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Abstract

Several genetic alterations characteristic of leukemia and lymphoma have been detected in the 

blood of individuals without apparent hematological malignancies. We analyzed blood-derived 

sequence data from 2,728 individuals within The Cancer Genome Atlas, and discovered 77 blood-

specific mutations in cancer-associated genes, the majority being associated with advanced age. 

Remarkably, 83% of these mutations were from 19 leukemia/lymphoma-associated genes, and 

nine were recurrently mutated (DNMT3A, TET2, JAK2, ASXL1, TP53, GNAS, PPM1D, BCORL1 

and SF3B1). We identified 14 additional mutations in a very small fraction of blood cells, possibly 

representing the earliest stages of clonal expansion in hematopoietic stem cells. Comparison of 

these findings to mutations in hematological malignancies identified several recurrently mutated 

genes that may be disease initiators. Our analyses show that the blood cells of more than 2% of 

individuals (5–6% of people older than 70 years) contain mutations that may represent 

premalignant, initiating events that cause clonal hematopoietic expansion.
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INTRODUCTION

Blood cells are continuously regenerated by hematopoietic stem/progenitor cells (HSPCs). 

Human HSPCs divide only rarely (estimated at once a month), but have self-renewal 

properties that sustain survival for decades. As HSPCs divide, they accumulate rare, random 

mutations that generally do not affect function1. However, some mutations confer 

advantages in self-renewal and/or proliferation, resulting in clonal expansion of the affected 

cells. Although these “initiating” mutations do not lead directly to disease, they can 

cooperate with subsequent mutations to cause hematopoietic malignancies. For example, 

BCR-ABL and BCL2 translocations have been found in blood cells of individuals without 

overt hematological malignancies2–4. The frequency of such events appears to increase with 

age, with a similar trend being found for somatic structural changes in the nuclear genomes 

of blood cells1,5. SNP array analysis from large GWAS cohorts showed ~2–3% of normal 

individuals of advanced age (70s and 80s) harbor leukemia-associated copy number changes 

that include genes such as DNMT3A and TET26,7. More recently, somatic recurrent TET2 

mutations were detected in the blood of elderly women without overt hematological 

malignancies8 and DNMT3A mutation was reported in non-leukemic cells9.

These findings have collectively led to the hypothesis that certain genetic mutations may 

confer advantages to affected HSPCs, resulting in enhanced cell renewal and/or clonal 

expansion. However, it is unclear whether the effect involves only a small number of genes, 

or many more genes related to leukemia/lymphoma, and whether their participation in 

promoting clonal expansion necessarily leads to clones resembling cancer cells. While 

analyzing variations in 2,728 TCGA blood samples, we observed many individuals with 

age-related hematopoietic clonal mosaicism and concurrent presence of over 60 mutations in 

19 leukemia/lymphoma-associated genes. Our study identified not only genes, but also 

specific mutations associated with the clonal expansion process. Additional statistical 

analysis identified low-level (2 to 10% variant allele fractions) recurrent leukemic mutations 

in a substantial number of cases, possibly in the early stages of clonal expansion. Moreover, 

our analysis suggests that DNMT3A, TET2, JAK2, ASXL1, SF3B1, and TP53 have distinct 

and overlapping roles in the development of MPN, MDS, CLL, and/or AML. Finally, these 

results also incidentally highlight the need for caution when using blood as a reference for a 

surrogate “germline” genome, especially in older individuals.

RESULTS

Cancer types and sample characteristics

We searched for variants present in the blood normal controls across 2,728 cancer patients 

(Supplementary Table 1a) from 11 diverse cancer types: breast adenocarcinoma (BRCA), 

glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney 

renal clear cell carcinoma (KIRC), brain low grade glioma (LGG), lung adenocarcinoma 

(LUAD), lung squamous cell carcinoma (LUSC), ovarian carcinoma (OV), prostate 

adenocarcinoma (PRAD), stomach adenocarcinoma (STAD), and uterine corpus 

endometrioid carcinoma (UCEC). The numbers of cases from each tumor type range from 

57 (KIRC) to 673 (BRCA) and are listed in Supplementary Table 1b. Patients were 

diagnosed between 10–90 years (mean 59.5 ± 13.1 years) and 22.1% were deceased at the 
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time of TCGA sample procurement (Supplementary Table 1b). TCGA collects clinical data 

regarding diagnosis and prior treatment of neoplasms during the sample submission process. 

To ensure that our dataset was comprised only of individuals having first-time primary 

cancers and having had no treatment with radiation and/or chemotherapy, we excluded those 

having reported histories of these events as identified at https://tcga-data.nci.nih.gov/

annotations/ and all clinical data (July 30th, 2014). However, five patients with synchronous 

tumors not associated with blood were included, since these synchronous tumors would be 

unlikely to affect variant analysis in corresponding blood samples.

Variant calling and filtering strategies

Variants in the 2,728 blood normal controls were identified with VarScan (single nucleotide 

variant and indel), GATK (single nucleotide variant and indel), and Pindel (indel) (see 

Methods). False-positive filters were subsequently applied prior to downstream analysis and 

interpretation (see Methods). Out of the 49,317,027 variants (previously reported OV 

counts10 were not included here) that passed false positive filters, 1,622,485 with minor 

allele frequency of <1% in the 1000 Genomes reference and in each cancer cohort were 

retained for further analysis; this consists of 1,025,632 missense, 529,505 synonymous, 

19,663 nonsense, 10,976 splice site, 926 nonstop/readthrough, 20,275 frameshift indels, and 

15,508 in frame indels (Supplementary Table 1c). We used a stringent filtering strategy 

described previously11 for standardizing specificity across the Pan-Cancer somatic variant 

calls for available matched tumor samples (Supplementary Table 2).

Variants contributing to hematopoietic clonal expansion

The collection of both tumor and matched blood normal exome data by TCGA provides a 

unique comparative resource for identifying those somatic variants in blood that contribute 

to clonal expansion. We set out to identify both rare truncation variants (RTV), i.e. those 

having <1% MAF in both the 1000 Genomes collection and the cohort data, and variants 

overlapping with recurrent somatic mutations (also called Known Hotspot Variants: KHV) 

found in the analysis of 12 TCGA cancer types (see Methods and Supplementary Table 3a 

and 3b). Subsequently, 1,598 RTVs in 556 cancer-associated genes based on several recent 

studies11–15 (see Methods and Supplementary Table 4) were manually reviewed to remove 

false positive calls and 136 KHVs in the same set of cancer genes were identified. The 

resulting list was further filtered to remove polymorphisms present in 1000 Genomes (see 

Methods) and having greater than 0.1% MAF as reported in the current Exome Variant 

Server data release (ESP6500SI-V2, http://evs.gs.washington.edu/EVS/) from 6,503 samples 

drawn from multiple NHLBI Exome Sequencing Project (ESP) cohorts. We focused on 

those mutations found in blood normal samples, but not present or present only at very low 

levels in either the tumor samples or tumor adjacent normal samples, as this pattern is highly 

suggestive of somatic mutation in HSPCs introduced by the clonal expansion process. 

Inflammatory lymphocytes/macrophages/neutrophils will infiltrate different tumors to 

different extents. Therefore, the hematopoietic mutations do not have to be completely 

absent in the tumor sample.

Our analysis of RTVs and KHVs in 556 selected cancer-associated genes identified 70 

blood-specific mutations in 58 individuals. We further performed comparative analysis of 
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blood versus tumor samples for these 58 individuals, with the goal of detecting all blood-

specific nonsynonymous mutations in the 556 cancer-associated genes; this analysis 

identified seven additional events (those that were likely loss of heterozygosity related to 

copy number alterations in the tumor were not included), yielding a final list of 77 blood-

specific mutations in 58 cases (Table 1 and Supplementary Table 5a). For five of those 58 

cases that also had adjacent normal tissue analyzed, blood variants were absent in the 

adjacent normal tissue. Interestingly, among the 31 genes harboring these events, 19 have 

already been linked to hematological malignancies (Fig. 1a). More strikingly, 64 out of the 

total 77 events (83%) were in these 19 genes, examples as follows: DNMT3A16 (18 cases), 

TET217 (9 cases), JAK218 (8 cases), ASXL119,20 (6 cases), TP5321 (4 cases), SF3B122 (2 

cases), BCORL123 (2 case), ASXL224 (1 case), and SH2B325 (1 case) (Table 1 and Fig. 1a). 

The overall frequency of blood-specific mutations increased with age (logistic regression 

analysis, P = 2.38e–08), for example, 0.9% of the cases were in their 40s, 1.0% in their 50s, 

1.8% in their 60s, 5.3% in their 70s, and 6.1% in their 80s (Fig. 1b). The blood-specific 

mutations were found in all 11 cancer types (Fig. 1b). Frequencies of individual TET2, 

DNMT3A, ASXL1, and SF3B1 mutations also show association with age, (all FDR values 

<0.034, logistic regression). Interestingly, TET2, ASXL1, and SF3B1 mutations were 

predominantly found in the oldest age groups (70s and 80s) and DNMT3A mutations in 60s 

to 80s. In contrast, JAK2 mutations, which did not achieve significance, trended in both 

younger (40s and 50s) and older age groups (70s) (Fig. 1c).

The average age of the 54 individuals with blood-specific mutations in the 19 leukemia/

lymphoma-associated genes was 70.0 ± 9.9 years, significantly higher than that of the larger 

TCGA cohort used in this study (difference of means test, P = 3.4e–10) (Fig. 2a). Notably, 

the six individuals having two blood-specific mutations in the nine recurrently mutated 

genes are relatively older, with ages of 64 (DNMT3A: R882H; 36% VAF; TET2: H863fs; 

12% VAF), 72 (JAK2: V617F; 73% VAF and TET2: T229fs; 19% VAF), 75 (DNMT3A: 

Y584fs; 38% VAF and TET2: Q764fs; 33% VAF), 76 (JAK2: V617F; 42% VAF and 

ASXL1: R548fs; 35% VAF), 83 years (TET2: F381fs; 50% VAF and TET2: Q888*; 20% 

VAF), and unknown age (BCORL1: G883E; 17% VAF and TP53: Q136*; 18% VAF), 

respectively (Table 1 and Supplementary Table 5a). We also compared the distribution of 

variant allele fractions for these 64 events versus inherited sites identified in the same 

sample set; we observed a clear shift towards lower VAFs in the blood-specific sites (Fig. 

2b), suggesting the majority are present in only a fraction of the blood cells.

Although GNAS mutations have been found in leukemia26, activating gain-of-function 

mutations in GNAS are best known for their involvement in polyostotic fibrous dysplasia 

and McCune-Albright syndrome27. Interestingly, previous studies showed that activating 

mosaic GNAS mutations could affect various tissue types and the non-mosaic state for 

activating GNAS mutations may be lethal for the embryo28–30. This is consistent with our 

finding of mosaic GNAS R202H in transcript ENST00000354359 (also known as R201H in 

transcript ENSP00000360126) in the three blood samples of TCGA cases (11.5%, 14.4%, 

21.4% VAFs, respectively). It is also worth noting that two blood-specific truncation 

mutations were detected in PPM1D, a gene recently found to be associated with breast and 

ovarian predisposition with mosaic signatures31, but not with hematological malignancies.
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Due to the fact that the blood-specific variants were present in only a fraction of the blood 

cells, we postulated that certain low level variants associated with clonal expansion were not 

captured by the variant detection tools. Therefore, we performed read count-based analysis 

for a set of known hotspot variants, including R882 in DNMT3A, R132 in IDH1, R172/R140 

in IDH2, V617 in JAK2, K700 in SF3B1, and S34 in U2AF1 for the entire TCGA cohort. 

We compared the distributions of VAFs between tumor and blood normal samples and 

found that the strongest differences were at R882 in DNMT3A and V617 in JAK2 (Fig. 3 and 

Table 1). We devised a statistical procedure (see Methods) to identify additional “low VAF” 

sites significantly above the background error rate. Our analysis identified 14 blood samples 

having low-level hot spot variants (12 of them are not part of the 58 cases identified), 

including eight in DNMT3A, four in JAK2, one in both SF3B1 and IDH2, but none in IDH1 

or U2AF1. The average age for these 14 cases is 64.0 ± 14.9 years, again higher than the 

entire TCGA cohort studied (Supplementary Table 5b). We performed deep sequencing for 

five selected low-level hot spot variants (two R882C and one R882H sample sites in 

DNMT3A, one V617F in JAK2, and one K700E in SF3B1) to evaluate our detection 

approach. We achieved more than 450,000× average coverage for each site and all of the 

five variants were validated as bona fide low-level blood specific mutations (Supplementary 

Table 5c and see Methods). By including low VAF events, the overall frequencies of blood-

specific mutations in different age groups are: 1.2%, 1.3%, 2.2%, 6.1%, and 6.8% in their 

40s, 50s, 60s, 70s, and 80s, respectively (Supplementary Fig. 1). Collectively, we estimate 

that approximately 2% and 3.5% of individuals over the ages of 40 and 60, respectively, and 

without overt hematological malignancies carry blood-specific mutations that are associated 

with hematological malignancies.

Known Hotspot Variants in NHLBI exome sequencing project control cohort

To confirm that these mutations are also present in an independent set of normal blood 

samples, we examined the NHLBI exome sequencing project (ESP) control cohort. We 

searched for RTVs and KHVs in 6,503 ESP samples, focusing on four AML-associated 

genes discovered in the TCGA set (DNMT3A, TET2, JAK2, and ASXL1). When we applied a 

0.1% MAF threshold in ESP (to focus on rare variants and to prevent potential false 

positives), we identified 8 RTVs and 13 KHVs in DNMT3A, 13 RTVs in TET2, and 7 RTVs 

in ASXL1, and 3 KHVs in JAK2 (Supplementary Table 6). For a subset of ESP samples (n = 

557 WHISP), we re-aligned reads and performed variant analysis using the same process 

applied for the TCGA cohort. This allowed us to confirm RTVs and KHVs detected by the 

pipeline, and also to detect low VAF KHVs potentially missed by variant detection tools. 

Our pipeline detected one RTV each in DNMT3A, TET2, and ASXL1, four DNMT3A R882H 

mutations, and two JAK2 V617F mutations. Careful analysis of recurrent hotspot sites 

(described in the previous section) using the 557 WHISP samples identified an additional 

three DNMT3A R882, one JAK2 V617, one GNAS R202 and two SF3B1 K700 variants with 

VAFs ranging from 2% to 10% (Fig. 3 and Supplementary Table 7). Based on these 

analyses, over 2% of the 557 WHISP cases contain mutations in these five selected genes. 

However, sequencing of matched non-blood samples from these cases would be required to 

prove that they are truly blood-specific mutations.
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Mutations in TCGA blood samples and patients with hematological malignancies

We next compared the mutation frequencies in 25 genes frequently mutated in at least one of 

the five following cohorts: TCGA 58 blood samples, 151 myeloproliferative neoplasm 

(MPN) cases reported by Nangalia et al.32, 150 myelodysplastic syndrome (MDS) cases 

reported by Walter et al.33, 160 chronic lymphocytic leukemia (CLL) by Landau et al.34, 

and 200 TCGA AML cases21. DNMT3A, TET2, ASXL1, TP53, and SF3B1 were found to be 

consistently mutated in at least four groups, while JAK2 was more specifically mutated in 58 

TCGA blood samples and MPN patients (Fig. 4a). No mutations were found in TCGA blood 

samples in genes such as IDH1, NRAS, RUNX1, and PHF6, which are significantly mutated 

in AML and frequently mutated in MPN and/or MDS. Several genes showed cohort 

specificity: GNAS was mutated only in TCGA blood samples and CEBPA, WT1, PTPN11, 

KIT, SMC1A, and SMC3 were preferably mutated in the AML cohort. We reasoned that 

common mutations among the cohorts (e.g., in DNMT3A, TET2, ASXL1, SF3B1, JAK2, and 

TP53) may be relevant for initiating HSPC clonal expansion, and are also likely to be early, 

initiation events for hematological malignancies, such as MPN, MDS, CLL, and AML. On 

the other hand, genes specific for MPN, MDS, and/or AML (e.g., NRAS, RUNX1, NPM1, 

and FLT3) are more likely to be subsequent, cooperating mutations that are involved in the 

progression of these diseases. These observations also show both distinct and common 

connections among these five cohort groups, suggesting that the TCGA cohort consists of a 

combination of precursor mutations that may sometimes evolve to MPN, MDS, CLL, and/or 

AML, although subsequent, collaborating mutations are clearly required (Supplementary 

Fig. 2). Finally, we compared the average number of mutations among these 4 cohorts (not 

including MDS) in 556 selected cancer-associated genes; this showed TCGA blood samples 

having the fewest mutations, MPN and CLL cohorts having intermediate numbers of 

mutations, and AML patients harboring the highest number of mutations (Fig. 4b).

DISCUSSION

We identified age-related hematopoietic clonal expansion and the concurrent presence of 

leukemia/lymphoma-associated mutations in about 2% of individuals studied, who did not 

have reported hematological malignancies; this frequency reaches 5–6% for individuals who 

are at least 70 years of age. Our investigations of 2,728 TCGA blood samples identified 64 

mutations in 19 genes known for their roles in hematological malignancies with VAFs above 

10%, and an additional 14 mutations with lower VAFs (2 to 10%) when site-specific 

analysis was conducted. While many of these genes (e.g., DNMT3A, JAK2, ASXL1, and 

TET2) are established drivers for hematological malignancies, others (e.g., PPM1D) have 

not yet been implicated. The wide range of VAFs is indicative of the different stages of 

clonal expansion among individuals. Our finding also supports the hypothesis that mutations 

in genes such as DNMT3A, JAK2, ASXL1, TET2, GNAS, and others are likely to be initiating 

events for MPN, MDS, CLL, and/or AML, while epigenetic changes have also been 

previously implicated35,36. Importantly, the lack of detectable mutations in IDH1, RUNX1, 

NRAS, NPM1, and FLT3 in both TCGA blood samples and WHISP cases supports the idea 

that these mutations are usually cooperating mutations that are important for disease 

progression.
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These data suggest that extra care is required when using blood as a surrogate reference for 

the germline genome, especially in elderly individuals. First, there is an obvious risk of 

blood-specific variants in individuals without overt hematological malignancy being 

mistaken as germline variants. Secondly, germline alleles in cancer samples could be 

mistaken as tumor-specific variants when comparing to blood samples. Lastly, connections 

were made between mosaic PPM1D mutations in lymphocytes and the predisposition to 

breast and ovarian cancers31. While the influence of the immune system on tumorigenesis is 

well known, it is also possible that the blood-specific mutations are independent, unrelated 

events that are simply associated with the clonal expansion of HSPCs.

Our unbiased mutational analysis using sequencing data of relatively high depth (average of 

107.5x coverage, Supplementary Table 8) allowed us to detect hot-spot mutations down to 

2–3% VAFs; we discovered that 5–6% cases with advanced age (over 70 years) carry blood-

specific mutations known to be involved in hematological malignancies. Some of these 

individuals may be undergoing hematopoietic clonal expansion (Fig. 5), but most probably 

do not progress to overt disease, since the incidence of myeloid malignancies in the elderly 

is less than 0.1%37. Participants providing specimens to TCGA are de-identified/coded, so it 

is not feasible to determine whether a participant with a leukemia-associated mutation 

actually progressed to a malignant hematologic disease (Supplementary Fig. 2). Using SNP 

array data from GENEVA study cohorts (melanoma, lung health, prostate cancer etc.), 

Laurie et al. showed roughly 2–3% of elderly individuals (over 70 years) have chromosomal 

anomalies in blood samples7. We therefore suggest that our estimate of frequency may be 

conservative, since other types of alterations (such as gene fusions and copy number 

alterations) were not included in our study. Regardless, these data clearly show that the 

elderly often acquire clonal “skewing” in their hematopoietic compartments and that this 

may represent a contributing factor to the development of hematologic malignancies.

METHODS SUMMARY

We analyzed the peripheral blood sequence data from 2,728 individuals having had first-

time primary cancer and no radiation or chemotherapy treatment. Exome data were aligned 

to human reference build 37 using BWA38 and variants were identified using VarScan39, 

GATK40, and Pindel41, with stringent downstream filtering to standardize specificity. 

Variant annotation was based on Ensembl release 70_37_v5. The list of 556 cancer-

associated genes was compiled from publicly available screening panels, published studies, 

and preliminary analysis of publicly available data sources11–15,42. Read count analysis was 

performed with our bam-readcount tool, available at https://github.com/genome/bam-

readcount. Low level blood-specific events were discovered using a two-stage process 

including pre-filtering candidate non-mosaic samples using Bayes’ Rule and then the 

detection of high probability mosaic sites using Fisher’s exact test.

METHODS

Variant calling and annotation strategies

Exome sequencing data were aligned to NCBI Build 37 of the human reference using BWA 

v0.5.9 and de-duplicated using Picard 1.29. Single nucleotide variants were identified by 
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Varscan (version 2.2.6: –min-var-freq 0.1 –p-value 0.1 –min-coverage 8 –map-quality 10), 

and GATK (revision 5336: –T UnifiedGenotyper –R GRCh37-lite –et NO_ET –l INFO –U 

ALL –validation_strictness SILENT). Indels were identified using Varscan (version 2.2.9: –

min-coverage 3 –min-var-freq 0.2 –p-value 0.1 –strand-filter 1 –map-quality 10), GATK 

(revision5336: –T IndelGenotyperV2 –R GRCh37-lite –window_size 300 –et NO_ET –U 

ALL), as well as Pindel (version 0.2.4×, May 8, 2013: –window-size 1). For Pindel analysis, 

we preset the insertion size to 500 if this information is not provided in the BAM header. 

SNVs were based on the union of GATK and VarScan. They were subsequently processed 

through our in-house false-positive filter (–min-homopolymer 10). We required that indels 

were called by at least 2 out of 3 callers (GATK, Varscan, Pindel). In addition we also 

included Pindel unique calls (at least 30× coverage and 20% VAF). All combined indels 

were then processed through our false-positive-filter (–min-homopolymer 10 –min-var-freq 

0.2 –min-var-count 6). We then applied additional annotation and minor allele frequency 

filters as previously reported10.

Variant transcript annotation is based on all human transcripts obtained from Ensembl 

Release 70_37_v5. The reference alleles and positions were derived from the sequence and 

coordinates of GRCh37. All transcripts were annotated and a single representative was 

selected for each somatic mutation based on the significance of the predicted functional 

effect of each mutation, ordered from most significant to least significant as follows: 

nonsense, frameshift, splice site, in frame, missense, no stop (nonstop/readthrough), 

synonymous, and RNA. Splice site mutations were restricted to substitutions, deletions, or 

insertions overlapping the 2bp intronic sequence defined as the canonical splice donor or 

splice acceptor. RNA mutations were restricted solely to transcripts without an annotated 

open reading frame. Mutations affecting 3′UTR, 5′UTR, intronic sequence, and intergenic 

sequence were discarded for the purposes of downstream analysis.

Recurrent somatic mutations in 12 cancer types

We collected extensively filtered somatic variants in 3,355 TCGA samples from 12 cancer 

types (Supplementary Table 3a), and selected recurrent mutations appearing more than once 

at a given genomic position (Supplementary Table 3b).

Compiling cancer-associated gene list

A total of 556 candidate cancer-associated genes were compiled using nine sources, 

including recently published large-scale cancer studies, publicly available screening panels, 

and unpublished preliminary analysis of publicly available data sources. The 204 genes 

shared across at least two of the nine sources were retained and a literature search was 

conducted to identify evidence supporting inclusion of any remaining unique genes. A 

subset of 518 genes originated from recent publications, including 294 genes from Frampton 

et al.15, 125 genes from Kandoth et al.11, 212 genes from Lawrence et al.13, 194 genes from 

Pritchard et al.14, and 124 genes from Vogelstein et al.12 Thirty-nine additional genes were 

included based on the analysis of driver mutations in 20 TCGA cancer types (unpublished), 

recommendations in accordance with the standards and guidelines of the American College 

of Genetics and Genomics42, and 18 novel cancer driver genes identified in recently 

published large-scale studies (Supplementary Table 4).
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Readcount analysis and statistical approaches for identifying significant low level variants

Read counts for variants were determined using our internally developed tool bam-readcount 

(https://github.com/genome/bam-readcount). For sites to be included in the downstream 

statistical test, we require greater than 30× coverage for both blood normal and matched 

tumor samples. We assessed the false-discovery rate (FDR) using a two-stage process. The 

first step is a purpose-specific pre-filter to eliminate candidates that can be confidently 

identified as having originated from non-mosaic samples, as these identically fail the 

inclusion criterion for significance testing. It targets deeply covered sites whose apparent 

variant reads actually represent base-calling errors. Take the sample space for blood 

classification as consisting of two mutually exclusive, collectively exhaustive (MECE) 

statuses, “normal”, S=N, and “mosaic”, S=M, and let the candidate blood site data, D, 

consist of T spanning reads, of which V and T-V report variant and reference counts, 

respectively. If we presume that the rate of mosaicism (the fraction of altered cells, assumed 

as roughly 2%), ρ, is much larger than the Phred-determined likelihood of base-calling error 

for any single read, ε, i.e. ρ/ε>>1, then the conditional probabilities are binomial, P(D|

S)=CT,V pV(1−p)T−V, where  is the number of combinations of T objects chosen V at a 

time and p=ε for S=N and p=ρ for S=M. Given a prior estimate of P(N)=0.999, we can 

formulate P(N|D) directly from Bayes’ Rule, from which additional algebraic manipulation 

and suitable asymptotic approximation show

Candidates are culled as non-mosaic if this probability exceeds 95%, though in practice 

most cases actually removed have P(N|D)>99.5%. The remaining set of events is 

subsequently passed to the second step, which is a traditional Fisher exact (table) test for 

association between sample type and variant allele fraction followed by standard Benjamini-

Hochberg FDR assessment. We report events having ≤20% FDR with at least 3 supporting 

reads and greater than 2% variant allele fraction.

Analysis of NHLBI ESP data

NHLBI variants calls for 6,503 samples were downloaded from the NHLBI Exome Variant 

Server http://evs.gs.washington.edu/EVS/. All variants were processed using the same tools 

as for the TCGA cohort. For comparative analysis, all ESP variants are filtered for < 0.1% 

total MAF to minimize false positives. The Women’s Health Initiative Exome Sequencing 

Project (WHISP) is part of the National Heart, Lung, and Blood Institute’s (NHLBI), Grand 

Opportunity Exome Sequencing Project (https://www.fhcrc.org/en/labs/phs/projects/cancer-

prevention/projects/whisp.html). WHISP data for 614 samples were downloaded from 

dbGaP, verified for file integrity, and then imported as BAM files into our data warehouse. 

Alignment to the reference genome GRCh37-lite was carried out using BWA v0.5.9 with 

parameters −t 4 −q 5 and marking of duplicates by Picard v1.46. Variant calling was 

performed as described in the "Variant calling and annotation strategies". For quality control 

purposes, we included WHISP samples with read mapping rates greater than 80%, 

duplication rates less than 40%, and at least 10,000 SNVs detected in the target region. The 
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557 Caucasian WHISP samples selected for this study, on average, had mapping rates of 

~95%, duplication rates of ~9%, and ~18,000 SNVs called in the target region.

Deep sequencing validation

Five candidate low-level variants (two R882C and one R882H sample sites in DNMT3A, 

one V617F in JAK2, and one K700E in SF3B1), 5 positive controls, and 4 negative controls 

were selected for validation using deep sequencing (Supplementary Table 5c). Primer pairs 

tailed with sample-specific indexes were designed for individual target sites and further used 

for PCR amplifications. Indexed libraries were made for tumor and blood pools respectively. 

We then generated sequencing data using 1 lane of MiSeq run with read length of 2×250. 

Custom references were created by including specific primer and index sequences. MiSeq 

reads were aligned to the custom references using BWA (bwa aln −t 8; bwa sampe). Allelic 

counts for the variants were obtained using in house tool bam-readcount (bam-readcount −b 

0 −q 30).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Blood-specific mutations identified in 58 out of 2,728 TCGA cases from 11 cancer types
(a) Rose chart illustrating the distribution of blood-specific nonsynonymous mutations in 31 

genes. The variant allele fractions (VAF) of the 77 mutations are indicated in the center. (b) 

Rose chart illustrating the age distribution of samples with blood-specific mutations. Higher 

frequencies of blood-specific mutations are found in older age groups (60s, 70s, and 80s) 

versus younger ones (40s and 50s). The cancer type distribution is shown in the center. (c) 

Distribution of blood-specific mutations in DNMT3A, TET2, JAK2, ASXL1, SF3B1, and 
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GNAS in different age groups. Total includes all blood-specific mutations in 556 cancer 

associated genes identified in each age group.
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Figure 2. Blood-specific mutations and their association with age
(a) Box plot showing positive correlation between blood-specific mutations in leukemia/

lymphoma genes and age. Age information is not available for one of the 58 cases with 

blood specific mutations. (b) The wide spectrum and lower average variant allele fractions 

in blood-specific mutations, compared to the ~50% VAF for germline variants identified in 

the same samples.
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Figure 3. Low VAF blood-specific, hotspot mutations identified in the TCGA and WHISP 
cohorts using a readcount based approach
Blood-specific mutations identified by the variant detection pipeline are in blue. An 

additional 14 blood-specific events (13 shown in green) with VAFs between 2% and 10% 

were identified in the TCGA samples and their positive associations with older ages were 

confirmed. 13 hotspot variants were identified in WHISP samples (n = 557) and seven (in 

green) have variant allele fractions ranging from 2% to ~10%. One JAK2 V617F identified 
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in a TCGA sample was not shown due to a VAF higher than 50%. (a) DNMT3A R882C, (b) 

DNMT3A R882H, (c) GNAS R202H, (d) JAK2 V617F, and (e) SF3B1 K700E.
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Figure 4. Comparison of mutation frequencies in blood samples from 58 TCGA cases with 
mutations in cancer-associated genes in 151 MPN, 150 MDS, 160 CLL, and 200 AML cases
(a) Mutation frequencies of major genes involved in hematological malignancies. (b) The 

average number of non-synonymous mutations found in TCGA blood normal cases, MPN, 

MDS, and AML patients across 556 cancer associated genes.
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Figure 5. Clonal expansion model
The distinct roles of a set of genes including DNMT3A, ASXL1, TET2, GNAS, JAK2, 

PPM1D, IDH1, NRAS, NPM1, and FLT3 in the initiation of hematopoietic clonal expansion.
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