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Populations can evolve to adapt to external changes. The capacity
to evolve and adapt makes successful treatment of infectious
diseases and cancer difficult. Indeed, therapy resistance has become
a key challenge for global health. Therefore, ideas of how to control
evolving populations to overcome this threat are valuable. Here
we use the mathematical concepts of stochastic optimal control to
study what is needed to control evolving populations. Following
established routes to calculate control strategies, we first study
how a polymorphism can be maintained in a finite population by
adaptively tuning selection. We then introduce a minimal model
of drug resistance in a stochastically evolving cancer cell pop-
ulation and compute adaptive therapies. When decisions are in
this manner based on monitoring the response of the tumor, this
can outperform established therapy paradigms. For both case
studies, we demonstrate the importance of high-resolution moni-
toring of the target population to achieve a given control objective,
thus quantifying the intuition that to control, one must monitor.
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The progression of cancer is an evolutionary process of cells
driven by genetic alterations and selective forces (1). The

frequent failure of cancer therapies, despite a host of new tar-
geted cancer drugs, is largely caused by the emergence of drug
resistance (2). Cancer therapy faces a real dilemma: the more
effective a new treatment is at killing cancerous cells, the more
selective pressure it provides for those cells resistant to the drug
to take over the cancer population in a process called competi-
tive release (3, 4).
A genetic innovation conferring resistance can either be al-

ready present as standing variation or in close evolutionary
reach, via de novo mutations. The probability of these events is
often proportional to the genetic diversity of the tumor. There-
fore, resistance is a problem especially for genetically heteroge-
neous cancers (5). This diversity can be the result of a variable
microenvironment, with different pockets of acidity, blood sup-
ply, and geometrical constraints of surrounding tissue (2). Also,
late-stage cancers not only carry the cumulative archaeological
record of their evolutionary history (6) but can also become
genetically unstable and fall victim to chromothripsis (7), kataegis
(8), and other disruptive mutational processes (9, 10). Thus, the
probability of treatment success is higher in genetically homo-
geneous and/or early-stage cancers (11). Taken together, these
considerations place emphasis on early detection of tumors.
In cases where early detection is not achieved, the pertinent

question is how to avoid treatment failure in the presence of
genetic heterogeneity, which seems to be the norm for most solid
cancers. One obvious attempt is to make treatments more
complex and thus put the resistance mechanisms out of reach of
the tumor. In combination therapy, the tumor is simultaneously
treated with two or more drugs that would require different,
possibly mutually exclusive, escape mechanisms for cells to be-
come resistant. This approach has proven to be successful in the
treatment of HIV and is discussed as a possible model also for
cancer (12). In the context of cancer, this form of personalized
therapy is not yet widely realized, mainly because of the much
richer repertoire of genetic variation and adaptability of can-
cer cells and a comparable shortage of drugs targeting distinct

biological pathways. For a recent study of the conditions under
which combination therapy is expected to be successful in cancer,
see ref. 13.
For application of single drugs, there are a number of studies

that concentrate on how the therapeutic protocol itself can be
optimized. It was realized that all-out maximum tolerated dose
chemotherapy is not the only, or necessarily the best, treatment
strategy (14). Alternative dosing schedules have been proposed
such as drug holidays, metronome therapy (15), and adaptive
therapy (16). The realization of Gatenby et al. in ref. 16 is that
cancer, as a dynamic evolutionary process, can be better con-
trolled by dynamically changing the therapy, depending on the
response of the tumor. Their protocol of reducing the dose while
the tumor shrinks and increasing it under tumor growth showed
a drastic improvement of life expectancy in mice models of ovarian
cancer (16). Furthermore, Gatenby et al. made the important
conceptual step of reformulating cancer therapy to be not nec-
essarily about tumor eradication. Instead, dynamic maintenance
of a stable tumor size can also be a preferable outcome.
Motivated by this experiment, we conjecture that there are

substantial therapy gains in optimal applications of existing
drugs, as of yet underexploited. As a first step toward using this
potential we would like to formalize the intuition of Gatenby
et al. To this extent, we aim to establish a theoretical framework
for the adaptive control of evolving populations. In particular, we
connect the idea of adaptive therapy to the paradigm of sto-
chastic optimal control, also known as Markov decision prob-
lems. For other applications of stochastic control in the context
of evolution by natural selection see refs. 17, 18. A stochastic
treatment is necessary due to the nature of evolutionary dy-
namics where fluctuations (so-called genetic drift) matter even in
large populations. For instance, the dynamics of a new beneficial
mutation is initially dominated by genetic drift before it becomes
established (19). Stochastic control is a well-established field of
research which provides not only a natural language for framing
the task of cancer therapy, but also a set of general purpose
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techniques to compute an optimal control or therapy regimen for
a given dynamical system and a given control objective. Although
we demonstrate the main steps in this program, we focus on the
detrimental effect of imperfect information and the loss of
control it entails, thus quantifying the intuition that to control,
one must monitor. The informational value of continued moni-
toring is a natural concept for controlled stochastic systems,
whereas in deterministic models successful control usually does
not rely on sustained observations.
We first introduce the concepts of stochastic optimal control

using a minimal evolutionary example: how to keep a finite
population polymorphic under Wright–Fisher evolution by
influencing the selective difference between two alleles. If per-
fect information about the population is available, the poly-
morphism can be maintained for a very long time. We will show
how imperfect information due to finite monitoring can lead
to a quick loss of control and how some of it can be partially
reclaimed by informed preemptive control strategies. We then
move to our main problem and introduce a minimal stochastic
model of drug resistance in cancer that incorporates features
such as variable population size, drug-sensitive and -resistant
cells, a carrying capacity, mutation, selection, and genetic drift.
After computing the optimal control strategies for a few im-
portant settings under perfect information, we demonstrate the
effect of imperfect monitoring. If only the total tumor size can be
monitored, we show how a control strategy emerges that can
adaptively infer, and thus exploit, the inner tumor composition of
susceptible and resistant cells.

Controlling Evolving Populations
One can think about cancer therapy as the attempt to control an
evolving population by means of drug treatment. Typically, the
drug changes some of the parameters of the evolutionary pro-
cess, such as the death rate of drug-sensitive cells. With appli-
cation of the drug, one can thus actively influence the dynamics
of the stochastic process and change its direction. All this hap-
pens with a concrete aim, such as to minimize the total tumor
burden in the long term. To introduce some of the concepts of
stochastic optimal control, we use an example with a nontrivial
control task.
Imagine a biallelic and initially polymorphic population of

constant size N under the Wright–Fisher model of evolution
(20), i.e. binomial resampling of the population in each gen-
eration. The A allele confers a selective advantage of size
σ =NðfA − fBÞ � 1 over the B allele and will, without interven-
tion, eventually take over the entire population (f denotes
reproductive rates; see Fig. 1A). Assuming mutation to be
negligible, the task at hand is to avoid, or at least delay, such
a loss in diversity. Now assume that we can change the selection
coefficient externally by a quantity u∈ ½−uc; 0� in the form
σ→ σ + u. Ideally, we would have jucj> σ, but this is not a neces-
sary condition. In this setting, the control problem can be stated as
follows: for a population with an initial A-allele frequency of
x0 = n0=N ∈ ð0; 1Þ, what is the optimal control protocol u0:Tðx0Þ
that maximizes the probability that the polymorphism is still
alive after a time of T generations?

u0:Tðx0Þ= argmax
u0:T

PðxT ∈ ð0;1Þj x0Þ; [1]

where the maximization is to be done over all possible sequences
of controls u0:T = u0u1 . . . uT ðut ∈ ½−uc; 0�Þ. Note that the sto-
chastic nature of the process makes the control optimal only in
the sense of expected outcomes. Individual realizations might
well fall short of, or exceed, the implied mean survival time. It
is helpful to picture a large ensemble of such populations,
all starting off at frequency x0, all being individually nudged by
selection according to a (yet to be found) optimal protocol.

When a trajectory hits one of the boundaries before the final
time T, it is lost. The optimal control can thus also be seen to
minimize this cost of extinction. The standard technique to solve
problems of this kind is to use a dynamic programming ansatz.
Assuming that a partial problem starting from some intermedi-
ate point ðxt; tÞ ð0< t<TÞ has already been solved, we define the
cost-to-go Jðxt; tÞ as the corresponding optimal cost. From this
definition follows a backward-recurrence relation for J: the
cost-to-go at ðxt; tÞ is the expected cost-to-go one step later,
where the average depends via the propagator W on the control
decision ut at the current time (21):

Jðxt; tÞ= min
ut

 
X
x′

J
�
x′; t+ 1

�
W
�
x′
��xt; ut�: [2]

The absorbing boundary conditions take the form Jð0; tÞ=
Jð1; tÞ=T − t. The right-hand side of Eq. 2 can also include a
term V ðxt; utÞ that describes the potential cost to be at x and
the control cost to apply u. Here, both are assumed zero and
cost is paid only at the boundaries. For Wright–Fisher evolu-
tion, the transition matrix W can be expressed as the proba-
bility under binomial sampling to draw nA′ =N   x′ individuals of
the A allele. The crucial computational advantage of this re-
lation is that the hard optimization in the space of all control
protocols u0:T is exchanged for a simple scalar optimization
over ut. In statistical physics, this technique is referred to as
the transfer-matrix method. The intuitive interpretation of Eq. 2
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Fig. 1. Optimal control of a finite population under Wright–Fisher evolu-
tion to maintain a polymorphism. The intrinsic selection coefficient is σ = 10
and control shifts selection to σ +u. (A) Sample trajectories starting at
x0 = 0:5: without control (u≡ 0, black line) the polymorphism is lost on a time
scale of 1=σ. With optimal control under perfect information (gray line,
σ +u= σ = 10 for x < xc ≈ 0:64, else σ +u= σ −uc =−20), it can be maintained
for an average of 8,000 N generations. With finite monitoring (Δ= 0:1,
measurements xi at circles), naive control ðu≡uðxiÞÞ, red line, is prone to
overshooting, whereas preemptive control (blue line) tries to avoid this by
switching to a neutral regime after a short time. (B) Loss of control under
finite monitoring: as Δ grows, so does the probability that the polymorphism
is already lost at the next measurement. Shown is the mean survival time
over 5,000 trajectories with N= 104 on a logarithmic scale. (C) Under pre-
emptive control, some of the loss of control can be regained, especially for
intermediate values of Δ.
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is that the decision for a control now relies on future controls to
be carried out optimally. In practice, the results of the local
optimizations ðuðxt; tÞ= argmin

ut
. . .Þ constitute the optimal con-

trol to be applied when the system is at xt at time t. In many
applications (21), it is also useful to consider a receding time
horizon, such that uðx; 0Þ is a stationary control. In general, the
solution to Eq. 1 is not guaranteed to be unique. However, even
degenerate optimal controls would achieve the same optimal
value of the control objective (22).
Throughout this study, we apply the diffusion approximation

(N→∞, while σ; uc fixed and τ= t=N), where the infinitesimal
form of Eq. 2, the so-called Hamilton–Jacobi–Bellman equation
(21, 23), is valid.

−∂τ Jðx; τÞ= min
uτ

  xð1− xÞ
�
ðσ + uτÞ∂x + 1

2
∂2x

�
Jðx; τÞ: [3]

We propose an ansatz to solve the control problem for the
Wright–Fisher example, and confirm it by direct numerical ap-
plication of Eq. 2 (see also Fig. S1). For a treatment of finite
mutation rate, see SI Text and Fig. S2.

Optimal Control of a Wright–Fisher Population with Perfect Monitoring.
The optimal control function uðxt; tÞ maximizes the probability
that a polymorphism is still present after a time T. In the infinite
horizon time limit T→∞, where the optimal control becomes
stationary uðxÞ, we expect it to also maximize the mean first
passage time hTð0;1Þ

x i out of the interval ð0;   1Þ (for any fixed
starting position x). In Eq. 3, the control variable u appears only
linearly. This means that only the two extreme control strengths
are ever used to steer the system. This particular type of control
is called bang-bang. It follows that the control profile uðxÞ will
have the form of a step function with critical frequency xc,

σ + u=
�
σ; x< xc
σ − uc; x≥ xc

: [4]

The only remaining parameter is the critical threshold xcðσ; ucÞ.
To find an expression for the objective function hTð0;1Þiðxc; σ; ucÞ,
we can consider the optimally controlled system as the simplest
example of evolution under frequency-dependent, piecewise con-
stant selection σ + uðxÞ. The mean first passage time can then be
found analytically using standard methods for stochastic pro-
cesses (24) (SI Text and Fig. S1). At the correct threshold and
with strong selective forces (σ � 1 and σ − uc � − 1), the gains
are substantial and the polymorphism can be maintained for
very long times.

Loss of Control due to Imperfect Monitoring. The main assumption
made so far was that perfect information is available about the
state of the system in the form of continuous (in time), syn-
chronous (without delay), and exact (without error) measure-
ments of x. These requirements are impossible to achieve in
practice, when monitoring is always imperfect. As we will see,
when the assumption of perfect information is relaxed, not only
is control over the system lost, but the control profile uðxÞ also
ceases to be optimal. Rather than turning to the theory of par-
tially observable Markov decision problems (25), we will use
numerical analysis to demonstrate the effect of monitoring with
finite resolution in time (relaxing the first condition).
Consider the situation where measurements of the frequency

x are given only at discrete times fτig, whereas no information
is available during the intervals of length Δ= τi+1 − τi. The im-
mediate question is, given a measurement xi, what control should
one apply while waiting for the next measurement? The perfect-
information control uðxiÞ is correct only initially, and thus only
in the limit Δ→ 0. However, it is intuitively clear that a naive

protocol, applying uðxiÞ during the entire interval Δ, cannot be
optimal, because it does not anticipate the dynamics of x under
this regime (see the decrease in survival time in Fig. 1B). For
example, for 0< xi < xc the initial control is u= 0, σ + u> 0 and
the frequency will, on average, increase and eventually cross the
threshold xc. If one could observe the population at that point,
the control should be switched to u=−uc until x crosses xc from
above. The total result of the naive strategy is to amplify fluc-
tuations due to this overshooting.

Playing-To-Win vs. Playing-Not-To-Lose. Without a continuous flow
of observations as input, a preemptive control protocol upðτ; xiÞ
during the interval Δ must be precomputed and then faithfully
carried out. In the discrete-time (Wright–Fisher evolution) set-
ting, there are NΔ generation updates until the next measure-
ment and therefore 2NΔ different bang-bang protocols to choose
from. However, the example above suggests to search for a pre-
emptive control in a much smaller space, namely within those
protocols that start with either up = 0 or up =−uc and then
switch, at some later time τcðxi;ΔÞ, to a neutral regime with
up =−σ (if available). The size of this space is only 2 NΔ (we
note that for finding an optimal control one would need to
search protocols in the full space). The effect of such a control
scheme is to move the population to a safe place and then try to
keep it there. There are two important observations: first, this
informed control outperforms the naive protocol significantly,
especially for intermediate values of Δ (Fig. 1 B and C); second,
the safe parking position moves away from the boundary toward
x= 0:5 for larger values of Δ (Fig. S3). This shift from an ag-
gressive control strategy under perfect information (Δ= 0, xc
close to a boundary) to a more and more conservative one
(aiming for x= 0:5 and trying to stay there) can be summarized
as playing-to-win vs. playing-not-to-lose.
A similar loss of control can be expected for other types of

monitoring imperfections and is a general feature of stochas-
tic optimal control. It is important to note that the perfect-
information control problem, and its solution u, is a typical
starting point for the analysis. The naive control protocol above
is indeed optimal for Δ→ 0, and still a very good option for
Δ � 1 (in units of N generations). In most cases, as we will see in
the adaptive cancer therapy model below, finding u is challeng-
ing in itself and can be a good guidance for finding well-
performing control protocols even under imperfect conditions.

Application to Adaptive Cancer Therapy
Here we first introduce a minimal stochastic model of drug re-
sistance in cancer. For different qualitative regimes, we then find
the optimal adaptive therapy with perfect information. Finally,
we extend these ideas to the case where only the total cell
population size can be observed but no readout of the fractions
of susceptible and resistant cells is available. In the context
of models of the cell cycle, deterministic control theory has
previously been applied to find optimal cancer treatment
protocols (e.g. refs. 26–28). However, for the key concepts of
this study—adaptive therapy and finite monitoring—stochas-
tic control theory is needed and in fact leads to control pro-
tocols that exploit fluctuations.

A Minimal Model of Drug Resistance in Cancer. The desired features
of a minimal model of drug resistance in cancer include: (i)
a variable tumor cell population size N, (ii) at least two cell types,
drug-sensitive and drug-resistant, (iii) a carrying capacity K that
describes a (temporary) state of tumor homeostasis, and (iv) the
possibility for mutation and selection between cell types. Control
over the tumor can be applied via a drug that changes the evo-
lutionary dynamics by increasing, for example, the death rate of
sensitive cells. We will assume here, as others have done in the
context of cancer (11), a well-mixed cell population where the
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birth (or rather duplication) rate of cells is regulated by the
carrying capacity. The dynamics of the model we have chosen
here is encapsulated in the following birth and death rates for
sensitive and resistant cells:

Biðns; nrÞ= ð1+ giÞni
1+ g

N
K
+ a

ns
K

+ μ0
�
ni − ni

�
;

Diðns; nrÞ= nið1+FiðuÞÞ; i∈ fs; rg;   s= r;   r= s;

[5]

with free growth rates gs = g+ a, gr = g, growth advantage a≥ 0,
and mutation rate μ0 between cell types. Fi encodes the effect of
the drug ðu= 1Þ or its absence ðu= 0Þ on cell type i. For N � K ,
the absolute growth rates are gi −Fi. A drug effect of the form

FsðuÞ= ufs and FrðuÞ= ð1− uÞfr; [6]

renders the drug effective if fs > g+ a. The value fr = 0 corre-
sponds to drug resistance as such, but fr > g implies that resistant
cells thrive under the drug and are drug-addicted. Such an effect
has been observed in mice with melanoma carrying oncogene
BRAF mutation treated with vemurafenib (29). Altogether, sen-
sitive and resistant cells initially grow exponentially until the total
population size N = ns + nr ≈K . For some of the protocols that
we derive, it is important that the tumor is close to or can reach
carrying capacity during treatment (e.g. patients who are inop-
erable or whose primary tumors are not resectable). At that
stage, competition for resources, space, etc. becomes fierce. If
sensitive cells have a differential growth advantage a> 0 (they
might not have to maintain an expensive resistance mechanism),
resistant cells will eventually be removed from the tumor or re-
duced to a small fraction (of size μ0=a). In reality, this scenario
might not materialize, as the next mutation could propel the
tumor into a new phase of exponential growth.
For the stochastic version of this process we can assume in-

dependent and individual birth and death events with the above
probabilities per unit time. In analogy to the Wright–Fisher bi-
nomial update rule, here we can use a Poisson-like update.

ni → ni′= ni +Δni;   with Δni =Δn+i −Δn−i [7]

Δn+i ∼PoisðBiÞ;  Δn−i ∼PoisðDiÞ;   hΔnii=Bi −Di:

The total increment Δni follows a Skellam distribution. When we
let K →∞ while fixing the combinations γ ≡Kg, α≡Ka, μ≡Kμ0,
and ϕi =Kfi and setting t= τ=K , the system is described by
a Fokker–Planck evolution equation (30) for the distribution
Pðxs; xr; tÞ with xi ≡ ni=K (SI Text). This scaling exercise is mainly
important because it allows to relate systems with small K (hun-
dreds to thousands, as required for numerical analysis) to sys-
tems with large K (J108, as present in real cancers).

Optimal Cancer Therapy with Perfect Monitoring. With the minimal
model of drug resistance in cancer introduced above, we can
start the program of stochastic optimal control to compute
adaptive therapy protocols. The first task is to define the goal of
such a program: what is the quantity one aims to optimize? One
very important objective is to maximize the (expected) time until
the cancer proceeds to the next, possibly lethal stage. This could
mean the emergence of a new cell type with a much higher
carrying capacity, e.g. with metastatic potential. We will denote
this critical event simply with a “driver” event or “metastasis.”
The rate of metastasis emergence is a combination of tumor size
and the rate ν0 (per cell and generation) for the necessary fea-
tures to appear via mutation.
Earlier, the optimal control for the Wright–Fisher evolution

example turned out to be a piecewise constant function of allele

frequency. Here, we need to find a control profile uðns; nrÞ. With
perfect information, we would know ns and nr at all times and
would base the control decision adaptively on these measurements.
In analogy to Eq. 1, the control objective can be expressed as

u0:Tðns0; nr0Þ= argmax
u0:T

exp

 
− ν0

XT
t=0

ðnst + nrtÞ
!
; [8]

where the right-hand side is the probability that metastasis has
not yet happened after T generations (for ν0K � 1). Here, the
control objective is a nonlinear function of the entire trajectory
ðns; nrÞ0:T . As such, it is the simplest manifestation of a so-called
risk-sensitive control problem (see e.g. ref. 31). The above for-
mulation assumes a finite (receding) horizon time T and also that
control itself is cost-free. In cancer therapy, especially chemo-
therapy, this is certainly not the case: the side effects of treatment
incur a considerable cost in terms of life quality and medical care.
The difficulty, however, lies in quantifying these control costs in
a manner that would make them comparable to the potential costs
considered here. A simple extension of the above control objective
to include such a control cost is demonstrated in SI Text and Fig. S4.
The recurrence equation for the cost-to-go Jðns; nr; tÞ for the con-
trol objective above is given by (31)

Jðns; nr; tÞ= e−ν0ðns+nrÞ max
u∈f0;1g

hJðt+ 1; uÞi; [9]

�
J
�
t′; u
�	

≡
X
ns′;nr′

J
�
ns′; nr′; t′

�
 W ðns′; nr′jns; nr; uÞ; [10]

with boundary condition JðTÞ= 1. The (microscopic) transition
matrixW is the product of the two Skellam distributions resulting
from Eq. 7 (including boundary conditions). With this equation,
we can solve the dynamic programming task numerically for
moderate values of K (see Fig. S5). For the numerical analysis,
we have to introduce an upper bound ~N � K +

ffiffiffiffi
K

p
for the pop-

ulation size. The resulting control profiles for a number of dif-
ferent parameter regimes is shown in Fig. 2.
In the case of ϕr = 0, resistant cells are unaffected by the drug.

If maintenance of the resistance mechanism is costly ðα> 0Þ, the
only way that they can be removed from the population is when
selection can act against them. This only happens at N ∼K and
with u= 0 (no drug). If this can take place before the next driver
typically appears (if α=Ka � KNν0 ∼K2ν0 ≡ ν), then the opti-
mal control protocol is to postpone treatment until the resistant
cells are sufficiently cleared from the system so that genetic drift
has a chance of removing the remaining part (Fig. 2A). However,
this parameter regime of very high selection against resistance
and/or very low rate of driver mutation, and therefore this
therapy option, is not realistic for cancer. For higher values of
ν=α, the optimal strategy is to apply the drug earlier (Fig. 2B).
This procedure can lead to cycles of tumor size reduction fol-
lowed by regrowth, with the overall effect of extending the time
until metastasis.
If ϕr > γ (and ϕs > γ + α), resistant cells are actually drug-

addicted and thrive only in its presence. Such a situation would
be easy to control with perfect information about ns and nr .
For example, if mutation between cell types is rapid ðμ � 1Þ,
a majority rule is optimal (Fig. 2C). For a lower mutation rate,
the optimal protocol first tries to amplify one cell type before
switching to an environment that is deadly for most cells
(Fig. 2D).
The effectiveness of different therapy protocols is compared in

Fig. 3 with 1,000 stochastic forward simulations (with K = 104)
for the parameter setting of Fig. 2D. Whereas no therapy
ðu= 0Þ and all-out therapy ðu= 1Þ both ultimately end with the
occurrence of metastasis, adaptive therapy can bring the tumor
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size down to zero in the majority of cases. In metronome
therapy, the drug is applied (withheld) for fixed time intervals
τon ðτoffÞ. With numerically optimized values for the time
intervals, metronome therapy is quite competitive compared
with adaptive therapy.
All these control strategies require perfect information, not

only in the sense of the earlier Wright–Fisher example (contin-
uous, synchronous, and exact), but also in terms of the inner
tumor composition N = ns + nr , which presupposes that sensitive
and resistant cells can be distinguished.

Loss of Therapy Efficacy due to Low-Resolution Monitoring. There
are very few cases where the genetic basis for a drug-resistance
mechanism is known and can be specifically monitored (29, 32).
In most cases the regrowth of the tumor under the drug is ob-
served without understanding the exact biological processes re-
sponsible for the resistance. Here we aim to find rational control
strategies when only the total tumor cell population size can be
monitored. The adaptive therapy protocol that was applied by
Gatenby et al. in ref. 16 (coupling the drug concentration to the
tumor size) is one example of such a strategy.
Consider the situation where only the total population size

N = ns + nr can be (perfectly) monitored, whereas the dynamical
laws in Eqs. 5–7 and all parameter values are known. Under
these circumstances, the perfect-information optimal control pro-
files from the last section cannot be used directly. However, there is
still valuable information available. The response Nτ →Nτ+Δτ of the
tumor size to a control choice over a time interval Δτ can give an
indication of the inner tumor composition. As we have seen earlier,
the length of time interval Δτ should be shorter than all other in-
trinsic time scales to enable control. The procedure we follow is to
first derive an effective propagator WeffðNτ+ΔτjNτ;Nτ−Δτ; uτ−Δτ; uτÞ
(SI Text) and then repeat the cost-to-go calculation of Eqs. 9 and 10.
This propagator takes into account not only the current size Nτ, but
also the last measurementNτ−Δτ and the last control decision uτ−Δτ.
It follows from the microscopic W used in Eq. 10 by integrating
over the internal degrees of freedom ns and nr at the three time
points. Accordingly, the control profile is now a function of
ðNτ−Δτ; uτ−Δτ;NτÞ. For the parameter values leading to the ma-
jority rule in Fig. 2C, the new control profile is shown in Fig. S6.
The drug regimen (u= 0 or u= 1) is maintained as long as the
tumor size decreases sufficiently. At the first sign of possible
reversal, the regimen is switched.

Discussion
We used stochastic control theory to quantify optimal control
strategies for models of evolving populations. We hope our
results will lead to interesting new designs of microbial and
cancer cell evolution experiments where feedback plays a central
role in achieving a given control task. We further demonstrated
how control can be maintained with finite resources, when the
monitoring necessary for adaptive control is imperfect. These
strategies all depend on our ability to anticipate evolution, i.e. on
a knowledge of the relevant equations of motion and their pa-
rameter values. For cancer, such detailed knowledge of evolu-
tionary dynamics is certainly not yet available. Sequencing
technologies are facing up to the challenge of tumor control with
finite information, already accelerating progress in the monitoring
of serial biopsies of tumors, circulating tumor cells, or cell-
free tumor DNA in the bloodstream (33, 34). Once such time-
resolved data become prevalent, we can start to learn and improve
dynamical tumor models and compute their optimal control
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Fig. 2. Control of a tumor cell population. (A–D) The optimal control profile under perfect information about ns and nr for different parameters of the
cancer model. In the white areas, u= 0 (no drug), whereas in the gray areas, u=1 (with drug). The arrows indicate the deterministic flow. All profiles were
calculated via Eq. 9 with T =K=ν generations and K = 500 with an absorbing boundary at N= 750. The sample trajectories were simulated with K = 104 and
controlled according to these profiles. The coloring of the trajectories shows the temporal evolution from blue to red. (A) When selection against resistance is
stronger than driver emergence, α � ν, the optimal protocol is to wait until resistant cells are cleared from the system before the drug is applied. (B) For
higher driver emergence rates, the drug is applied earlier, which can lead to cycles. (C) For drug-sensitive ðϕs � γÞ and drug-addicted cells ðϕr � γÞ with high
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the tumor in close to 90% of runs.
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strategies. For instance, genetic heterogeneity within the tu-
mor is now becoming quantifiable from sequencing data via
computational inference (35–37). Heterogeneity and subclonal dy-
namics have been found to have an impact on treatment strategy
selection (38). Furthermore, all other available sources of clinical
data, such as medical imaging, can provide additional information
on cellular phenotypes and should be integrated into personalized
and data-driven tumor control (see e.g. ref. 39 for imaging data-
based computational modeling of pancreatic cancer growth dy-
namics to guide treatment choice and ref. 40 for integrative analysis
of imaging and genetic data).
Beyond cancer, the need to control evolving populations is

a key global health challenge as resistant strains of bacteria,
viruses, and parasites are spreading (41, 42). Any long-term
success in controlling evolution depends, at the very least, on
mastering the following components. Firstly, on a quantitative
understanding of the underlying evolutionary dynamics. Progress
in the understanding is best demonstrated by predicting evolu-
tion; this has so far proven difficult, even in the short term.

Nevertheless, new population genetic approaches applied to data
are promising––see influenza strain prediction in ref. 43. Sec-
ondly, the success of control will depend on the availability of
a sufficient arsenal of non–cross-resistant therapeutic agents.
These therapeutics should be combined with the ability to decide
an appropriate drug regimen given the genetic and phenotypic
structure of the population. Large-scale drug vs. cell line
screens are systematically pushing this component forward (see
e.g. ref. 44). And finally, long-term success depends on the
ability to monitor the evolution of a target population and act
rationally based on this information, the topic of this paper.
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