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Abstract

Aberrant accumulation of beta-amyloid (Aβ) is thought to be an early event in a biological cascade 

that eventually leads to Alzheimer’s disease (AD). Along these lines, many clinically normal (CN) 

older individuals have evidence of beta-amyloid (Aβ) accumulation, which may be indicative of 

preclinical AD. However, relationships between Aβ and “downstream” AD markers are often 

inconsistent across studies. These inconsistencies may be due to the presence of other age-related 

processes that also influence AD markers, as well as additional risk factors that interact with Aβ to 

influence downstream changes. For instance, it is possible that the effect of Aβ is modified by 

neurodegeneration, genetics, sex-differences and cognitive reserve. Thus, a multivariate approach 

to determining risk of AD within CN participants may be more appropriate than reliance on Aβ 

status alone. An understanding of how additional risk factors interact with Aβ to influence an 

individual’s trajectory towards AD is essential for characterizing preclinical AD and has 

implications for prevention trials.
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Introduction

The Amyloid Hypothesis of Alzheimer’s Disease and in Vivo Visualization of Aβ

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder found in ~10% of 

individuals over age 65 and ~40% of individuals over age 85 (Alz.org 2014; Hebert et al. 

2013). AD typically begins with episodic memory impairment, and slowly affects other 

cognitive domains such as executive function as the disease progresses (Grober et al. 2008). 

The amyloid hypothesis of AD posits that aberrant accumulation of the Aβ peptide is an 

early initiating event that eventually leads to clinical impairment (Hardy and Selkoe 2002), 

and is supported by research spanning multiple fields (Walsh and Selkoe 2007). For 

instance, autosomal dominant genetic variants that cause early onset AD involve mutations 
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that directly influence the production of the Aβ peptide (Bentahir et al. 2006; Citron et al. 

1992). Down syndrome individuals have an extra copy of chromosome 21 (the locus of the 

amyloid precursor protein gene, which codes for the larger protein that beta-amyloid is 

cleaved from), produce high amounts of Aβ and have increased risk of developing AD (Lott 

et al. 2006). Experimental work in mice has shown a relationship between Aβ and memory 

that is reversed after passive immunization with an Aβ antibody (Dodart et al. 2002). 

Soluble Aβ has been shown to reduce synaptic strength and number in rodent models 

(Shankar et al. 2007; Walsh et al. 2002), which is consistent with the observation that 

neurons from AD patients have 15-35 % fewer synapses than controls (Davies et al. 1987). 

Overall, there is strong evidence that beta-amyloid is a central feature of AD development.

In sporadic Alzheimer’s disease, for unknown reasons the Aβ peptide undergoes aggregation 

after it’s cleavage from the amyloid precursor protein and deposits into extracellular Aβ 

plaques. Although Aβ plaques have traditionally been studied during postmortem analysis of 

brain tissue using stains such as thioflavin-T, congo red, and Bielschowsky, the ability to 

measure Aβ plaques in vivo with positron emission tomography (PET) has emerged in the 

last decade. 11C-PIB (‘Pittsburgh Compound-B’) was one of the first radiotracers to enable 

this visualization (Klunk et al. 2004), and has become the most widely studied tracer to date. 

Further advancements have been made to create amyloid imaging agents radiolabeled 

with 18F rather than 11C, given the longer half-life and thus greater feasibility to use 18F 

radiotracers in both research and clinical settings. Excitingly, two 18F compounds have been 

approved by the FDA to determine whether patients have evidence of brain Aβ deposition—

florbetapir (Amyvid) (Wong et al. 2010) and flutemetamol (Vizamyl) (Vandenberghe et al. 

2010). Although in vivo assessment of aberrant Aβ accumulation can also be accomplished 

using cerebrospinal fluid (CSF) markers of Aβ (Fagan et al. 2006), the majority of the 

literature reviewed herein focuses on data utilizing PET amyloid imaging.

Prevalence of Aβ in Clinically Normal Older Individuals

Although Aβ plaques are a salient feature of AD, they are also commonly observed in the 

brains of clinically normal (CN) older individuals (individuals that function independently 

and do not show signs of objective cognitive impairment as detected with 

neuropsychological assessment). This observation has consistently been observed in 

postmortem studies and has been replicated in amyloid imaging studies. The prevalence of 

CNs with evidence of elevated Aβ (Aβ+) increases with older age (~10 % of CNs in their 

60’s are Aβ+ whereas ~40 % of CNs in their 80’s are Aβ+, Fig. 1). It is noteworthy to 

emphasize that these proportions describe individuals that have evidence of elevated Aβ that 

are clinically normal, and do not include individuals of that age that are diagnosed with mild 

cognitive impairment or dementia. Although the age at which Aβ plaque deposition begins is 

unknown, examination across the studies depicted in Fig. 1 suggests Aβ positivity is 

minimal before age 60. Given that quantification of Aβ across post-mortem and amyloid 

imaging studies specifically measures Aβ plaque levels, it is possible that abnormal 

production and aggregation of Aβ may still occur before age 60.

The presence of Aβ accumulation within CNs is consistent with models of AD suggesting 

that Aβ is an early initiating event that eventually leads to “downstream” brain changes and 
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clinical impairment (Hardy and Selkoe 2002; Jack et al. 2013a). Downstream brain changes 

are thought to encapsulate alterations in synaptic and neuronal function and structure, and 

are a more direct substrate of cognitive impairment than initiating Aβ accumulation. In 

humans, imaging proxies for these downstream brain changes span multiple modalities, such 

as functional magnetic resonance imaging (MRI), structural MRI, and [18 F] 

fluorodeoxyglucose positron emission tomography (FDG-PET), and will be discussed in 

detail throughout this review. Consistent with this framework, work from Villemagne and 

colleagues suggest that it may take upward to 20 years to transition between Aβ levels 

typically found in Aβ+ CNs compared with Aβ levels found in AD, highlighting the 

prolonged period over which Aβ accumulation may occur within CNs (Villemagne et al. 

2013). To understand whether Aβ accumulation within CNs is indicative of a preclinical AD 

state, many investigators have examined the association between Aβ and downstream 

changes within CNs. These studies are summarized in the following sections.

Associations Between Aβ and Cross-Sectional AD Markers Within CNs

Functional Brain Markers

Aβ has been shown to promote synaptic loss (Shankar et al. 2007) and impair long-term 

potentiation (Walsh et al. 2002). Given these effects on synaptic function, it is possible that 

the earliest Aβ-related changes within CNs may be detected using measures of brain 

function, before the high levels of neuronal loss typical of AD patients have occurred. Two 

widely used imaging modalities that measure brain function have also been used to 

investigate the association between Aβ and brain function: (1) functional magnetic 

resonance imaging (fMRI, which measures brain activation during task and rest) and (2) [18 

F] fluorodeoxyglucose positron emission tomography (FDG-PET, which measures glucose 

metabolism during rest).

The majority of work investigating the association between task-related fMRI and Aβ within 

CNs focuses on memory tasks, although non-memory domains have also been investigated 

(Hedden et al. 2011). The default mode network (DMN) in particular has received ample 

attention, given the high degree of overlap between this network and patterns of cortical 

amyloid deposition (Buckner et al. 2009). Comprised of medial prefrontal, posteromedial 

(precuneus, posterior cingulate and retrosplenial) and lateral parieto-temporal cortices, as 

well as the medial temporal lobe (Buckner et al. 2008), the DMN typically deactivates 

during memory encoding and activates during memory retrieval (Daselaar et al. 2004; 

Huijbers et al. 2013). Interestingly, Aβ+ CNs show impaired DMN deactivation during 

memory encoding (Kennedy et al. 2012; Sperling et al. 2009; Vannini et al. 2012, 2013) and 

impaired activation during memory retrieval (Vannini et al. 2013). However, impaired 

deactivation within the DMN has also been observed during an attentional control task 

(Hedden et al. 2011), suggesting that the effect of Aβ on the DMN may not be specific to 

memory processing. Aβ has also been associated with increased activation in “task positive” 

regions known to activate during memory encoding (Mormino et al. 2011a; Sperling et al. 

2009) (however see (Kennedy et al. 2012)), which echoes previous fMRI experiments 

showing increased activation in old versus young CNs (Cabeza et al. 2002; de Chastelaine et 

al. 2011; Park and Reuter-Lorenz 2009; Rosen et al. 2002). Although increased task-related 
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activity has been interpreted as a compensatory response in aging individuals (Cabeza et al. 

2002), it is also possible they reflect reductions in neural efficiency (Li et al. 2006; Logan et 

al. 2002). We showed that increased task positive activation during memory encoding was 

related to memory performance within Aβ+ CNs (Mormino et al. 2011a), suggesting that 

these heightened activations are beneficial to Aβ+ CNs.

In addition to task-related patterns of activation, integrity of brain networks during rest has 

also been related to Aβ status using function connectivity analyses (FC). Functional 

connectivity (FC) analyses of resting state fMRI data captures brain regions showing 

correlated, low frequency (<0.1Hz) spontaneous activity, and have been used to define 

multiple networks with known anatomical connectivity and co-activation during task-related 

fMRI (Fox and Raichle 2007). Although the biological mechanism underlying these low 

frequency fluctuations remains unclear, it is possible that resting state networks reflect 

spontaneous cognitive processes and/or an intrinsic property of the brain’s “baseline” state 

(Buckner and Vincent 2007; Raichle and Snyder 2007). Similar to task related fMRI 

experiments, analyses investigating the effect of Aβ on resting state connectivity within CNs 

have also focused on the DMN. Interestingly, some studies have reported decreased DMN 

FC (Hedden et al. 2009; Mormino et al. 2011b; Sheline et al. 2010b) while others have 

additionally reported increased DMN FC in Aβ+ CNs (Mormino et al. 2011b; Sheline et al. 

2010b). It is possible that DMN regions are differently affected by regional Aβ deposition, 

with the medial temporal lobe subsystem (Andrews-Hanna et al. 2010) showing early 

decreases and regions beyond the medial temporal subsystem showing early increases 

(Mormino et al. 2011b). A longitudinal functional connectivity study also found regional 

discrepancies in DMN FC within AD patients. In this study, Damoiseaux and colleagues 

reported reduced FC in the posterior component of the DMN (comprised predominantly of 

the posterior cingulate/precuneus and lateral parietal cortex) whereas increased FC was 

observed in the anterior DMN component (comprised predominantly of the medial 

prefrontal cortex). Interestingly, anterior DMN areas showing increased FC at baseline 

subsequently decreased at the follow up visit (Damoiseaux et al. 2012a). This pattern 

suggests that distinct DMN components may follow different patterns of FC changes 

throughout the progression of the disease.

A similar mixed pattern has emerged across studies investigating the relationship between 

Aβ status and glucose metabolism as measured with FDG-PET within CNs. Although one 

recent large study of 628 CNs age 70 and older showed that elevated Aβ was associated with 

hypometabolism in ADvulnerable regions (Knopman et al. 2014), smaller studies have 

found hypermetabolism within Aβ+ CNs (Johnson et al. 2014; Oh et al. 2014).

Overall, Aβ+ CNs tend to show altered patterns on measures of brain function. However, the 

direction and regional distribution of these changes are often inconsistent across studies. It is 

possible that some measures of brain function show initial increases in response to Aβ 

followed by subsequent decreases. It is also possible that increased brain activation and/or 

metabolism may predate Aβ deposition (Jagust and Mormino 2011), given that Aβ release 

has been shown to be activity dependent (Cirrito et al. 2005). Specifically, neuronal 

inefficiencies that occur independently of Aβ may actually promote the deposition of Aβ late 

in life. Thus, Aβ+ CNs with elevated measures of brain function may be CNs that have 
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recently become Aβ+, whereas Aβ+ CNs that have been Aβ+ for a longer period may begin 

to show AD-like decreases in functional brain measures. Interesting, recent work by Jack 

and colleagues revealed increased DMN FC in Aβ− CNs that subsequently became Aβ+ 

over a short follow up period (1.3 years), offering support for the idea that increased 

connectivity may predate Aβ deposition (Jack et al. 2013b). Further longitudinal studies will 

be essential to disentangle the temporal relationship between Aβ and activation patterns 

within CNs.

Structural Brain Markers

A link between Aβ and cross-sectional structural brain markers within CNs has been 

difficult to establish, with some studies reporting reduced gray matter in Aβ+ CNs (Becker 

et al. 2011; Dickerson et al. 2009; Dore et al. 2013; Mormino et al. 2009; Rowe et al. 2010; 

Storandt et al. 2009; Tosun et al. 2011) while others have not (Chetelat et al. 2010; Schott et 

al. 2010; Whitwell et al. 2013; Wirth et al. 2013a). These inconsistencies suggest that cross-

sectional effects between Aβ and gray matter structure are likely subtle and may vary 

depending on cohort and the examined gray matter measurement. Whitwell and colleagues 

demonstrated the influence of measurement by examining gray matter volumes defined with 

the AAL atlas and gray matter thickness defined using Freesurfer. This analysis failed to 

find a consistent pattern across techniques when contrasting Aβ+ and Aβ− CNs. However, a 

consistent pattern across methods emerged when contrasting Aβ+ clinically impaired 

subjects (mild cognitive impairment and AD patients) to Aβ− CNs (Whitwell et al. 2013). 

Thus, although associations within CNs may be subtle and influenced by methodological 

approaches, Aβ-related gray matter reductions may become more evident once clinical 

impairment has been reached.

Cognition

Given that change in cognition is thought to be the most downstream event in the cascade 

leading to AD, it is not surprising that strong and consistent associations between Aβ status 

and cross-sectional cognition are not identified within CN samples. Furthermore, 

participants must perform within the normal range on neuropsychological screening tests to 

be included in a CN sample. Thus, the restricted variance in cognitive measures within 

studies of CNs will limit the ability to detect associations between Aβ and cross-sectional 

cognitive measures. Nevertheless, many studies have investigated whether associations 

between Aβ and cross-sectional cognitive measures exist within CNs. Given that episodic 

memory impairment is an early feature of AD (Grober et al. 2008; Small et al. 2000), many 

researchers have focused on the relationship between Aβ status and memory processes 

within CNs. Although some studies report lower memory scores in CNs with higher levels 

of Aβ compared to lower levels of Aβ (Pike et al. 2011; Rentz et al. 2011), others have not 

identified an association between Aβ status and memory (Aizenstein et al. 2008; Rodrigue et 

al. 2012; Storandt et al. 2009). Furthermore, subtle associations across multiple cognitive 

domains were reported in a large study of 408 CNs (higher levels of Aβ were associated 

with lower scores in memory, executive function, language and visual spatial function, with 

subtle albeit significant Spearman rho values ranging from −0.12 to −0.14) (Kantarci et al. 

2012). This analysis highlights that the association between Aβ and cross-sectional cognition 

is subtle and may span multiple cognitive domains.
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Additional Factors Contribute to Variance in Cross-Sectional AD Markers Within CNs

Although some biomarker models suggest that functional and structural brain changes 

relevant to AD occurs downstream to initiating Aβ accumulation (Hardy and Selkoe 2002; 

Jack et al. 2013a), other studies suggest that pathways promoting Aβ and these brain 

changes initially occur independently among CNs (Jack et al. 2013b; Wirth et al. 2013a). 

Although these early brain changes likely encapsulate alterations in brain function and 

structure (as discussed in previous sections of this review), recent emphasis in the field has 

been placed on markers of “neurodegeneration” (ND) (which are typically assessed with 

structural MRI and FDG-PET, as well as CSF tau) (Jack et al. 2012). Models suggesting that 

ND occurs downstream to Aβ versus models suggesting these processes initially occur 

independently are not mutually exclusive—Aβ and ND may initially begin via separate 

pathways, but at some point this association may strengthen as ND related to Aβ becomes 

more pronounced. The potential independence of pathways promoting Aβ and ND has been 

highlighted by attempts to classify older CNs into preclinical AD stages as recently 

proposed by the National Institute on Aging and the Alzheimer’s Association workgroup 

(Sperling et al. 2011). This staging approach classifies CNs into groups based on joint Aβ 

and ND status: Stage 0 is defined as Aβ−/ND−, Stage 1 as Aβ+/ND−, and Stage 2 as Aβ

+/ND+. An additional category of Aβ−/ND+ CNs was initially not included within this 

staging criteria and subsequently labeled as “Suspected Non-Alzheimer’s disease 

Pathology” (SNAP) by Jack and colleagues (Jack et al. 2012). To classify CNs as ND+, 

proxy measures of neurodegeneration that are greatly compromised in AD have been used 

(such as hippocampus volume, glucose metabolism in cortical regions known to be 

vulnerable to Alzheimer’s disease, and CSF tau). The proportions classified across 

preclinical stages are remarkably similar across cohorts (Jack et al. 2012; Mormino et al. 

2014; Vos et al. 2013; Wirth et al. 2013c), with approximately 40-50 % classified as Stage 0 

(Aβ−/ND−), 10-15 % as Stage 1 (Aβ+/ND−), and 15 % as Stage 2 (Aβ+/ND+). 

Interestingly, approximately 25 % of CNs are classified as SNAP (Aβ−/ND+), emphasizing 

that many Aβ− CNs have evidence of ND.

It is likely that ND in the absence of elevated Aβ is influenced by non-Aβ factors in aging 

(Fjell et al. 2013; Jagust 2013). Given that the majority of CNs above age 60 will have 

neurofibrillary tangle (NFT) pathology in the medial temporal lobe (Braak and Braak 1997; 

Nelson et al. 2012), it is likely a proportion of the variance captured by markers of ND 

reflects tangle pathology (Jagust et al. 2009; Whitwell et al. 2008). The prevalence of NFTs 

and Aβ across the lifespan is consistent with two independent pathways, such that NTFs 

begin early in adulthood and are common in mid-life (although restricted to the medial 

temporal lobe) whereas Aβ accumulation is very uncommon until after age 60 (Fig. 1). 

Thus, although both NFT and Aβ pathologies are central to AD development, these 

processes likely occur independently during the early stages of AD and may account for the 

weak association between Aβ and ND within CNs. Non-AD pathologies are also likely 

contributors to ND within CNs, such as infarcts (Bennett et al. 2006), Lewy bodies (Bennett 

et al. 2006), TDP-43 (Wilson et al. 2013b), and/or hippocampal sclerosis (Barker et al. 

2002). Furthermore, a sizeable subset of amnestic mild cognitive impairment (MCI) subjects 

demonstrate non-AD pathologies affecting the medial temporal lobe (Jicha et al. 2006), and 

associations between neuroimaging ND markers and non-AD pathologies have been 
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established. For instance, markers of cerebrovascular disease have been correlated with 

reductions in gray matter volume and glucose metabolism (DeCarli et al. 1995), whereas 

cortical gray matter reductions are prominent in patients with autopsy confirmed 

frontotemporal lobar degeneration with TDP-43 inclusions (Whitwell et al. 2010). In 

addition to associations between hippocampus volume and non-AD pathologies (Jack et al. 

2002), hippocampus volume has also been associated with markers of inflammation 

(Marsland et al. 2008), stress (Lupien et al. 1998), and the use of estrogen replacement 

therapy (Eberling et al. 2004), highlighting that the hippocampus in particular may be 

vulnerable to many distinct processes. Overall, these pervasive associations across multiple 

factors highlight that imaging markers of ND are not specific for AD processes.

It is also possible that “normal aging” processes in the absence of underlying pathologies, 

such as synaptic alterations (Morrison and Hof 1997) contribute to the signal captured in 

neuroimaging markers of ND. Along these lines, associations between chronological age 

and markers of gray matter (Raz et al. 2004; Sowell et al. 2003) as well as glucose 

metabolism (Knopman et al. 2014) have been established. Importantly, these relationships 

are oftentimes gradual and consistent throughout the lifespan, occurring before the age at 

which abnormal levels of Aβ accumulation are apparent. Recent work directly investigating 

characteristics of older Aβ− CNs with evidence of ND have found associations with white 

matter hyperintensities (Wirth et al. 2013c) as well as with sex (such that Aβ− men are more 

likely to show ND than Aβ− women) (Mormino et al. 2014), offering additional insights into 

non-Aβ factors that may promote ND. Overall, it is likely that imaging markers used to 

assess AD-like ND within CNs are not specific to Aβ, but rather are influenced by a 

multitude of non-Aβ processes as well as normal aging (Jack et al. 2014). Thus, the 

contributions of multiple processes to ND in aging would likely obscure the ability to isolate 

effects between Aβ and cross-sectional AD markers within CNs (Fig. 2).

Associations Between Aβ and Longitudinal Changes in AD Markers

Associations between Aβ and longitudinal change in imaging and cognitive markers tend to 

be more consistent than associations between Aβ and cross-sectional measures. 

Discrepancies between cross-sectional and longitudinal analyses may be due to the limited 

range of values selected at baseline inherent to CN samples. As discussed in the above 

section, it is also possible that effects related to Aβ are superimposed upon changes 

influenced by many other age-related processes, many of which may occur gradually over 

the lifespan. For these reasons, isolation of Aβ-related effects in aging may be more readily 

detectable with longitudinal designs.

Longitudinal Structural Brain Markers

Many studies have reported that Aβ+ CNs undergo faster rates of atrophy as measured with 

different gray matter measures, such as voxel based morphometry (Chetelat et al. 2012), 

gray matter thickness (Dore et al. 2013), gray matter volumes (Storandt et al. 2009), as well 

as in the boundary shift integral (a method that assesses volume loss by determining the 

amount a structure’s boundary has shifted across longitudinally collected structural MRI 

measurements) (Schott et al. 2010). However, the spatial pattern of these changes is not 

consistent across studies, especially with respect to whether Aβ accumulation within CNs is 
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specifically associated with atrophy of medial temporal lobe structures. For instance, some 

studies have reported longitudinal atrophy in the medial temporal lobe (Chetelat et al. 2012; 

Schott et al. 2010), whereas other work suggest that medial temporal lobe atrophy increases 

at a similar rate in CNs with and without evidence of Aβ positivity (Fjell et al. 2009, 2014). 

Given the prolonged period of Aβ accumulation within CNs (Villemagne et al. 2013), it is 

possible that different brain regions show varying degrees of vulnerability throughout the 

period at which Aβ accumulation occurs. For instance, frontoparietal atrophy has been 

indentified in Aβ− CNs showing early signs of Aβ accumulation whereas a more distributed 

pattern of atrophy was present in CNs that had already surpassed the threshold of Aβ 

positivity. Interestingly, atrophy in the hippocampus was not observed within Aβ+ CNs, but 

was present in Aβ+ AD patients (Mattsson et al. 2014). Studies that simultaneously 

investigate the time course of both Aβ and ND will be able to establish whether a sequential 

involvement of brain regions tracks with Aβ accumulation in CNs.

Longitudinal Cognition

Studies assessing the relationship between Aβ and either retrospective or subsequent 

cognitive and functional decline within CNs have converged to reveal greater risk of decline 

within Aβ+ CNs. Some studies have found cognitive decline that is specific to memory (Lim 

et al. 2013a), whereas decline in non-memory domains have been indentified in other studies 

(Snitz et al. 2013; Wirth et al. 2013b). Specifically, Lim and colleagues reported an 

association between Aβ status and a composite measure of verbal memory (Logical Memory 

delayed recall, California Verbal Learning Test delayed recall and California Verbal 

Learning Test d’) as well as a composite measure of visual memory (Rey Complex Figure 

Test 30 min delayed recall, CogState One Card Learning task, and CogState One Back task), 

whereas no association with Aβ status was found with composite measures of executive 

function (Stroop, Letter Fluency, and Category Fluency Switching), language (Category 

Fluency and Boston Naming Test), attention (Digit Symbol, CogState Detection task, and 

CogState Identification task) or visuospatial function (Rey Complex Figure Test Copy, and 

Clock Drawing) (Lim et al. 2013a). Conversely, Snitz and colleagues reported an association 

between Aβ status with cognitive decline on individual measures of visual memory 

(immediate and delayed recall of the Rey Complex Figure Test 30), as well as on a measure 

of executive function (Trials B), attention (Trials A) and language (Category Fluency) (Snitz 

et al. 2013). Wirth and colleagues also found associations between Aβ status and cognitive 

decline that was not specific to memory when examining a composite measure of non-

memory tests (Stroop, Controlled Oral Word Association Test, Trails A, and Digit Symbol) 

(Wirth et al. 2013b). Inconsistencies across these studies may be due to differences in 

sample sizes (Lim et al.: N=390, Snitz et al.: N=194, Wirth et al.: N=38), as well as 

differences in the selection criteria used within each cohort [for instance, the cohort used by 

Lim and colleagues enriches for the APOE4+ genotype and the presence of subjective 

cognitive complaints (Rowe et al. 2010), whereas the cohort used by Snitz and colleagues 

specifically enrolls CNs older than other studies investigating the relevance of Aβ within 

CNs (72–96 years of age)].

In addition to associations across memory and non-memory domains, Aβ+ CNs also show 

decline in measures of global cognitive function, such as in the MMSE (Resnick et al. 2010) 
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and ADAS-cog (Doraiswamy et al. 2012; Landau et al. 2012b). Furthermore, Aβ+ CNs have 

greater risk of progression on functional measures, such as on the clinical dementia rating 

scale (Roe et al. 2013) and progression to mild cognitive impairment and dementia 

(Villemagne et al. 2011). Overall, Aβ positivity within CNs increases risk of subsequent 

decline on both cognitive and functional measures. However, future studies are necessary to 

elucidate whether specific cognitive domains are selectively affected by Aβ status within 

CNs, and whether these domain specific relationships may be modified by APOE4 status, 

subjective cognitive complaints, and chronological age.

Factors that may Promote Resilience to Damaging Effects of Beta-Amyloid

An additional concept that may obscure relationships between Aβ and markers of AD within 

CNs is the notion of resilience to damaging effects of Aβ. Specifically, it is possible that 

additional factors interact with Aβ to determine whether and how fast an individual will 

progress along the trajectory towards AD. Thus, it is possible that heterogeneity exists 

within the Aβ+ group. In a simplified scenario, Aβ+ CNs may be categorized into 2 types—

preclinical-Aβ+ and resilient-Aβ+ (in actuality, it is more likely that a continuum of 

resilience exists with most cases falling between these 2 categories). In this framework, 

preclinical-Aβ+ CNs are on the trajectory towards AD, and are concurrently cognitively 

normal because they are at the beginning of the AD trajectory. Longitudinal follow-up of 

these CNs would reveal cognitive decline and progression to AD. Conversely, longitudinal 

follow-up of resilient-Aβ+ CNs would reveal that these Aβ+ CNs have remained clinically 

normal, suggesting the presence of protective factors within this subgroup. The remainder of 

this review will discuss emerging evidence that heterogeneity within Aβ+ CNs exists.

Greater Atrophy and Decline in CNs that are Both Positive for Aβ and Neurodegeneration

Recent work has suggested that longitudinal atrophy is greatest in CNs that have evidence of 

both Aβ accumulation and neurodegneration (Fig. 2). For instance, Desikan and colleagues 

found greater entorhinal cortex atrophy in Aβ+ CNs that also had elevated quantities of CSF 

phospho-tau (Desikan et al. 2011). Consistent with this finding, data from the Mayo Clinic 

Study of Aging suggests that CNs that are both Aβ+ and ND+ at baseline show higher rates 

of medial temporal lobe gray matter loss and hypometabolism (Knopman et al. 2013) as well 

as atrophy as measured using a multivariate score derived from multiple brain regions 

known to be vulnerable to AD (the medial temporal lobe as well as cortical regions 

including lateral temporal cortex, precuneus, angular gyrus and occipital gyrus) (Jack et al. 

2014). Likewise, studies investigating decline in function and cognition have also found 

greatest risk in CNs positive for both Aβ and ND. Specifically, Aβ+/ND+ CNs are more 

likely to progress to MCI (Knopman et al. 2012; Rowe et al. 2013) and from Clinical 

Dementia Rating (CDR) 0 to 0.5 (Desikan et al. 2012; Vos et al. 2013) than CNs negative on 

both markers as well as CNs positive for either Aβ or ND. A similar pattern has emerged 

when examining longitudinal cognition, such that Aβ+/ND+ CNs show the greatest rate of 

cognitive decline over time (Mormino et al. 2014; Wirth et al. 2013b).

As discussed earlier in this review, the association between Aβ and cross-sectional ND is 

often inconsistent and likely obscured by additional non-Aβ factors in aging (Fjell et al. 

2014; Jack et al. 2013b; Jagust 2013). Thus, the observation that Aβ+/ND+ CNs are most at 
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risk for decline is consistent with the existence of heterogeneity within Aβ+ CNs by 

suggesting that two separate processes must converge to direct an individual towards AD. A 

number of possible mechanisms exist that may underlie a synergistic interaction between Aβ 

and ND. For instance, it is possible that ND renders neurons more susceptible to toxic 

effects of Aβ. Either process alone may be insufficient to alter cognition, but the “double 

hit” of both processes may promote decline by overwhelming compensatory processes. 

Given that neurofibrillary tangles (NFTs) have been shown to mediate toxic effects of Aβ 

(Ittner and Gotz 2011), increased risk in Aβ+/ND+ CNs may reflect the co-occurrence of Aβ 

and NFT pathologies (assuming that ND captures NFT pathology to some extent (Jagust et 

al. 2009; Whitwell et al. 2008)). Although Aβ and NFT pathologies occur on distinct time 

scales, the spread of NFTs from medial temporal lobe regions to neocortex may occur in 

conjunction with late life Aβ accumulation. Thus, late life Aβ may induce NFT spread, 

which in turn promotes toxicity and cognitive decline. Regardless of the mechanism 

underlying increased risk in Aβ+/ND+ CNs, factors that reduce the likelihood of ND may 

offer resilience to damaging affects of Aβ and enable these Aβ+ CNs to remain clinically 

normal.

Genetic Factors Accelerate the Effect of Aβ

Genetic factors, such as polymorphisms for genes encoding the Apolipoprotein E (APOE) 

and brain-derived neurotrophic factor (BDNF) proteins, have also been shown to interact 

with Aβ to accelerate longitudinal changes. We recently showed an interaction between the 

APOE4+ genotype and Aβ status in predicting cognitive decline in a large group of 490 

CNs, such that APOE4+/Aβ+ CNs showed greater decline over a median follow up period of 

1.5 years than all other CN groups (APOE4−/Aβ−, APOE4+/Aβ−, and APOE4+/Aβ+) 

(Mormino et al. 2014). Although the APOE4 genotype is known to influence AD risk 

through increased Aβ accumulation (Kok et al. 2009; Reiman et al. 2009), this genotype also 

effects neuronal integrity through Aβ-independent mechanisms (via synaptogensis, synaptic 

plasticity, tau phosphorylation, mito-chondrial activity, neuroinflammation, and 

neurodevelopment (Wolf et al. 2013)). These Aβ-independent mechanisms are consistent 

with human imaging studies that have revealed reduced glucose metabolism (Knopman et al. 

2014; Reiman et al. 2004) and gray matter (Alexopoulos et al. 2011; Shaw et al. 2007) in 

APOE4+ CNs before the age at which Aβ accumulation occurs. Hypometabolism and 

reduced resting state connectivity have also been shown in older APOE4+ CNs lacking 

evidence of fibrillar Aβ accumulation (the mean age in the study by Jagust and Landau was 

77 years whereas the mean age in the study by Sheline and colleagues was 62 years) (Jagust 

and Landau 2012; Sheline et al. 2010a). It is also possible that Aβ and APOE4 in 

conjunction impart greater levels of neuronal toxicity, given that the apoE4 protein is less 

effective than apoE3/2 in responding to neuronal injury (Mahley and Huang 2012). Potential 

mechanisms by which APOE4 status may influence the AD trajectory is depicted in Fig. 3.

Similar to the increased risk identified in APOE4+/Aβ+ CNs, in a study of 165 CNs 

followed over 3 years, Yen et al. demonstrated that Aβ+ CNs that also have the val66met 

BDNF polymorphism show greater rates of hippocampal atrophy and cognitive decline (Lim 

et al. 2013b). Although this polymorphism is not associated with greater levels of Aβ 

accumulation, it results in decreased production of the BDNF protein and impairment of 
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neuronal and synaptic growth (Egan et al. 2003). Thus, BDNF genotype is another factor 

that may dictate an individual’s ability to tolerate underlying levels of Aβ.

Sex Differences and Risk of AD

Given that AD is more common in women than men (Zhang et al. 1990), sex differences 

may also interact with Aβ to effect rates of atrophy and decline within CNs. Although the 

mechanism underling women’s heightened AD risk is unknown, it may be influenced by 

factors such as estrogen related changes during menopause and/or increased inflammatory 

processes (Carter et al. 2012), either of which may make women more susceptible to toxic 

effects of Aβ. Although the potential interaction between sex and Aβ in influencing 

downstream AD changes is currently understudied among amyloid imaging studies, it has 

been shown that women’s elevated AD risk is modified by both the presence of the APOE4 

allele and age (Duara et al. 1996; Farrer et al. 1997). Likewise, decreased resting state 

functional connectivity within APOE4+ CNs is exacerbated in women CNs (Damoiseaux et 

al. 2012b). Given that the APOE4 allele and age are both associated with higher levels of 

Aβ, it is possible that interactions between sex and either APOE4 or age is mediated by 

elevated Aβ levels. Along these lines, Pike and colleagues demonstrated that only women 

Aβ+ CNs showed lower scores on a composite measure of episodic memory (comprised of 

the delayed recall portions of the California Verbal Learning Test, the Rey Complex Figure 

Test, and the Logical Memory Test from the Wechsler Memory Scale), whereas an effect of 

Aβ on this composite memory score was not present within men (Pike et al. 2011). Another 

study found greater entorhinal cortex atrophy in women that was independent of both Aβ 

and APOE4 status within CNs (Holland et al. 2013). Thus, brain changes related to sex 

differences in aging may make women more susceptible to AD in the presence of concurrent 

Aβ accumulation.

Reserve and Risk of AD

Within the reserve framework, an individual with higher reserve is able to remain clinically 

normal for longer than an individual with lower reserve despite equivalent levels of 

underlying pathology (Stern 2012). Individuals with high reserve are thought to have either 

greater quantities of neurons and synapses (“brain reserve”), and/or a better ability to 

employ alternative strategies or compensatory mechanisms (“cognitive reserve”) than 

individuals with low reserve.

Although estimating reserve differs across studies, proxies such as education, occupation 

and engagement in cognitively stimulating activities have all been shown to decrease risk of 

AD (Stern et al. 1994; Verghese et al. 2003). Amyloid imaging studies investigating reserve 

within CNs have revealed stronger relationships in low reserve participants between Aβ 

status and memory (as measured with delayed recall from the Memory Capacity Test) 

(Rentz et al. 2010) as well as associations between reserve and a global measure of 

cognition above and beyond what is explained by Aβ status and markers of ND (Vemuri et 

al. 2012). The latter study by Vemuri and colleagues is consistent with a large postmortem 

study of non-demented individuals that found associations between past and current 

cognitive activity with retrospective global cognitive decline that was independent of 

multiple age-related pathologies (Aβ, but also neurofibrillary tangles, infarcts and Lewy 
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bodies; associations with cognitive activity were also seen with decline in episodic memory, 

semantic memory, working memory, and visuospatial memory when these cognitive 

domains were examined separately) (Wilson et al. 2013a). These studies suggest that high 

levels of reserve may exert protective effects by masking downstream cognitive decline 

related to Aβ. However, high levels of reserve have been shown to be associated with 

reduced levels of Aβ within CNs (Landau et al. 2012a), which is consistent with animal 

work showing increased clearance of Aβ in mice exposed to enriching environments (Costa 

et al. 2007). Thus, cognitive reserve may exert protective effects both through influencing 

quantities of pathology, and also by preventing decline related to pathology. Interestingly, 

individuals with high reserve show steeper rates of decline after AD diagnosis than AD 

individuals with low reserve (Teri et al. 1995), suggesting that once the protection inferred 

by reserve is surpassed, the extensive underlying pathology exerts a large effect.

Conclusion

Evidence across multiple laboratories suggests that accumulation of Aβ within CNs is 

consequential. Specifically, Aβ+ CNs show alterations in functional brain measures, 

increased brain atrophy, as well as subtle reductions in cognition and increased risk of 

subsequent decline. Although inconsistencies exist across studies investigating the relevance 

of Aβ in aging, it is likely that Aβ-related effects are superimposed upon effects related to 

multiple other age-related processes, making Aβ-related effects difficult to isolate with CN 

cohorts. Furthermore, detrimental effects of Aβ may be dampened or exacerbated by 

additional factors, enabling some individuals to be resilient while other CNs show 

heightened vulnerability to this pathology. Thus, the relevance of Aβ within CNs is complex 

and involves multiple factors. To fully elucidate these complex relationships, it is essential 

to investigate large cohorts that are sufficiently powered to test interactions across multiple 

variables at once. An important remaining question pertains to the extent to which 

heterogeneity within Aβ+ CNs exists. Specifically, it will be critical to establish the average 

time for an Aβ+ CN to progress to AD, and how much variance exists around this estimate. 

Do some Aβ+ CNs progress within 5 years while others progress in 25 years? If so, what 

factors influence this variability? As we increase our understanding of these complexities, 

we can build multivariate models that combine Aβ status with additional relevant factors to 

derive individualized risk estimates (similar to approaches that have been used to determine 

individualized breast cancer risk (Amir et al. 2010)). Overall, the complex interactions 

between Aβ and additional risk factors will help elucidate the relevance of Aβ to the aging 

brain and inform strategies geared towards AD prevention.
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Fig. 1. 
Prevalence of Aβ+ CNs across the lifespan. Data across multiple studies are plotted by 

sample age and percent classified as Aβ+ (a total of 3512 subjects from post-mortem studies 

and 2034 from amyloid-imaging studies are represented). The area of each bubble is scaled 

by group size, ranging from 12 to 639 CNs (for studies reporting Aβ+ prevalence across 

multiple age groups, multiple bubbles are used). Although Aβ+ classification is study 

specific, a consistent pattern emerges. These studies reveal a low proportion of Aβ+ CNs 

younger than 60, followed by a linear increase in the proportion of Aβ+ CNs after age 60 

(~30 % of CNs are Aβ+ at age 75). Post-mortem studies and Aβ+ classification are as 

follows: A/black = Braak & Braak (CERAD B & C, N=2661) (Braak and Braak 1997); 

B/red = Kok et al. (CERAD moderate and frequent, N=534) (Kok et al. 2009); C/light blue 

= Savva et al. (CERAD moderate and severe, N=183) (Savva et al. 2009); D/pink = Bennett 

et al., Religious Orders Study (CERAD probable and definite, N=98) (Bennett et al. 2006); 

E/dark blue = Bennett et al., Memory and Aging Project (CERAD probable and definite, 

N=36) (Bennett et al. 2006). Amyloid PET studies and Aβ+ classification are as follows: 1/

purple = Knopman et al. (>1.5 PIB SUVR with gray matter cerebellum, N=806) (Knopman 

et al. 2014); 2/orange = Morris et al. (>0.18 PIB Binding Potential with gray matter 

cerebellum, N=241) (Morris et al. 2010); 3/yellow = Johnson et al. 2014 (florbetapir 

qualitative read; N=201) (Johnson et al. 2014), 4/dark green = Rowe et al. (>1.5 PIB SUVR 

with gray matter cerebellum, N=183) (Rowe et al. 2013), 5/hot pink = Mormino et al. 2014, 

Alzheimer’s Disease Neuroimaging Initiative Phase 2 study (>1.126 florbetapir SUVR gray 

and white matter cerebellum, N = 198) (Mormino et al. 2014), 6/green = Mormino et al. 

2014, Harvard Aging Brain Study (>1.196 PIB SUVR gray and white matter cerebellum, 

N=161) (Mormino et al. 2014); 7/dark red = Mathis et al. 2013 (>1.57 PIB SUVR gray 

matter cerebellum, N=152) (Mathis et al. 2013); 8/brown = Wirth et al. 2014 (>1.12 PIB 

DVR gray matter cerebellum, N=92) (Wirth et al. 2014)
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Fig. 2. 
Multiple factors contribute to “downstream” brain changes in the trajectory towards 

Alzheimer’s disease. Although many models of AD suggest that Aβ is an initiating event in 

a cascade that triggers downstream brain changes and cognitive decline (as depicted by the 

red boxes and arrows), emerging evidence suggests that multiple non-Aβ factors influence 

these downstream brain changes. These additional factors include non-Aβ pathologies 

(arrows 1 & 2), environmental factors such as stress and estrogen replacement therapy 

(arrow 3) as well as “normal” aging processes (arrow 4). Regardless of which factors 

contribute to downstream brain changes, the convergence of these changes with Aβ 

accumulation has been shown to accelerate further downstream changes (arrow 5)
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Fig. 3. 
Influence of APOE4 status on the trajectory towards Alzheimer’s disease. The presence of 

the APOE4 allele may affect an individual’s risk of AD through multiple mechanisms. 

Specifically, the APOE4+ genotype is consistently associated with greater levels of Aβ 

accumulation (arrow 1), suggesting that this genotype increases the chance of an individual 

becoming Aβ+ and entering the AD trajectory. However, there is also evidence that APOE4 

interacts with Aβ status to impart greater synaptic damage when these events co-occur 

(arrow 2). Finally, the APOE4 allele may exert detrimental effects by directly affecting 

downstream brain changes in the absence of Aβ (arrow 3), making the individual more 

susceptible to AD in late life when additionally confronted with elevated Aβ
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