreement (ICC). To a degree, this is due to the fact that
for small or thin structures, a small error in the localization of
the boundary can translate to a large error in volume or over-
lap. Table VII compares the DSC reported for each subfield
in the cross-validation study in Table III to the symmetric
root mean square (RMS) surface distance metric, which meas-
ures average distance between automatic and manual seg-
mentation surfaces (Gerig et al., 2001). Although the RMS
surface distance error is greater for CA2 and CA3 than for
CA1 and DG, the differences, particularly for CA2, are
smaller than the differences in terms of overlap. Similarly, for
SUB, a thin structure, the distance error is less than for the
thicker DG, yet the overlap is greater for the DG than for
SUB. On the other hand, small and thin structures pose a
challenge to multi-atlas segmentation algorithms, which rely
on the underlying deformable registration to line up corre-
sponding structures between the target image and at least a
subset of the atlases. It is possible that a geometrical prior, of
the kind used by (Van Leemput et al., 2009) algorithm may
lead to further improvements in the segmentation of small
structures.

Our current segmentation protocol does not include the
PHC, and the extent of the ERC and PRC is limited to a
slab of slices around the hippocampal head. In future work,
we intend to incorporate PHC and extend the ERC/PRC
segmentation further in the anterior direction, similar to the
work of [Ekstrom et al., 2009; Olsen et al., 2013] and others.

A limitation of the segmentation cross-validation experi-
ments in Overlap Analysis section is that they only consider
a single MRI protocol and a single manual segmentation
protocol. As a result, the experiments do not evaluate the
ability of ASHS to generalize to new MRI protocols and new
segmentation protocols, even though ASHS supports such
generalization by providing a training module. In particular,
even though we use 32-channel data in the MCI-NC com-
parison in Volume Agreement section, the accuracy of
ASHS relative to manual segmentation in this data is not
known, as we did not have manual segmentations to com-
pare. Evaluation of ASHS on new MRI protocols and new

TABLE VII. Accuracy of ASHS segmentation relative to manual segmentation, measured in terms of symmetric

root mean squared surface distance [Gerig et al., 2001], as opposed to Dice similarity coefficient, which measures

volumetric overlap

Metric CA1 CA2 CA3 CA DG SUB ERC BA35 BA36 PRC HIPP

Symmetric RMS surface distance (mm)
Smaller 5 Better

0.529 0.670 0.856 0.505 0.560 0.511 0.675 0.799 0.859 0.790 0.480

Relative volume overlap (DSC)
Larger 5 Better

0.803 0.552 0.525 0.797 0.823 0.750 0.786 0.702 0.777 0.797 0.893

Smaller or thinner structures, such as CA2 and SUB, tend do have lower Dice coefficient than larger or thicker structures with similar
distance errors.
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segmentation protocols will be part of future work. It is pos-
sible that some segmentation protocols would require ASHS
to be extended. For instance, protocols that label the SRLM-
HS as a very thin structure, such as [Winterburn et al.,
2013], might benefit from a modification that imposes topol-
ogy and/or shape constraints on ASHS segmentations.

A limitation of the thickness analysis is that it constructs a
single template from all segmentations, and thus does not
account for variability in gyral and sulcal patterns, which is
particularly significant in the PRC, for which Ding and Van
Hoesen [2010] describe three distinct anatomical variants
based on the branching of the collateral sulcus. In future
work, the possibility of stratifying subjects into groups based
on the variants of PRC will be investigated.

ASHS is computationally expensive and requires a sub-
stantial number of parameters to be set, mostly empirically.
Although it is possible to run ASHS segmentation on a sin-
gle CPU, training ASHS in a practical length of time requires
a multinode computing cluster. It is possible to optimize
some of the ASHS parameters using an additional layer of
cross-validation on the atlas set, but this would increase the
computation time and risks overfitting the parameter set-
tings to a particular dataset, imaging protocol, or segmenta-
tion protocol. In preparing this article, little parameter
tweaking took place either for speed or accuracy.3

CONCLUSION

ASHS is a fully automatic algorithm for labeling hippo-
campal subfields and adjacent cortical subregions in
oblique coronal T2-weighted MRI scans. Although such
scans are not as commonly acquired as the isotropic T1-
weighted MRI, they can be easily incorporated into
research and clinical imaging studies at the cost of under 7
min of additional scanning time. ASHS builds on earlier
work that performed well for labeling subfields in the hip-
pocampal body [Yushkevich et al., 2010] and introduces
several improvements, most importantly, the ability to
label subfields along the entire anterior-posterior extent of
the hippocampus. Although the performance of ASHS vis-
a-vis manual segmentation does not match the intra-rater
reliability of the rater on whose segmentations the method
was trained, it is competitive with published data on inter-
rater reliability of manual segmentation and published
evaluations of other automatic subfield segmentation tech-

niques. When applied to data from a study of aMCI, the
algorithm produces sensible results, with bilateral CA1
and left BA35 being the anatomical labels most signifi-
cantly different between patients and controls, although,
somewhat surprisingly, DG is also significantly different
and right ERC/PRC not reaching significance. In addition
to producing volume information, the algorithm provides
regional thickness measurements, which provide a more
detailed picture of the effects of aMCI on the hippocampal
region. The software implementation of ASHS is provided
in the public domain n and makes it possible to retrain the
algorithm using other imaging data and segmentation
protocols.
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TABLE VIII. Key parameters used by ASHS

Parameter Value

Whole-brain T1-w MRI registration and template construction
ANTS optimization iterations
(specified as the number of
iterations at 43 subsampling,
23 subsampling, and full reso-
lution, respectively)

60 3 20 3 0

Template-building iterations
(i.e., number of times averag-
ing and registration to average
are alternated)

4

Regional T2-weighted MRI registration
ANTS optimization iterations 60 3 60 3 20

Joint label fusion
Patch size for estimating
expected joint segmentation
error, that is, the size of N(x)
in [Wang et al., 2013; Eq. (18)]

7 3 7 3 3 voxels

Window size for the local
search algorithm, i.e., the size
of N’(x) in [Wang et al., 2013;
Eqn. (19)]

7 3 7 3 3 voxels

Corrective learning
Number of iterations of
AdaBoost training

500

Maximum number of voxels
sampled for training each
classifier

100,000

Size of the patch used to sam-
ple intensity features for the
classifier

13 3 13 3 1 voxels

Parameters of ANTS and other algorithms that do not appear in
the table are set to their defaults in the corresponding software
implementation.

3Some of the parameters (see Table VIII) are not the default values
for the corresponding tools. However, they were not tweaked by
repeated execution and evaluation of ASHS on the training data. For
instance, MRI registration parameters were adjusted after visual
examination of several representative examples. Many of the other
parameters (e.g., neighborhood sizes for JLF and CL) were set empir-
ically to account for anisotropy of the T2-weighted images. Virtually
all parameters in Table VIII are unchanged from the [Yushkevich
et al., 2010] article, which used a different dataset.
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APPENDIX A: ASHS TRAINING PIPELINE
DETAILS

This appendix provides additional details about the
implementation of the ASHS training pipeline described in
ASHS Training Pipeline section. Each section below
expands on the corresponding step in ASHS Training
Pipeline section.

Rigid alignment of T1- and T2-weighted MRI

The purpose of this step is to bring the T1 and T2-
weighted scans of each subject into close alignment, correct-
ing for subject motion that may have taken place between
the scans. To maximize robustness to registration failure,
alignment is performed using both FLIRT [Smith et al.,
2004] and ANTS [Avants et al., 2008] rigid registration algo-
rithms, using the normalized mutual information (NMI)
metric as the similarity measure. The method that yields the
largest NMI value between the two modalities is used
subsequently.4

Deformable registration of T1-weighted MRI to an

unbiased template

T1-weighted MRI from all atlas subjects are used to con-
struct an unbiased population template using the ANTS
affine and high-dimensional deformable registration algo-
rithms [Avants et al., 2008] and the diffeomorphic image
averaging approach [Avants and Gee, 2004; Joshi et al., 2004].
This approach alternates between averaging the intensity of
all images and registering all images to the intensity average.
In our implementation, this is repeated for four iterations
(more details about the parameters of the algorithm are pro-
vided in Table VIII). Beyond four iterations, gains in group-
wise registration are negligible with respect to the overall
goal of the template construction, which is to allow localiza-
tion of the left and right hippocampal regions.

Construction of left and right hippocampal ROIs in
template space

For each hemisphere, a mask is computed in the tem-
plate space. To compute the mask, for each subject, all the
left or right labels in the manual segmentation are com-
bined into a single label, and the combined segmentation
is deformed into the space of the template. The segmenta-
tions from all subjects are averaged and a threshold is
applied to extract a mask. To extract an ROI for each
hemisphere, the mask is dilated using a spherical structur-
ing element with 1 cm radius, and a rectangular box con-
taining the dilated mask is extracted. The template ROIs
are then supersampled to 0.4 3 0.4 3 0.4 mm3 resolution.
The T2-weighted scan from each subject is resampled into
the space of each ROI by composing the T2-to-T1 rigid
transformation from Step 1 and the T1-to-template deform-
able transformation from Step 2.

Training of CL classifiers via leave-one-out segmentation

This step involves generating a leave-one-out automatic
segmentation of each subject’s left and right hippocampus,
followed by the training of CL classifiers. Without loss of
generality, we describe the procedure for the left hemisphere.

For every pair of subjects in the atlas package, ANTS
deformable registration is performed between their respec-
tive T2-weighed MRI scans resampled into the space of
the left template ROI. Such ROI-limited deformable regis-
tration between pairs of atlases has a greater chance of
successfully aligning substructures in the hippocampal
region than direct registration between raw T2-weighted
images, as the registration problem is much better initial-
ized, with the hippocampal regions brought into align-
ment by the groupwise whole-brain T1 registration in Step
2. Furthermore, restricting registration to an ROI around
the hippocampus greatly reduces computation time. Regis-
tration is performed using the Symmetric Normalization
(SyN) algorithm in ANTS [Avants et al., 2008], with nor-
malized cross-correlation used as the similarity metric.

Next, a leave-one-out segmentation of each atlas subject k
is computed using the JLF algorithm. For each subject m
(m 6¼ k), the T2-weighted MRI of subject m and its corre-
sponding manual segmentation are resampled into the
space of the T2-weighted MRI of subject k by composing
five transformations: the T2-to-T1 rigid transformation for
subject k; the T1-to-template transformation for subject k; the
resampled T2 to resampled T2 transformation between sub-
jects k and m; the inverse T1-to-template transformation for
subject m; and the inverse T2-to-T1 transformation for sub-
ject m. The resulting N21 warped T2-weighted scans and
N21 warped segmentations are input into the JLF algorithm
to produce a multi-atlas segmentation of the left hemisphere
in the T2-weighted scan of subject k.

As the result, for each subject in the atlas, we obtain a
leave-one-out multi-atlas segmentation of the structures of
interest in the left hemisphere. These segmentations, along
with the corresponding manual segmentations of the atlas
subjects and the T2-weighted MRI scans themselves are
used as input to train the CL classifiers, as described in
[Wang et al., 2011].

4The main motivation for using two tools is robustness to failure. In a
hypothetical example, if the failure rate of ANTS and FLIRT is 10%
and the methods are statistically independent, then the probability
of the proposed scheme failing is only 1%. Post hoc analysis revealed
that ANTS almost never failed, whereas FLIRT failed for some of the
datasets in which the T1-weighted MRI covered a large potion of the
neck. However, there were many cases (23 of 85) where FLIRT
resulted in a slightly better registration, based on the NMI value.
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APPENDIX B: ASHS SEGMENTATION PIPELINE
DETAILS

This appendix provides additional details about the
implementation of the ASHS segmentation pipeline
described in ASHS Segmentation Pipeline section. Each
section below expands on the corresponding step in ASHS
Segmentation Pipeline section.

Within-subject multimodality alignment

Alignment of the new subject’s T2-weighted MRI to his
or her T1-weighted MRI uses the same approach as in the
ASHS training pipeline (Rigid alignment of T1- and T2-
weighted MRI section).

Registration to the whole-brain T1-MRI template

The new subject’s T1-weighted MRI image is registered
to the whole-brain T1-weighted MRI template contained in
the atlas package (produced in Deformable registration of
T1-weighted MRI to an unbiased template section) using
the SyN algorithm [Avants et al., 2008] with the same
affine and deformable registration parameters as when
constructing the template. The resulting deformation is
then used to resample the target subject’s T1 and T2
images into the space of the left and right hippocampal
ROIs in the template.

Localized deformable registration of atlas T2-weighted

MRIs to the new subject

Deformable registration is performed in the space of the
left and right hippocampal ROIs in the template, between
the resampled T2-weighted MRI of the new subject and
each of the resampled T2-weighted images from the atlas
package. Same registration parameters as in Step 4: train-
ing of CL classifiers via leave-one-out segmentation section
are used.

Multi-atlas JLF segmentation and CL error correction

Multilabel segmentations from each of the atlas images
are warped into the space of the target T2-weighted image
by composing the warps and linear transformations
between it and each of the atlas T2-weighted images (in
all, five transformations are composed: target T2 to target
T1; target to whole-brain template; target [resampled to
template space] to atlas [resampled to template space];
whole-brain template to atlas; atlas T1 to atlas T2). The
JLF algorithm is applied to obtain posterior probability
maps for each label in the target T2-weighted image.
These posteriors, and the target T2-weighted image itself,
are input to the CL classifiers, which yield corrected poste-
rior probability maps for each label. A binary segmenta-
tion of the T2-weighted image is obtained by assigning the
label with highest posterior value to each voxel.

Bootstrapping

The bootstrapping step is added to improve segmenta-
tion quality by making sure that a large fraction of the

atlas-to-target registrations are of adequate quality. Prob-
lems with local minima and poor initialization cause
many of the pairwise registrations between the atlases
and the target image to misalign structures in the hippo-
campal region. While JLF can cope with the presence of
poor registrations, overall performance is better when the
underlying registrations are themselves improved. Dur-
ing the bootstrapping step, the segmentations obtained at
the previous step are used to guide the registration
between the target image and each of the atlases. Specifi-
cally, in each hemisphere, affine registration between the
target image and the atlas is computed using robust point
matching affine registration [Papademetris et al., 2003]
between points sampled from the surface of the auto-
matic segmentation of the target image and points
sampled from the surface of the manual segmentation of
the atlas. The similarity measure optimized by this regis-
tration is computed separately for each label, that is, CA1
points are matched to CA1 points, and so forth. Using
the affine registration between segmentation surfaces as
the initialization, regional deformable image registration
between the atlas and target T2-weighted images is per-
formed, using the same method and parameters as in
Localized deformable registration of atlas T2-weighted
MRIs to the new subject section. Lastly, multi-atlas JLF
segmentation and CL error correction (Multi-atlas JLF
segmentation and CL error correction section) are
repeated using the transformations computed in the boot-
strap step.

APPENDIX C : SEGMENTATION
SIMILARITY METRICS

DSC: for a pair of segmentations Sa and Sb and a given
label l, the DSC is given as

DSC Sa;Sb; lð Þ52
j x 2 X : Sa xð Þ5Sb xð Þ5lf gj

j x 2 X : Sa xð Þ5lf gj1j x 2 X : Sb xð Þ5lf gj

where X is the set of all voxel indices in the image [Dice,
1945].

GDSC: for a pair of segmentations Sa and Sb and a set of
foreground labels Lfg, GDSC [Crum et al., 2006] is com-
puted as

GDSC Sa; Sbð Þ52
j x 2 X : Sa xð Þ5Sb xð Þ5Lfg

� �
j

j x 2 X : Sa xð Þ5Lfg

� �
j1j x 2 X : Sb xð Þ5Lfg

� �
j
:
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