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We have compared the proteome, transcriptome, and metabo-
lome of two cell lines: the human breast epithelial line MCF-10A
and its mutant descendant MCF-10A-H1047R. These cell lines are
derived from the same parental stock and differ by a single amino
acid substitution (H1047R) caused by a single nucleotide change in
one allele of the PIK3CA gene, which encodes the catalytic subunit
p110α of PI3K (phosphatidylinositol 3-kinase). They are considered
isogenic. The H1047R mutation of PIK3CA is one of the most fre-
quently encountered somatic cancer-specific mutations. In MCF-
10A, this mutation induces an extensive cellular reorganization
that far exceeds the known signaling activities of PI3K. The changes
are highly diverse, with examples in structural protein levels, the
DNA repair machinery, and sterol synthesis. Gene set enrichment
analysis reveals a highly significant concordance of the genes dif-
ferentially expressed in MCF-10A-H1047R cells and the established
protein and RNA signatures of basal breast cancer. No such con-
cordance was found with the specific gene signatures of other
histological types of breast cancer. Our data document the power
of a single base mutation, inducing an extensive remodeling of the
cell toward the phenotype of a specific cancer.
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Human cancers carry a multitude of genetic changes (1–4).
These mutations can be divided into driver mutations and

passenger mutations. Driver mutations confer a selective ad-
vantage to the cancer cell, and passenger mutations have no
effect on cancer-relevant properties, including proliferation and
invasiveness. Most cancers carry mutations in several driver
genes. The oncogenic properties of the cancer cell result largely
from these driver mutations and their complex interactions. In
this cooperative reorganization of the cell, the consequences
of individual driver mutations cannot be identified. However,
for a fundamental understanding of oncogenesis and for trans-
lational goals, knowledge of the specific downstream effects of
single cancer mutations is essential.
To understand the global consequences of a single mutation,

we have carried out an extensive comparison of two cell lines
that differ by a single oncogenic driver mutation. We have used
RNA sequencing (RNAseq), stable isotope labeling by amino
acids in cell culture (SILAC), and cell biological methods to
study the MCF-10A cell line and the knock-in of the H1047R
oncogenic mutation of PIK3CA (the gene encoding the catalytic
subunit p110α of PI3K) in MCF-10A cells, which was generated
by Ben Ho Park (Johns Hopkins University, Baltimore) and
provided through his courtesy (5). MCF-10A and MCF-10A-
H1047R differ by a single base substitution in one allele of
PIK3CA, a difference we have confirmed by RNAseq (Materials
and Methods). MCF-10A is an immortalized epithelial cell line
isolated from human breast tissue (6). It is capable of continuous
growth and shows an abnormal but stable karyotype, modest
amplification of c-MYC (v-myc avian myelocytomatosis viral
oncogene homolog) (threefold), and homozygous deletion of
CDKN2a (p14ARF). It is negative for the expression of the es-
trogen receptor and the progesterone receptor, and ERBB2
(epidermal growth factor receptor 2) is not amplified (6–8). Both

MCF-10A and MCF-10A-H1047R can grow in chemically de-
fined, serum-free medium, facilitating the amino acid substitutions
required by SILAC and avoiding the variability introduced by the
use of serum in the culture medium (7, 9).
The changes induced in protein and RNA expression by the

H1047R mutation document a comprehensive reorganization of
the cell, including a shift of the expression patterns toward the
signature of basal breast cancer.

Results
Genetic Comparison of the MCF-10A and MCF-10A-H1047R Cell Lines.
MCF-10A and MCF-10A-H1047R are considered isogenic, ex-
cept for the knock-in mutation of H1047R in one allele of
PIK3CA. However, during the creation of the H1047R knock-in
or in the course of the subsequent culture, other mutations in
cancer-relevant genes could have been introduced or selected
for. To investigate this possibility, both cell lines were studied by
whole-exome sequencing. The procedures used for exome se-
quencing are described in SI Materials and Methods. This se-
quence information was used to determine variant SNPs (single-
nucleotide polymorphisms) and insertions and deletions, as well
as copy number variations. Variants that are significantly dif-
ferent between the two cell lines are shown in Table S1. Other
than PIK3CA-H1047R, there are no mutations in genes that
have also been found mutated in a significant fraction of human
tumor samples as recorded in the COSMIC database (version 70;
cancer.sanger.ac.uk/cancergenome/projects/cosmic/) (10). There
are, however, 43 nucleotides mutated between the two cell lines
in coding regions spanning 26.8 million nucleotides. These data
yield a mutation rate of 1.7 nucleotides per million. These
mutations do not affect cancer-relevant genes, but the number of
mutations is within the expected range of somatic mutations seen
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in tumor vs. normal comparisons of breast cancer samples (4). It
is surprising that the H1047R mutation should lead to this
number of mutations within the few passages that separate the
two cell lines and suggests that the H1047R mutation may induce
genome instability. Additionally, we determined copy number
changes between MCF-10A and MCF-10A-H1047R. An initial
analysis for focal deletions and amplifications revealed five small
amplifications between the two cell lines (Table S2). None of
these regions is known to be significant in human cancer. In an
analysis of larger amplifications and deletions using SNP het-
erozygosity, we found that there are additional alterations in the
variant allele frequency in chromosomes 5, 22, and X between
MCF-10A-H1047R and the parental MCF-10A cell line (Fig.
S1). The entire X chromosome shows a loss of heterozygosity
consistent with loss of a complete copy of the chromosome. The
5′ end of chromosome 5 has an alteration that is consistent with
amplification of 5p13-15 in MCF-10A-H1047R. Chromosome 22
has two copies near the 5′ end and a single copy throughout the
3′ portion, which is in contrast to amplifications seen in MCF-
10A. Therefore, although MCF-10A and MCF-10A-H1047R are
not strictly isogenic, none of the genomic differences we have
identified can explain the changes in gene expression that we
document below.

Changes in Gene Expression. Knock-in of the H1047R mutation
into one allele of the PIK3CA gene encoding the catalytic sub-
unit p110α of PI3K induces changes in gene expression that are
reflected in the transcriptome and proteome. These changes
were assessed by RNAseq and SILAC. SILAC was performed by
culturing the cells with labeled amino acids for three passages.
RNAseq data reflect a time series and were collected at four
time points over a 24-h period. Sampling times were chosen to
assess possible effects of varying growth conditions on gene ex-
pression, and indeed revealed an important effect of these con-
ditions on several gene signatures. The cells were initially seeded
in DMEM/F-12 growth medium containing 5% (vol/vol) donor
horse serum and 20 ng/mL EGF, and were allowed to attach to
the plastic substrate for 24 h. The medium was then replaced
with serum-free MCDB-170 medium containing 10 ng/mL EGF,
and after an additional 24 h of equilibration, the cells received
another change of fresh MCDB-170 medium with EGF. At that
time, the first samples were taken for RNAseq, followed by ad-
ditional samples at 6, 12, and 24 h. The changes seen with SILAC
and RNAseq amount to an extensive remodeling of the cell; they
are complex and reach far beyond the canonical PI3K signaling
pathway. Of 12,938 transcripts identified by RNAseq, 1,098
are significantly up-regulated and 986 are down-regulated
[jlog2FCj> 0:5, where log2FC represents log2 fold change, and Q
(false discovery-corrected P value) < 0.01] (Fig. S2 and Table
S3). Likewise, 521 and 853 of 3,982 proteins are significantly up-
and down-regulated, respectively (Table S4). In the data as a
whole, there is only a very weak positive correlation (r2 = 0.02)
between the changes observed in mRNA levels and those
changes identified in protein levels (Fig. 1 A and B). This dis-
cordance is not unexpected. Although the PI3K pathway leads to
the activation of several transcription factors, the changes in
protein expression are dominated by the activation of protein
translation downstream of TOR (target of rapamycin) through
S6, which regulates ribosome biogenesis, and through eIF4E,
which directly regulates protein translation. Similar observations
were recorded in two studies on the effects of ATP-competitive
and allosteric inhibitors of the TOR kinase (11, 12). However,
against this background of overall discordance of RNA and
protein changes, there are specific gene signatures where the
differential effect of H1047R on proteins is broadly concor-
dant with the effect on mRNA expression.
RNAseq and SILAC datasets were subjected to Gene Set

Enrichment Analysis (GSEA) (13, 14). This method quantifies

the relative enrichment of a gene signature in the MCF-10A-
H1047R expression data. Signatures are taken from the pub-
licly available Molecular Signature Database (MSigDB; www.
broadinstitute.org/gsea/msigdb). Such signatures typically define
specific traits, such as cellular function, specific disease state,
chromosomal location, or transcription factor binding sites. A
determination is made whether genes of the signature are evenly
distributed in the observed gene expression data or are unevenly
distributed with a bias toward up-regulated or down-regulated
genes in the gene expression data. This bias is quantified as an
enrichment score that reflects the relative degree of over-
representation of the signature in the expression data. Signifi-
cance is determined by resampling after permutation of the
gene labels.

Cancer Gene Signatures. The expression data for genes differen-
tially expressed in the specific breast cancer subtypes (basal, lu-
minal, ERBB2-positive, and normal-like), were analyzed by
GSEA. Selected results are summarized in Table 1 and Fig. 2A,
and comprehensive GSEA data are presented in Table S5. MCF-
10A-H1047R cells in both RNAseq and SILAC datasets show
enrichment for the genes that are overexpressed, as well as the
genes that are underexpressed, in basal breast cancer. There is
also concordance of RNA and protein expression data with the
signature of the normal-like subtype of breast cancer. For the
ERBB2-positive subtype of breast cancer, significant concordance
is seen only with the protein but not with the RNA expression
data. In contrast, the expression profiles on the MCF-10A-
H1047R cells show no concordance with the gene signature of
the luminal B subtype of breast cancer (Table 1). These data
indicate that the H1047R mutation in MCF-10A cells, and hence
gain of function in PI3K, is responsible for characteristic phe-
notypic features of distinct subtypes of breast cancer: primarily
basal and, to a lesser extent, normal-like and ERBB2-positive
breast cancer. The enrichment for the basal breast cancer sig-
nature is dominated by the increased expression of cytokeratins,
a family of structural proteins that is not known to be regulated
by PI3K (Fig. S3).

Signatures Representing Cellular Functions. A detailed analysis of
the SILAC and RNAseq data revealed extensive effects of the

Fig. 1. Nonconcordance of changes in RNA and protein. (A) Scatterplot of
changes in RNA vs. protein. (B) Contingency table of significant changes (P <
0.001) in RNA and protein levels.
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H1047R mutation on diverse cellular functions and activities.
Many of these effects are not known to be connected to the
activity of PI3K (Table S5). As examples of these changes, we
present here the signatures of the cell cycle genes, DNA repair,
MYC targets, and the cadherin 1-dependent signature (Table 2).
In this context, RNAseq revealed an interesting feature of the
H1047R-controlled expression patterns: dependence as well as
independence on sampling time. The GSEA results summarized
in Figs. 2 and 3 and Table 2 illustrate two strikingly different pat-
terns. Some GSEA results, such as the concordance of the H1047R
expression changes with the H1047R expression changes of basal
breast cancer or with the CDH1 (cadherin 1) activity, remain
constant during the 24-h sampling period, and therefore appear
to be independent of growth conditions. In contrast, the enrich-
ment scores for the signature of DNA repair, the cell cycle, MYC
targets, and EGF-dependent stimulation change over time
from an initial negative score to a positive score, or vice versa
(Figs. 2 and 3 and Table 2). Thus, DNA repair and cell cycle
genes show negative enrichment scores in the earliest samples,
becoming positive at 24 h. For the MYC signatures, we tested
two sets of targets: the transcriptionally stimulated and tran-
scriptionally repressed genes. Positive targets that are normally
up-regulated when MYC is expressed are down-regulated at the
zero time point and up-regulated at the later time points. The
reverse is true of the negative MYC targets. These data indicate
a transition from low MYC activity early to high activity during
the later samplings. Genes transiently responding to EGF start out
at a high level, in concordance with the EGF signature immedi-
ately upon medium change, and then decline (Fig. 3).

Metabolic Changes. Metabolomic analyses of MCF-10A and
MCF-10A-H1047R revealed numerous significant differences in
metabolic activities between the two cell lines. Selected metab-
olites are summarized in Table 3, with the complete dataset in-
cluded in Table S6. Some changes, like the increase in fatty acids,
such as linoleic acid (15–17), were anticipated. MCF-10A-
H1047R cells show decreases in cholesterol levels despite up-
regulation of cholesterol biosynthesis genes (compare Table S5).
Additionally, MCF-10A-H1047R cells show large increases in
AMP (adenosine monophosphate) but no corresponding elevation

in the phosphorylation of AMPK (AMP-activated protein kinase)
(Fig. S4), suggesting that MCF-10A-H1047R cells are in a state of
energy starvation. Several amino acids are also more abundant in
MCF-10A-H1047R cells compared with the parental cells (Table
S6). There is also an increase in 5-oxoproline that is indicative of
a dysfunction in the gamma-glutamyl cycle, which is important in
the production and degradation of glutathione (18).

Discussion
The “butterfly” effect derives from a concept in chaos theory
created by the meteorologist Edward N. Lorenz in a now clas-
sical paper that appeared in the Journal of the Atmospheric Sci-
ences in 1963 (19). In essence, this idea states that small changes
in a nonlinear system can have very large consequences. Applied
to meteorology, Lorenz (19) speculated that the wing flaps of
a butterfly could trigger a tornado. The butterfly concept applies
perfectly to the single base substitution studied in the MCF-10A
cell line: It is the smallest genetic change that can be introduced
in a cell, yet it has immense consequences.
The magnitude and extent of the changes seen in MCF-10A-

H1047R cells raise the question of whether the process of gener-
ating the knock-in cell line has inadvertently also selected for other
mutations, amplifications, or deletions that could be responsible
for some of the changes observed. The data obtained by exome
sequencing and RNAseq show that although there are mutations
besides the PIK3CA H1047R that distinguish the two cell lines,
none affects a cancer-related gene included in the COSMIC: Cancer
Gene Census (cancer.sanger.ac.uk/cancergenome/projects/census/)

Table 1. GSEA comparing differential RNA and protein
expression patterns observed for MCF-10A-H1047R vs. MCF-10A
with previously established breast cancer signatures

Gene set* Size NES P Dataset

SMID BREAST CANCER BASAL UP† 446 1.59 0 RNAseq
SMID BREAST CANCER BASAL DN‡ 434 −1.2 0 RNAseq
SMID BREAST CANCER NORMAL LIKE UP§ 178 1.5 0.003 RNAseq
SMID BREAST CANCER ERBB2 UP{ 97 1.32 0.071 RNAseq
SMID BREAST CANCER LUMINAL B UP# 99 −1.34 0.056 RNAseq
SMID BREAST CANCER LUMINAL B DNǁ 287 1.96 0 RNAseq
SMID BREAST CANCER BASAL UP 149 1.51 0.006 SILAC
SMID BREAST CANCER BASAL DN 113 1.3 0.049 SILAC
SMID BREAST CANCER NORMAL LIKE UP 32 1.72 0 SILAC
SMID BREAST CANCER ERBB2 UP 47 1.69 0 SILAC
SMID BREAST CANCER LUMINAL B UP 26 −1.11 0.318 SILAC
SMID BREAST CANCER LUMINAL B DN 98 1.64 0 SILAC

Size represents number of genes. DN, DOWN; NES, normalized enrich-
ment score.
*As listed in the MSigDB (www.broadinstitute.org/gsea/msigdb).
†Genes up-regulated in the basal subtype of breast cancer (36).
‡Genes down-regulated in the basal subtype of breast cancer (36).
§Genes up-regulated in the normal-like subtype of breast cancer (36).
{Genes up-regulated in ERBB2+ breast cancer (36).
#Genes up-regulated in the luminal B subtype of breast cancer (36).
ǁGenes down-regulated in the luminal B subtype of breast cancer (36).

Fig. 2. GSEA enrichment plots of a gene set composed of genes up-regu-
lated in the basal subtype of breast cancer for RNA expression data (36) (A)
and genes involved in cell cycle (37) (B).

Hart et al. PNAS | January 27, 2015 | vol. 112 | no. 4 | 1133

M
ED

IC
A
L
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424012112/-/DCSupplemental/pnas.1424012112.st05.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424012112/-/DCSupplemental/pnas.1424012112.st06.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424012112/-/DCSupplemental/pnas.1424012112.st05.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424012112/-/DCSupplemental/pnas.201424012SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424012112/-/DCSupplemental/pnas.1424012112.st06.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424012112/-/DCSupplemental/pnas.1424012112.st06.xlsx
http://cancer.sanger.ac.uk/cancergenome/projects/census/
http://www.broadinstitute.org/gsea/msigdb


(10) (Table S1). Additionally, the knock-in cell line has lost one
copy of three different chromosomal regions. Although, again,
none of these chromosomal regions contain known tumor sup-
pressors, we cannot definitely rule out the possibility that these
regions contribute to the overall phenotypes observed. These
mutations and deletions could be caused by the knock-in tech-
nique, or, alternatively, mutant PI3K could induce some level of
genomic instability.
The data from RNAseq and SILAC lead to two unexpected

findings: (i) The H1047R mutation in PIK3CA in MCF-10A cells
induces extensive remodeling of the cells, and (ii) the protein
and RNA signatures of MCF-10A-H1047R cells are concordant
with the protein and RNA signatures of basal breast cancer.
The depth and extent of the mutant-induced remodel far ex-

ceed the known sphere of signaling that can be tied to PI3K. It is
possible that the wide reach of these changes simply reflects our
incomplete knowledge of the central importance of PI3K as
a regulator of cellular activities and that PI3K is connected much
more broadly than is generally appreciated. Mutations in a less
critical gene would then have more limited consequences.
However, it is also conceivable that some of the H1047R mutant-
induced changes are indicators of a novel, general level of broad
cellular connectivity. A great diversity of phosphoproteomic
changes has also been documented in a recently published
comparison of the MCF-10A and MCF-10A-H1047R cell lines
(20). Our work is in substantial agreement with that comparison;
the two studies are mutually supportive and complementary.
Support for a systematic cellular connectivity also comes from
investigations on protein kinases (21–23). Molecular mechanisms
that could induce the multiple changes identified in MCF-10A
cells would include, besides canonical signaling, differential
levels of micro-RNAs, long noncoding RNAs, and epigenetic
changes. An important additional analysis uses small-molecule
inhibitors of PI3K or of TOR to revert the H1047R-associated
phenotype in MCF-10A. We have carried out such experiments,
which show that inhibitors induce only a partial reversion of the
H1047R phenotype. These observations support the suggestion
that the MCF-10A-H1047R cells have undergone knock-in–
mediated epigenetic changes. This work will be detailed in
a separate publication. In this context, it will also be of interest

to examine other knock-in mutants (24) in MCF-10A cells and to
determine mutant-induced changes in molecular signatures.
Some of the remodeling activities depend on the sampling

time for RNAseq. This variability probably reflects conditions of
cell culture, including growth factor and nutrient availability and
population density. The GSEA data indicate that there are sig-
nificant differences between WT and mutant cells in the re-
sponse to such changing conditions. Hence, PIK3CA affects not
only the static state of the cell but also the dynamics of response
to external stimuli.
Breast cancers, on average, carry about one nonsilent mutation

per megabase or around 4,000 per tumor (3). Most of these
mutations will be passenger mutations, but a multiplicity of po-
tential driver mutations still remain. It is tempting to assume that
in this multiplicity, the effects of a single driver mutation are
confined and marginal. However, analysis of the MCF-10A-
H1047R cells proves otherwise. A single mutation can drive the
cellular expression profile close to the cellular expression profile
of a fully developed cancer. Although the single mutation of
PIK3CA is insufficient to transform the cell completely, it never-
theless advances the cell substantially toward the gene expression
state of basal breast cancer. MCF-10A-H1047R cells become fully
transformed in combination with a KRAS mutant knock-in; they
are then able to form tumors in nude mice (24). This fact suggests
that the consistent mutations in cancer function as the main
drivers in oncogenesis, with the more sporadic genetic changes
making incremental or no contributions to the process.
The molecular signature of MCF-10A-H1047R cells is concor-

dant with the molecular signature of basal breast cancer and, to
a lesser extent, with normal-like and ERBB2-positive breast can-
cer, but not with the signature of luminal breast cancer. MCF-10A
cells are derived from normal human breast epithelium and were
originally characterized as luminal ductal cells (25). However, they
are negative for expression of the estrogen and progesterone
receptors and show marginal expression of ERBB2, thus sharing
basic features with basal triple-negative breast cancer. It is
therefore conceivable that the gain of function in PI3K triggers
a preprogrammed process inherent in MCF-10A cells that in-
evitably leads to the phenotype of basal breast cancer. The dif-
ferentiation state of MCF-10A cells may prescribe the type of
cancer signature that can be induced by the PI3K mutation. In an
isogenic pair of cells representing another state of differentiation,
the H1047R mutation could induce a gene signature characteristic
of a cancer that typifies this other cell type. In general terms, this

Table 2. Time-dependent and time-independent gene
signatures of MCF-10A-H1047R

Gene set*
No. of
genes

0 h 24 h

NES P NES P

SMID BREAST CANCER BASAL UP† 412 1.58 0 1.45 0
SMID BREAST CANCER BASAL DN‡ 391 −1.18 0.043 −1.04 0.333
ONDER CDH1 TARGETS 2 DN§ 390 2.5 0 1.79 0
ONDER CDH1 TARGETS 2 UP{ 155 −1.67 0 −2.29 0
REACTOME CELL CYCLE# 355 −1.98 0 1.56 0
KAUFFMANN DNA REPAIR GENESǁ 211 −1.57 0 1.72 0
DANG REGULATED BY MYC UP** 64 −1.75 0 1.05 0.363
DANG REGULATED BY MYC DN†† 185 1.36 0.017 −1.91 0
ZWANG CLASS 2 TRANSIENTLY

INDUCED BY EGF‡‡
33 1.78 0.01 −2.17 0

*As listed in the MSigDB (www.broadinstitute.org/gsea/msigdb).
†Genes up-regulated in the basal subtype of breast cancer (36).
‡Genes down-regulated in the basal subtype of breast cancer (36).
§Genes down-regulated after E-cadherin knock-down (38).
{Genes up-regulated after E-cadherin knock-down (38).
#Available at www.reactome.org.
ǁGenes involved in DNA repair (39).
**Genes up-regulated by Myc (40).
††Genes down-regulated by Myc (40).
‡‡Genes transiently induced by EGF (37).

Fig. 3. Heat map of normalized enrichment scores (NESs) from the GSEA
analyses of MCF-10A-H1047R. Although some signatures are time-independent,
others show strong time dependence. An explanation of gene sets is pro-
vided in Table 2. CDH1, cadherin 1; DN, DOWN.
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observation suggests that the effects of a somatic mutation
are determined by the cell type in which the mutation occurs.

Materials and Methods
Cells. MCF-10A and MCF-10A-H1047R cells were acquired from Ben Ho Park.
Cells were grown in DMEM/F-12 supplemented with 5% donor horse serum
(Gemini), 0.5 μg/mL hydrocortisone (Sigma), 10 μg/mL insulin (Sigma), 100 ng/mL
Cholera Toxin (Sigma), and penicillin/streptomycin/L-glutamine (Sigma). WT
cells were supplemented with 20 ng/mL EGF (Repligen). Cells were passaged
using 0.25% trypsin EDTA (Life Technologies) at a 1:4 ratio every 3 d. Passage
numbers were kept below 10 for all experiments. MCDB-170 was made
according to previously published procedure with the following modifications:
arginine and lysine were removed from the recipe and added along with
the final supplements to facilitate SILAC labeling, and ovine prolactin and
bovine pituitary extract were omitted from the final MDS supplement (9).

RNAseq. Five hundred thousand cells were plated in a 10-cm Petri dish in
DMEM/F-12 growth media in triplicate. After 24 h, the media were ex-
changed to MCDB-170 containing 10 ng of EGF. After a further 24 h, the
medium was exchanged again to fresh MCDB-170 with EGF, and cells were
collected at 0, 6, 12, and 24 h. RNA was prepared from cells using TRIzol (Life
Technologies) extraction. Genomic DNA was removed using Ambion DNA-
free. NuGEN Encore reagents were used for library preparation from total
RNA samples. One microgram of total RNA input was used for each sample.
The libraries were sequenced on an Illumina HiSeq 2000 sequencing system
using 100-bp single-ended reads. Raw, as well as processed, data are avail-
able online (Gene Expression Omnibus accession no. GSE63452).

SILAC. Cells were seeded in 10-cm Petri dishes in DMEM/F-12 growth media in
triplicate. After 24 h, the media were exchanged to MCDB-170 medium
containing either U-12C-14N-lysine and U-12C-14N-arginine for WT cells or
U-13C-15N-lysine andU-13C-15N-arginine forH1047R cells. Cells were passaged
in this serum-free medium using 0.25% trypsin in PBS followed by neutrali-
zation with 0.25% soybean trypsin inhibitor in PBS. Cells were centrifuged
for 3 min at 300 × g, and the inactivated trypsin was removed. Cells were
resuspended in MCDB-170 and seeded at a 1:4 ratio in new plates. After three
passages, cells were collected when about 50% confluent using trypsin and
soybean trypsin inhibitor. Cells were counted using a Coulter Z1 counter, and
equal numbers of WT and H1047R cells were mixed and centrifuged for 3 min
at 300 × g. The cell pellets were lysed with RIPA buffer and used for MS.

MS. Thirtymicrograms of protein extract from the cell lysates was precipitated
with a 5× vol of cold acetone. The protein pellets were obtained by centri-
fuging at 14,000 × g for 10 min at 4 °C, and then solubilized and reduced
with 100 mM Tris·HCl/8 M urea/5 mM DTT (pH 8.5). Cysteines were alkylated

with 10 mM iodoacetamide. The solution was diluted at a 1:4 ratio with
100 mM Tris (pH 8.5) and digested with 1 μg of trypsin at 37 °C overnight.
Adding formic acid to 2% terminated the digestion. Nineteen biological
replicates were analyzed.

MS and data analysis were performed as previously described (26). Briefly,
the protein digest was analyzed using an 11-step MudPIT (multidimensional
protein identification technology) (27). In each salt step, peptides were
eluted from the C18 microcapillary column over a 2-h chromatographic
gradient and electrosprayed directly into an LTQ Velos Orbitrap mass spec-
trometer (ThermoFisher) with the application of a distal 2.5-kV spray volt-
age. A cycle of one full-scan mass spectrum (400–1,800m/z) at a resolution of
60,000, followed by 20 data-dependent MS/MS spectra at 35% of normal-
ized collision energy, was repeated continuously throughout each step of
the multidimensional separation.

Gene Expression. RNAseq data were mapped to HG19 using Bowtie/Tophat
aligner (28). Reads were counted using htseq (29) utilizing the GENCODE
version 19 gene annotations (30, 31). Analysis of differential expression was
performed using edgeR (32) after filtering the data such that a minimum of
three samples had more than 0.3 reads per million.

Peptide identification was performed with the Integrated Proteomics Pipeline
(IP2; Integrated Proteomics Applications, Inc.; www.integratedproteomics.com/)
using ProLuCID (33). The detected SNPs and expressed genes, along with the
HG19 genome, were used to create a targeted protein database. The tan-
dem mass spectra were searched against this protein database. A target-
decoy database containing the reversed sequences of all of the proteins
appended to the target database was used in the database search. Cysteine
carboxyamidomethylation was set as a stable modification. Peptide expres-
sion ratios were measured using Census. The logarithm of the mean ex-
pression ratio was calculated, and the data were shifted such that the mean
expression ratio was 0 for all samples. There was a consistent bias in all three
SILAC samples for approximately twofold higher expression of proteins in
H1047R cells compared with WT cells.

Raw peptides from Census were mapped to genes by creating graphs of
peptides to proteins and proteins to gene symbols. The union of these
graphs allows the mapping of peptides to gene symbols. Only those peptides
with unique mapping to a single gene symbol are used for peptide quan-
tification. The set of uniquely assignable peptide ratios measured by Census
was then used to determine the median gene expression ratio using boot-
strap statistics (R = 10000). Ninety-five percent confidence intervals for the
median were also calculated, along with P values comparing the median
expression with the 100 most abundant proteins.

GSEA was performed using GSEA2 (13) with the MsigDB version 4.0 curated
gene sets (R = 10,000). GSEA graphs were reproduced in R using ggplot2 by
reimplementation of GSEA2 algorithms.

Metabolomics. Cholesterols and steroids were analyzed by UPLC (ultra per-
formance liquid chromatography)-MS/MS as previously described (34). Other
metabolites were analyzed by GC/MS/EI (electron impact ionization) as
previously described (35).
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