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Bacterial type III secretion machines are widely used to inject
virulence proteins into eukaryotic host cells. These secretion
machines are evolutionarily related to bacterial flagella and consist
of a large cytoplasmic complex, a transmembrane basal body, and
an extracellular needle. The cytoplasmic complex forms a sorting
platform essential for effector selection and needle assembly, but it
remains largely uncharacterized. Here we use high-throughput
cryoelectron tomography (cryo-ET) to visualize intact machines in
a virulent Shigella flexneri strain genetically modified to produce
minicells capable of interaction with host cells. A high-resolution in
situ structure of the intact machine determined by subtomogram
averaging reveals the cytoplasmic sorting platform, which consists
of a central hub and six spokes, with a pod-like structure at the
terminus of each spoke. Molecular modeling of wild-type and mu-
tant machines allowed us to propose a model of the sorting plat-
form in which the hub consists mainly of a hexamer of the Spa47
ATPase, whereas the MxiN protein comprises the spokes and the
Spa33 protein forms the pods. Multiple contacts among those com-
ponents are essential to align the Spa47 ATPase with the central
channel of the MxiA protein export gate to form a unique nano-
machine. The molecular architecture of the Shigella type III secre-
tion machine and its sorting platform provide the structural
foundation for further dissecting the mechanisms underlying type
III secretion and pathogenesis and also highlight the major struc-
tural distinctions from bacterial flagella.
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Type III secretion systems (T3SSs) are essential virulence de-
terminants for many Gram-negative pathogens. The injecti-

some, also known as the needle complex, is the central T3SS
machine required to inject effector proteins from the bacte-
rium into eukaryotic host cells (1, 2). The injectisome has three
major components: an extracellular needle, a basal body, and
a cytoplasmic complex (3). Contact with a host cell membrane
triggers activation of the injectisome and the insertion of
a translocon pore into the target cell membrane. The entire
complex then serves as a conduit for direct translocation of
effectors (1, 2). Assembly of a functional T3SS requires rec-
ognition and sorting of specific secretion substrates in a well-
defined order by the cytoplasmic complex (4, 5). Furthermore,
genes encoding the cytoplasmic complex are regulated by
physical and environmental signals (6), providing temporal
control of the injection of effector proteins and thereby opti-
mizing invasion and virulence.
Significant progress has been made in elucidating T3SS struc-

tures from many different bacteria (7, 8). 3D reconstructions of
purified injectisomes from Salmonella and Shigella, together with
the atomic structures of major basal body proteins, have provided
a detailed view of basal body architecture (9, 10). Recent in situ
structures of injectisomes from Shigella flexneri, Salmonella
enterica, and Yersinia enterocolitica revealed an export gate and
the structural flexibility of the basal body (11, 12). Unfortunately,

these in situ structures from intact bacteria (11, 12) did not reveal
any evident densities related to the proposed model of the cyto-
plasmic complex (8, 13).
The flagellar C ring is the cytoplasmic complex in evolu-

tionarily related flagellar systems. It is composed of flagellar
proteins FliG, FliM, and FliN and plays an essential role in
flagellar assembly, rotation, and switching (14). Large drum-
shaped structures of the flagellar C ring have been determined
in both purified basal bodies (15, 16) and in situ motors (17–
19). Similarly, electron microscopy analysis in Shigella in-
dicated that the Spa33 protein (a homolog of the flagellar
proteins FliN and FliM) is localized beneath the basal body via
interactions with MxiG and MxiJ and is an essential compo-
nent of the putative C ring (20). Recent experimental evidence
suggests that the putative C ring provides a sorting platform
for the recognition and secretion of the substrates in S. enterica
(5). This sorting platform consists of three proteins, SpaO,
OrgA, and OrgB, which are highly conserved among other
T3SSs (21) (SI Appendix, Table S1). Despite its critical roles,
little is still known about the structure and assembly of the cy-
toplasmic sorting platform in T3SS. In this study, we choose S.
flexneri as a model system to study the intact T3SS machine and
its cytoplasmic complex, mainly because a wealth of structural,
biochemical, and functional information is available for the S.
flexneri T3SS (22).
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Results and Discussion
Shigella Minicells as a Model System for Elucidating T3SS Structure.
S. flexneri is an important diarrheal pathogen that uses its Mxi–Spa
T3SS to transport effector proteins into human colonocytes, con-
sequently altering host cell signaling to promote bacterial invasion
(22). The Shigella T3SS is encoded by∼25 genes located in themxi,
spa, and ipa operons on a large 230-kb virulence plasmid. Similar to
the SpaO–OrgA–OrgB complex in S. enterica (5), homologous
proteins Spa33, MxiK, and MxiN in S. flexneri are known to form
a high molecular weight complex required for needle formation
and substrate secretion (20, 23).
To achieve high-resolution images of intact injectisomes and

the cytoplasmic complex, we constructed Shigella strains that
produced minicells significantly smaller than normal bacterial cells
(Fig. 1A and SI Appendix, Figs. S1 and S2). The purified minicells
were able to induce contact hemolysis (SI Appendix, Fig. S3), which
is known to be correlated with both phagosomal membrane lysis
and tied to the secretion of three Ipa proteins (IpaB, IpaC, and
IpaD) (24, 25). Furthermore, our results showed that the purified
minicells were able to maintain an intimate association with red
blood cells (RBCs) via the T3SS needle in the absence of any
added adhesins (Fig. 1B). This is consistent with a previous report
that minicells from invasive Shigella strains retained the invasive

phenotype (26). A recent study from Salmonella provided further
evidence that the T3SS machines in minicells are competent for
protein translocation into mammalian cells (27).

Cryoelectron Tomography of Shigella Minicells Reveals Intact T3SS
Machines. We exploited a newly developed direct electron de-
tector and high-throughput cryoelectron tomography (cryo-ET) to
visualize frozen-hydrated minicells derived fromWT Shigella. Two
different procedures were used to collect and analyze the tomo-
graphic data. Initially, low-dose tilt series were collected at
15,500× magnification and 2 × 2 binning, similar to our previous
procedure (28). Subsequently, we collected tilt series in dose
fractionation mode, which enabled us to correct the motion-in-
duced image blurring (29) and effectively improve the quality of
the final reconstructions. A typical 3D reconstruction of a Shigella
minicell revealed multiple injectisomes embedded in an intact cell
envelope (Fig. 1 D and E and Movie S1). We also observed injec-
tisomes from Shigella minicells directly connected with a host RBC
(Fig. 1 B and C and Movie S2), suggesting that the injectisomes in
our minicells were intact and could mediate host cell contact.
To determine 3D structures of intact injectisomes at high

resolution, subtomogram averaging was used to analyze 4,631
injectisome subtomograms (SI Appendix, Figs. S4 and S5). We

Fig. 1. Cryo-ET of S. flexneri minicells reveals intact T3SS and its cytoplasmic structure. (A) A cryo-EM image shows tiny S. flexneri minicells with diameters
of ∼0.3 μm. Purified S. flexneri minicells are able to interact intimately with an RBC (B). Yellow arrows highlight the five minicells adhering to the RBC, whose
membrane is indented at each contact point. A tomographic slice reveals that an injectisome (indicated by a cyan arrow) is directly involved in the interaction
with the host cell membrane (C). (D) A central slice and (E) a 3D surface rendering of a tomographic reconstruction of a typical minicell show multiple
injectisomes embedded in the cell envelope, including outer membrane (OM) and cytoplasmic membrane (CM). A central section (F) and a 3D surface
rendering (G) of the subtomogram average of the intact injectisome show OM, CM, peptidoglycan (PG), basal body, and needle in detail. Importantly, there is
a large cytoplasmic complex that is 32 nm in diameter and 24 nm in height (F). Three cross-sections (indicated in F) of the cytoplasmic complex show sixfold
symmetric features (H–J). The bottom view (K) and a side view (G) of the injectisome present the apparent discontinuity of the outer ring of six “pod-like”
densities. The six pods (colored in red) are linked to the central hub (orange) by radially arranged (spoke-like) linker densities (yellow).
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determined the intact injectisome structure at 2.7 nm resolution
(SI Appendix, Fig. S6) and observed a previously uncharacterized
cytoplasmic complex immediately beneath the cytoplasmic
membrane and basal body (Fig. 1 F–K and SI Appendix, Fig. S7).
This complex contained six pod-like structures 32 nm in diameter
and 24 nm in height (Fig. 1 F–K). The top portion of each pod was
associated with the cytoplasmic membrane, whereas the bottom
portion was connected to a distal short cylinder by six spoke-like
densities (Fig. 1 F and G and SI Appendix, Fig. S7). There are
relatively weak densities between the pod and the cytoplasmic
membrane, perhaps suggesting that the cytoplasmic complex is
loosely attached to the basal body.
The six pods are distinct from the dense, contiguous arrange-

ment of proteins in flagellar C ring structures (15–19). Their
connections with the basal body appear to be delicate, potentially
explaining why they typically are not retained during purification
of basal bodies (9, 10). The pods also were not resolved in a recent
in situ structure from whole Yersinia cells (11). Furthermore, our
initial effort in determining the injectisome structure from os-
motically shocked cells failed to reveal the pod densities (SI Ap-
pendix, Figs. S5 D and H and S8), indicating that the basal body is
relatively stable, whereas its interactions with the cytoplasmic
complex are more delicate and can be disturbed by harsh treat-
ment of the cells (SI Appendix, Fig. S9).

The Presence of MxiN or Spa33 Has a Dramatic Impact on T3SS Machine
Structure and Function. To define the requirements for assembl-
ing the complex cytoplasmic structure, we constructed minicell-
producing strains of ΔmxiN and Δspa33 deletion mutants of
S. flexneri. Both MxiN and Spa33 are required to assemble func-
tional needles, but not the basal body (20). As expected, we
detected basal bodies, but not extracellular needles, in the minicells
derived from both deletion mutant strains (Fig. 2). The bottom
portion of the needle, which is inserted into the basal body, also
was absent (Fig. 2 C andH). These findings indicate that both MxiN
and Spa33 are important for translocation of MxiH, the major
needle component. The secretion channel appeared to be closed at
the base, presumably to prevent leakage (Fig. 2 C and H), remi-
niscent of findings for the flagellar motor of Borrelia burgdorferi (28).
In the T3SS map derived from ΔmxiN minicells, the six pods

and a torus-like structure were detected beneath the basal body
(Fig. 2 C–E). The torus-like structure (purple in Fig. 2), which
was observed previously (11), has been proposed as a nonameric
MxiA ring (13). The presence of the torus-like structure is not

affected by the ΔmxiN mutation. In contrast, both the spoke-like
densities and the central “hub” are absent in the ΔmxiN mutant
(Fig. 2 C and D). Similar to the ATPase FliI in bacterial flagella
(17), the hub is likely formed by the Spa47 ATPase. The spoke-
like densities probably consist of MxiN, which interconnects the
adjacent pods and the central hub. This is consistent with the
previous prediction of an indeterminate number of spoke-like
linkers comprised of MxiN that connect Spa47 with Spa33 (13).
Apparently, the absence of MxiN significantly reduces the coloc-
alization of the Spa47 ATPase with the remainder of the complex,
thereby dramatically impacting substrate secretion.
Spa33 is thought to be a major component of the Shigella cy-

toplasmic complex, as demonstrated by immunogold EM labeling
of Spa33 at the cytoplasmic side of purified basal bodies and
biochemical evidence of Spa33 interactions with Spa47, MxiN, and
MxiG (20). Our structural studies indicated that the basal bodies
assembled in Δspa33 minicells completely lack this cytoplasmic
complex (Fig. 2 H–J). Furthermore, we provide structural evi-
dence that the Spa47 ATPase fails to engage with the MxiA export
gate beneath the basal body in the absence of Spa33 (Fig. 2 H–J).
We infer from this that Spa33 is an essential component of the
pods and provides the docking site for the Spa47 ATPase via the
MxiN linkers.

Molecular Model of the T3SS Machine in Situ. To characterize the
overall architecture of the injectisome, we fitted the existing
basal body structure of the Shigella T3SS (10) into the intact
injectisome map described here (Fig. 3 A and B). The basal body
structure matched well with the periplasmic portion of the map
(Fig. 3 A and B). Compared with the existing basal body, how-
ever, the intact injectisome structure contains extra densities,
including outer membrane, cytoplasmic membrane, peptidogly-
can, the cytoplasmic complex, and an element associated with
the outer membrane (Fig. 3A). The new element may be formed
by the pilotin MxiM, which is known to interact with the ring-
forming protein MxiD (30). To determine how well molecular
structures could dock into our injectisome map, we built a model
for MxiG based on the recent pseudoatomic model of the Sal-
monella PrgH (homolog of MxiG; SI Appendix, Tables S1 and
S2) (31). The periplasmic domain fitted well into our map, but an
additional shift of the cytoplasmic domain (MxiGC) was required
to position it immediately underneath the cytoplasmic membrane
(SI Appendix, Fig. S10). This alteration is apparently needed to
facilitate MxiG–Spa33 interactions (20) and is also consistent

Fig. 2. Injectisome structural differences in S. flexneri minicell mutants lacking either MxiN or Spa33. Analysis of ΔmxiN (A–E) or Δspa33 (F–J) minicells is
shown. Depicted are representative slices of cryo-ET reconstructions of a ΔmxiN minicell (A) or a Δspa33 minicell (F), followed by the corresponding zoomed-
in views (B and G), averaged structures (C and H), and two 3D surface renderings (D, E, and I–J). Both mutants lack the needle (yellow arrows) and the central
hub of the cytoplasmic domain (Fig. 1 G and J). The Δspa33 injectisomes also lack the six outer densities (pods) of the cytoplasmic domain (red arrows and red-
colored densities seen in the ΔmxiN injectisomes). The predicted location of the MxiA complex is indicated in purple in the surface renderings.
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with the recent model of the YersiniaYscD (homolog of MxiG; SI
Appendix, Table S1) (11).
Another key component of the cytoplasmic side of the injec-

tisome is MxiA, which consists of a transmembrane domain and
a large cytoplasmic domain (MxiAC). As MxiAC has been pos-
tulated to form a nonameric ring essential for secretion (13), we
docked the crystal structure of this MxiAC nonameric ring into
the torus-like structure, which extends ∼6 nm from the cytoplasmic
membrane. The excellent fit supports the proposed juxtapositioning
of the MxiAc nonameric ring beneath the basal body (Fig. 3 B–D
and Movie S3) (13). Furthermore, in both ΔmxiN and Δspa33
mutants, the torus-like structure remained intact (colored purple in
Fig. 2), consistent with a direct linkage of the MxiAC nonameric ring
with the MxiA transmembrane domain.
The main component of the hub, Spa47, energizes secretion of

effector proteins and shares significant amino acid similarity with
FliI and V-ATPases (SI Appendix, Table S3). By analogy with a
FliI hexamer, which is positioned within the in situ flagellar motor
(17), a Spa47 hexamer likely accounts for density present ∼10 nm
beneath the MxiAC ring (Fig. 3A). Spa47 is also known to interact
with MxiN and Spa13 (the homolog of FliJ; SI Appendix, Table
S4) (20, 32, 33). Together, we built a model of the Spa47–Spa13–
MxiN complex (Movie S3). The C-terminal domains of Spa47 are
connected to the MxiAC ring via Spa13, whereas the N-terminal
domains of Spa47 interact with MxiN (Fig. 3 B–E).
Spa33 is likely a main constituent of the pods. The C-ter-

minal region of Spa33 is homologous to the flagellar protein
FliN (SI Appendix, Table S5), which has been proposed to form
a homotetramer (34, 35) at the bottom of the flagellar C ring.

Recent studies showed that the Spa33 ortholog YscQ from
Yersinia exists as two translation products: intact YscQ and a
C-terminal fragment (36). Similar to FliN, the C-terminal do-
main structure of YscQ reveals an intertwined homodimer (36).
Spa33 may also form a multimeric complex. The tetramer model
of FliN fills well into the bottom portion of each pod density,
suggesting that the C-terminal fragment of Spa33 likely forms
a stable tetramer and an intact Spa33 and another protein MxiK
could account for the remainder of the density of the pods (Fig.
3D), as they are known to form a high molecular weight complex
(20). It remains to be resolved how these proteins are elegantly
organized within the pods.
The discovery of the spa33-encoded hexameric complex and

its physical connections with the ATPase highlights the similar-
ities and differences between an injectisome and a bacterial
flagellum (Fig. 4). Both systems contain an export gate powered
by the proton motive force and a cytoplasmic ATPase complex
(21, 37, 38). A similar integrated network and molecular mech-
anism are likely used for the recognition and secretion of specific
substrates. Nevertheless, the six discrete pods observed in the
injectisome are distinct from the flagellar C ring, which is not
only indispensable for substrate secretion but also essential for
flagellar rotation and switching (Fig. 4).
The conserved cytoplasmic complex in S. enterica T3SS pro-

vides a sorting platform that determines the order of protein
secretion (5). We propose that the hub–spoke–pod complex
functions specifically as the sorting platform. The Spa47 ATPase
within the complex is aligned with the central channel of the
MxiA gate, suggesting that they function together to engage and

Fig. 3. A molecular model of the T3SS injectisome. The isolated Shigella T3SS basal body (10) is fitted onto the intact injectisome map in a central section (A)
and a surface rendering (B). Extra densities are apparent, including outer membrane (OM), cytoplasmic membrane (CM), peptidoglycan (PG), a large cyto-
plasmic complex, and a base element (green arrowhead) where it interacts with the OM. Models of several cytoplasmic proteins (MxiAC, Spa47, Spa13, Spa33)
are fitted in the surface rendering map. Zoomed-in views of the cytoplasmic portion of B are shown from the side (C), top (D), and bottom (E). The Spa47
ATPase hexameric ring (the homolog of V-ATPase, PDB ID code 3J0J, orange) together with Spa13 (the homolog of FliJ, PDB ID code 3AJW, green) is docked
into the central hub of the map. Spa13 is long enough to interact with the nonameric ring of MxiAC (different shades of purple), which fits well into the torus-
like structure near the cytoplasmic membrane (C and D). Underneath the MxiGC ring (the homolog of PrgHC, PDB ID code 3J1W, dark green), six spa33-
encoded complexes form the proposed sorting platform. We place the Spa33 homologs (FliN tetramer, PDB ID code 1YAB, red) into the bottom part of the
pod. MxiN forms the spoke-like linker (yellow) that interacts with both the hydrophobic patch (blue) in Spa33 and the C-terminal domain (cyan) of Spa47 as
shown in the bottom view (E).
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secrete needle components and effector proteins. The multiple
contacts we identified among components of the cytoplasmic
complex are likely to be important for the integrity of the sorting
platform and its functions in needle formation and subsequent
substrate secretion (Fig. 4). We postulate that this platform func-
tions in the recruitment of needle components and effectors either
without or within a complex with dedicated chaperones. The
sorting platform delivers these substrates to the Spa47 ATPase for
chaperone dissociation and substrate unfolding, whereupon the
substrates are delivered to MxiA and the export gate for secretion
(Fig. 4 and Movie S3). Although many questions remain regarding
recognition of chaperone/substrate complexes and the temporal
control of substrate selection, our architectural definition of the
Shigella T3SS sorting platform provides a structural basis for fur-
ther dissecting the mechanisms underlying the T3SS-mediated
secretion and pathogenesis.

Materials and Methods
Generation of ΔmxiN and Δspa33 Mutants. Streptomycin-resistant strain S.
flexneri serotype 5a (M90T-Sm) was used (39) as a parent strain to create
mxiN::tetRA and spa33::tetRA mutants via lambda red recombination as
described in ref. 40. Integration of the knockout cassette at the desired lo-
cation was confirmed by PCR using a primer common to the tetRA cassette
and one upstream from mxiN and spa33, respectively. Specific sequences
used to target mxiN and spa33 are described in SI Appendix, Table S6.

Preparation of Minicell-Producing S. flexneri Strains. Minicells of WT, ΔmxiN,
and Δspa33 S. flexneri were generated by introducing plasmid pBS58, which
constitutively expresses Escherichia coli cell division genes ftsQ, ftsA, and ftsZ
from a low-copy, spectinomycin-resistant plasmid (41). Bacterial cultures

were grown overnight at 37 °C in Trypticase Soy Broth and fresh cultures
were prepared from a 1:100 dilution and then grown at 37 °C to late log
phase. Spectinomycin (100 μg/mL) was added for selection of pBS58 and
5 μg/mL of tetracycline to select for the two mutants. To enrich for minicells,
the culture was centrifuged at 1,000 × g for 5 min to remove the large cells,
and the supernatant fraction was further centrifuged at 20,000 × g for
10 min to collect the minicells (SI Appendix, Fig. S2).

Preparation of Osmotically Shocked Cells. Bacteria were collected after cen-
trifugation of 5 mL of bacterial culture in L-broth grown to early log phase
with shaking at 37 °C. Osmotically shocked cells were prepared as described
previously (20).

Contact Hemolysis and Initial Minicell–Host Interaction. The hemolytic activity
of RBCs was used to test the function of the S. flexneri minicells as described
previously (25). Sheep RBCs were obtained from Innovative Research, Inc.
RBCs were washed 3 times in PBS by centrifugation at 2,000 × g for 5 min at
4 °C and resuspended at 108/mL. We mixed 50 μL of minicells (or WT cells)
with 50 μL of RBCs. The mixed culture was centrifuged at 5,000 × g for 5 min
at 4 °C and incubated at 37 °C for 1 h. The cells were resuspended in PBS to
disrupt bacterial attachment. All solid material was removed by centrifuga-
tion, and the released hemoglobin in the supernatant fraction was measured
by absorbance at 595 nm as a measure of the hemolytic activity (SI Appendix,
Fig. S3). Additionally, the resulting samples containing RBCs and attached
cells were examined in a light microscope and were also used to prepare
frozen-hydrated specimens.

Preparation of Frozen-Hydrated Specimens. Bacterial cultures were mixed with
10 nm of colloidal gold particles (used as fiducial markers in image alignment)
and then deposited onto freshly glow-discharged, holey carbon grids for
1 min. The grids were blotted with filter paper and rapidly frozen in liquid
ethane, using a gravity-driven plunger apparatus.

Cryo-ET Data Collection and 3D Reconstructions. The resulting frozen-hydrated
specimens were imaged at −170 °C using a Polara G2 electron microscope
(FEI Company) equipped with a field emission gun and a Direct Detection
Camera (Gatan K2 Summit). Because the camera was recently integrated
into our EM system, two tomographic packages [UCSF Tomography (42) and
SerialEM (43)] and different procedures were used to collect low-dose
tilt series.

For initial data collection, the microscope was operated at 300 kV with
a magnification of 15,500×, resulting in an effective pixel size of 5.04 Å after
2 × 2 binning. Using UCSF Tomography software (42), low-dose, single-axis
tilt series were collected from each minicell at 6–9 μm defocus with a cumu-
lative dose of ∼60 e−/Å2 distributed over 61 images and covering an angular
range of −60° to +60°, with an angular increment of 2°.

For subsequent data collection, we used SerialEM (43) to collect low-dose,
single-axis tilt series with dose fractionation mode at 6 μm defocus. The
microscope was operated at a magnification of 9,400×, resulting in an effec-
tive pixel size of 4.45 Å without binning and a cumulative dose of ∼60 e−/Å2

distributed over 61 stacks. Each stack contains eight images. We developed
Tomoauto (a wrapper library, available at https://github.com/DustinMorado/
tomoauto) to facilitate the automation of cryo-ET data processing. System
scripts in the library configure and coordinate the execution of several pro-
grams essential for the processing and alignment of tilt series as well as the
subsequent reconstruction of these series into tomograms. An input/output
library for the MRC file format maintains the header information generated
during collection throughout the processing. The main executable encom-
passes the following: drift correction of dose-fractionated data using
dosefgpu_driftcorr (29) and the assembly of corrected sums into tilt series,
automatic fiducial seed model generation by RAPTOR software (44), align-
ment and contrast transfer function correction of tilt series by IMOD soft-
ware (45, 46), and reconstruction of tilt series into tomograms by TOMO3D
software (47). The flowchart is shown in SI Appendix, Fig. S11. In total, 1,917
tomographic reconstructions were generated (SI Appendix, Table S7).

Subtomogram Averaging and Correspondence Analysis. A general procedure
of subtomogram averaging was described previously (18, 48, 49). A total
of 7,824 injectisome subtomograms (400 × 400 × 400 voxels) were visu-
ally identified and then extracted from cryo-tomographic recon-
structions (SI Appendix, Table S7). The initial orientation of each particle
was estimated by the basal body and needle tip coordinates, thereby
providing two of the three Euler angles. To accelerate image analysis, 4 ×
4 × 4 binned subtomograms (100 × 100 × 100 voxels) were used for initial
alignment (SI Appendix, Fig. S4). A global average of all of the extracted

Fig. 4. Comparative structural models of injectisomes and bacterial flagella.
The cytoplasmic hexamer of the Spa33 complex positions the Spa47 ATPase
(via MxiN) directly beneath and in line with the export gate, beginning with
the MxiA cytoplasmic domain. In contrast, the flagellar C ring contains
multiple copies of FliG, FliM, and FliN that are involved in secretion, rotation,
and switching. FliH, the homolog of MxiN, is likely sufficiently flexible to
interact with different FliN proteins at the bottom of the C ring. The outer
membrane (OM), cytoplasmic membrane (CM), peptidoglycan (PG), a large
cytoplasmic complex, and the basal body are colored consistently as those in
previous figures.
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4 × 4 × 4 binned subtomograms was performed after application of the
two Euler angles previously determined (SI Appendix, Fig. S4B). After
aligning the basal body, we generated a binary mask for cytoplasmic
area (SI Appendix, Fig. S4 D and H). Relevant voxels of the aligned
subtomograms were analyzed by multivariate statistical analysis and
hierarchical ascendant classification (50). Class averages were computed
in Fourier space to minimize the missing wedge problem of tomography.
All class averages were further aligned with each other to minimize
differences (SI Appendix, Fig. S5). Fourier shell correlation between the
two independent reconstructions was used to estimate the resolution of
the averaged structures (SI Appendix, Table S7 and Fig. S6).

3D Visualization and Molecular Modeling. UCSF Chimera was used for 3D
surface rendering of subtomogram averages and molecular modeling (51).
Three isosurface maps were rendered in different contour levels—0.67 σ,
1.00 σ, and 1.66 σ, respectively (SI Appendix, Fig. S12). Because of differential
mobility in different parts of the structure, we cannot be certain which of
the three levels is the most appropriate. The T3SS basal body map from Shi-
gella (EMD-1617) was then fitted into our intact T3SS map using the function
“fit in map” in UCSF Chimera. We built the initial model based on refined

structures from Salmonella T3SS (31): InvG [Protein Data Bank (PDB) ID code
3J1V], PrgHP (PDB ID code 3J1X), and PrgHC (PDB ID code 3J1W) (SI Appendix,
Fig. S10). A large shift is required to relocate the cytoplasmic domain of MxiG
(SI Appendix, Fig. S10). Structures of V-ATPase (PDB ID code 3J0J) and FliJ (PDB
ID code 3AJW) were used to build the model of the Spa47–Spa13–MxiN
complex. Six FliN tetramers (PDB ID code 1YAB) (35) were placed into the six
ring-shaped densities at the bottom, with the hydrophobic patch interacting
with the MxiN linkers.
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