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Clinical treatment for metastatic cancer
has traditionally entailed administering the
highest possible dose in the shortest period, a
strategy known as high-dose density therapy.
The implicit goal is complete eradication.
Unfortunately, a systemic cure for most me-
tastatic cancers remains elusive, and the role
of chemotherapy has been reduced to pro-
longing life and ameliorating symptoms.
Recently, the application of evolutionary

and ecological principles to cancer therapy
and infectious disease treatment has led to
a rethinking of conventional treatments. High

dose-density therapies may in fact accelerate
the emergence and growth of resistant cell
populations in both cancer (1) and infec-
tious disease (2, 3), leading many to ques-
tion the approach of complete eradication
on evolutionary grounds (4–7).
An alternative to the traditional approach

is a control-based tactic that focuses on ex-
tending patient life and reducing suffering by
limiting, rather than eradicating, the growth
and spread of cancer. Although control-based
approaches have been used in infectious
disease, they have not been systematically

studied in cancer. Here we describe sev-
eral strategies that have been effective in
controlling bacterial growth and discuss
how they might be applied to cancer therapy.

Limiting Resources
Bacterial growth can be controlled by limit-
ing essential resources in the environment,
e.g., limiting access to iron through iron
homologs, chelators (8), or compounds inter-
fering with siderophore production (9). Iron,
glucose, carbon, oxygen, nitrogen, and phos-
phorus are limiting for cancer cells also (10),
suggesting that reducing their in vivo avail-
ability may potentially control cancer. Ex-
tensive research on manipulation of carbon
sources illustrates the promise of the ap-
proach of limiting resource supply. But there
is an unmet need to identify tumor sources of
phosphates, nitrogen, and iron as potential
therapeutic targets.
Antiangiogenic drug treatments limit blood

vessel growth and could potentially be used
in low doses for tumor control (low doses
are already being used during therapy to
normalize vasculature and enhance drug
delivery). A control rather than an eradica-
tion approach could prove valuable: admin-
istering high doses of antiangiogenic drugs,
in hopes of eradicating the tumor, can lead
not only to tumor shrinkage but also high
rates of metastasis.

Damage Control
Reducing host damage by directly target-
ing virulence factors (11, 12) has been ef-
fective in the case of infectious disease; a
similar strategy could be adopted for cancer
control. Cancer cells may damage host tis-
sues in a variety of ways including through
the byproducts of Warburg metabolism
(e.g., lactic acid). Increasing the pH of the
tumor microenvironment (13) has been
shown to minimize damage resulting from
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Fig. 1. These three infectious disease-controlling strategies have the potential to be translated into cancer-control
measures. They all avoid attempting to completely eradicate tumor cells, instead aiming to (i ) limit essential resources
to cancer cells, (ii ) disrupt cooperation among cancer cells, and (iii ) prevent host damage.
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acid byproducts of Warburg metabolism,
both reducing tumor growth and invasion
(14). However, approaches like this are
the exception rather than the rule. In general,
cancer therapies are not specifically aimed at
minimizing host damage from cancer, but
rather limiting host damage from the treat-
ment while killing as many cancer cells as
possible. Research focused on understanding
the causes of host damage in cancer, and
limiting it through targeted approaches, has
the potential to extend patient life and im-
prove well-being.

Cooperation Interference
Interfering with cooperation among cells is a
promising approach in the treatment of both
infectious disease and cancer. Treatments
that aim to disrupt cooperation (e.g., by
targeting growth factors, angiogenic factors,
or immune suppression factors) block cell
products that can enhance the fitness of
neighboring cells, and hence allow for weaker
selection pressures for resistance to the
treatment compared with treatments that
target cell survival (15, 16). In infectious
disease, the use of quorum quenchers, which
block the molecules that bacteria use for
communication and cooperation, has been
successfully deployed to reduce bacterial
population sizes and prevent the formation
of host-damaging collective phenotypes
such as biofilms (17). Promoting avirulent
cheaters among bacteria—bacteria that fail
to cooperate with their bacterial neighbors
by not producing the virulence factors—to
outcompete virulent strains (18) is an ap-
proach that has been suggested in cancer
(19) but not tested.
One promising control-based approach

that is currently being tested in animal
models is adaptive therapy, i.e., adjusting
the drug dose to keep the tumor a stable
size. This approach exploits the fitness cost of
resistance and explicitly maintains a popula-
tion of therapy-sensitive cells. Periodically,

therapy is withheld so that the sensitive
cells (which are fitter than the resistant
ones in the absence of drug) are allowed to
proliferate and suppress growth of resistant
phenotypes. This therapy demonstrably leads
to long-term control of tumor size and life
extension in mice compared with tradi-
tional high-dose therapy (1). However, the
effectiveness of adaptive therapy has yet to
be replicated or tested in clinical trials with
humans. Further research is necessary.
In deciding which tumors to treat with

a control-based approach, the genetic and
immunological characteristics should be
taken into consideration. For example, more
heterogeneous tumors might be the best
candidates for a more “control”-based ap-
proach, because they harbor preexisting re-
sistance mutations that are more likely to
cause tumor relapse after high-dose treat-
ment. Implementation of flexible, computa-
tionally guided treatment strategies informed
by evolutionary principles will undoubtedly

need to overcome a variety of practical, reg-
ulatory, statistical, and ethical challenges.
Most likely this will require a new generation
of tumor boards that include not only
oncologists, pathologists, surgeons, and im-
munologists but also applied mathematicians,
computer scientists, statisticians versed in
adaptive trials, and evolutionary biologists.
Like infectious disease, cancer is a com-

plex adaptive system that can only be
controlled by strategies that recognize and
respond to its dynamic nature. Control-
based approaches represent a shift in think-
ing away from the traditional, aggressive,
high-dose treatment aimed at waging an all-
or-nothing war to eliminate cancer (5, 20).
Researchers and clinicians need tools for
strategic containment and control of cancer,
and infectious disease-inspired approaches
such as those suggested here represent one
promising frontier for the development of
new approaches to cancer treatment.
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