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Abstract
The diagnosis and treatment of childhood asthma is complicated by its mechanistically dis-

tinct subtypes (endotypes) driven by genetic susceptibility and modulating environmental

factors. Clinical biomarkers and blood gene expression were collected from a stratified,

cross-sectional study of asthmatic and non-asthmatic children from Detroit, MI. This study

describes four distinct asthma endotypes identified via a purely data-driven method. Our

method was specifically designed to integrate blood gene expression and clinical biomark-

ers in a way that provides new mechanistic insights regarding the different asthma endo-

types. For example, we describe metabolic syndrome-induced systemic inflammation as an

associated factor in three of the four asthma endotypes. Context provided by the clinical bio-

marker data was essential in interpreting gene expression patterns and identifying putative

endotypes, which emphasizes the importance of integrated approaches when studying com-

plex disease etiologies. These synthesized patterns of gene expression and clinical markers

from our research may lead to development of novel serum-based biomarker panels.
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Introduction
More than 20 million Americans have asthma, including approximately 7 million children under
the age of 18. The cost of treating asthma in children under 18 in the United States is estimated
at $3.2 billion per year [1,2]. Recently, there has been an increased scrutiny of the heterogeneity
of clinical disease [3,4] and mechanistically distinct endophenotypes, or “endotypes” [5–7]. Most
studies, however, rely heavily on conventional clinical diagnostic criteria and a handful of well-
established biomarkers [3,4,6–10]. These approaches are limited because the molecular mecha-
nisms underlying different asthma etiologies are as yet inadequately described and remain an
area of active research [2,11–13]. New integrative, systems-based approaches can better define
the functional and regulatory pathways that play central roles in respiratory pathophysiology [2].

Several studies have leveraged genomics [11,14,15] or proteomics [16] data to better de-
scribe the mechanisms underlying different asthma endotypes. Studies using airway epithelial
cells identified potential endotypes of asthma [17], evaluated effects on corticosteroid treat-
ment [18], and identified potential biomarkers [19]. Transcriptional phenotypes from induced
sputum samples refined the knowledge of distinct molecular mechanisms associated with dif-
ferent asthma endotypes [14]. Genes [15] and proteins [16] have been previously identified
from blood that represent potential biomarkers for asthma.

The Mechanistic Indicators of Childhood Asthma (MICA) study collected clinical and
blood gene expression biomarkers on a cohort of 192 predominantly African American chil-
dren from Detroit, MI with and without asthma [20]. Despite a higher prevalence of asthma in
low-income and minority children in the U.S., African Americans represent one of the least
studied races with regards to asthma [21,22]. Simple clusterings of subjects by either the clinical
biomarkers or gene expression alone show no differentiation between asthmatics and non-
asthmatics (S1 Fig.). The objective of our study is to differentiate asthmatics from non-
asthmatics using a systems-based decision tree approach that incorporates gene expression and
clinical biomarker measurements to define potential asthmatic endotypes (Fig. 1).

Results
Fig. 1A summarizes the Pearson correlations of the gene expression and clinical biomarkers,
which yielded 11 gene clusters (A-K) based on shared biomarker correlations. Summarizing the
gene expression from each cluster using principal component analysis resulted in 2–5 meta-
genes per cluster, which were all combined to serve as features for decision tree construction as
described in the methods. The result was an optimized tree (Fig. 1B) comprised of 7 metagenes
that segregated asthmatics from non-asthmatics with individual leaves representing putative
asthma endotypes (Leaves 1, 2, 5, and 8). Building the decision tree with features that aggregat-
ed information from clusters of multiple genes based on their correlation with clinical markers
maximized the mechanistic information available for interpreting the putative endotypes [23].

Since each blood cell type has a distinct gene expression pattern, linear regression analysis
was used to account for changes in measured gene expression due to changes in the relative
proportions of the cell types. S1 Table shows three metagenes markedly associated with blood
cell type (Adjusted R2 > 0.1). The biological pathways underlying each metagene were identi-
fied via Ingenuity Pathways Analysis (Ingenuity Systems, www.ingenuity.com). S2 Table lists
all the networks that were evaluated (S2–S9 Figs.). A number of clinical biomarkers were signif-
icantly correlated with key genes underlying each metagene (Fig. 1A). These clinical biomark-
ers (S3 and S4 Tables) were also considered in the interpretation of the tree. The biomarkers,
together with the biological pathways inferred from the gene expression, provided new mecha-
nistic information underpinning the distinct endotypes. Key insights from each data stream
are summarized for each of the 7 metagenes (Fig. 2).
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Fig 1. Data integration and reduction to build decision tree. Adapted from [23]. (A) Heat map shows absolute value of the Pearson correlations between
901 genes (X axis) and 81 clinical biomarkers (Y axis) for the 192 study subjects. Hierarchical clustering yielded 11 gene clusters labeled A-K with the
corresponding gene lists provided in S5 Table. The clinical biomarkers are listed in S6 Table along with their dendrogram-clustered groupings. (B) Decision
tree shows partitioning of the 146 subjects with unambiguous asthma status into mechanistically distinct asthmatic and non-asthmatic leaves based on
metagenes developed by dimension reduction of the gene clusters using principal component analysis. The metagenes are labeled by gene cluster and
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Eosinophilia
The initial branch of the tree is based on the aggregate gene expression summarized in the K-PC1
(cluster K, first principal component) metagene. K-PC1 separated subjects into two distinct
groups: those on the left hand side (Leaves 1–3) have a high incidence of eosinophilia (defined as
> 0.4 K eosinophils/μL), whereas those on the right hand side (Leaves 4–8) are almost exclusively
non-eosinophilic (Fig. 2A and S3 Table). These results suggest that the two putative endotypes on
the left hand side (Leaves 1 & 2) would be classified as Th2-high asthmatics whereas the two puta-
tive endotypes on the right hand side (Leaves 5 & 8) would be Th2-low asthmatics [6,11,17,24].

As shown in Fig. 2A, all three data streams (cellular drivers, gene expression, clinical mark-
ers) help to explain this split. Linear regression found eosinophils and lymphocytes accounted
for the majority of this metagene’s variation (Adjusted R2 = 0.62) and eosinophils as its prima-
ry contributor, with parameter estimate-0.43 (S1 Table). The gene cluster derived from K-PC1
(Fig. 1A) included only three genes: CAT, RNASE2, and CLC, and all three genes have a
known role in eosinophil activation. Charcot-Leyden crystal protein (CLC) is a lysophospholi-
pase expressed primarily in eosinophils and basophils and is associated with inflammation in
general and eosinophil activation in particular. Polymorphisms in CLC are associated with al-
lergic rhinitis [25]. RNASE2 and catalase (CAT) are highly expressed in eosinophils and are
predictive biomarkers of atopy [26] and asthma [27], respectively. All three genes are associat-
ed with the left branch of K-PC1 based on the principal component analysis. The cellular and
clinical markers associated with Leaves 1–3 (under the left branch for K-PC1) are elevated eo-
sinophil percent and number, increased fractional exhaled nitric oxide (FeNO), and atopy
(based on allergen-specific IgE levels), all well-established clinical biomarkers for Th2-
mediated immune response. In contrast, Leaves 4–8 (K-PC1, right branch) show no markers
related to Th2 influence on asthma status. Following the initial branch, there is no discrimina-
tory power for eosinophils with comparable levels across Leaves 1–3 and Leaves 4–8.

Eosinophilic Asthmatics Split into Allergic Asthmatics and a Mixed
Endotype with Adaptive and Innate Immune Drivers
The two eosinophilic asthma endotypes from the left hand side of the tree can be further subdi-
vided into an atopic asthmatic endotype (Fig. 3A) primarily characterized by high eosinophils
and established markers for atopy (S3 Table) and a mixed eosinophilic and neutrophilic endo-
type (Fig. 3B) [11]. The atopic asthmatics in Leaf 1 are defined entirely by metagene B-PC2
(Fig. 2B). The mechanistic interpretation once again matches the clinical characteristics with
lymphocytes emerging as the primary cellular driver (S1 Table) and gene expression changes
suggestive of an adaptive immune response (S3 Fig.). The Leaf 2 endotype is defined by the
combined influence of B-PC2 (Fig. 2B) and C-PC2 (Fig. 2C). In contrast to Leaf 1, the B-PC2
gene expression (S3 Fig.) and cellular driver (monocytes, S1 Table) in this case are more consis-
tent with an innate rather than adaptive immune response. A particularly notable gene is PRE-
LID1, which has previously been shown to inhibit Th2 cell development and may explain the
lower values for Th2 associated clinical biomarkers in Leaves 2 and 3 when compared with
Leaf 1. The C-PC2 gene annotations (S4 Fig.) and associated clinical biomarkers (very low den-
sity lipoproteins (VLDL), triglycerides) suggest an influence of metabolic syndrome in deter-
mining this asthmatic endotype. However, the clinical biomarkers are not appreciably different

principal component (e.g., K-PC1 represents gene cluster K, principal component 1). Arrows represent whether subjects were above or below the decision
tree’s entropy-based cutpoint. Pie charts for each leaf show the number of asthmatics (red) and non-asthmatics (blue). Geometric means of selected clinical
biomarkers per leaf are provided in S3 and S4 Tables.

doi:10.1371/journal.pone.0117445.g001
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Fig 2. Mechanistic interpretation of the decision tree.Cellular drivers were determined by using linear regression as described in the methods and
summarized in S1 Table. The results are summarized in green boxes. Gene expression changes were interpreted using Ingenuity Pathway Analysis (IPA).
The top networks from IPA are listed in S2 Table along with their significance scores. All networks that were considered as part of the functional interpretation
are included as S2–S9 Figs. The final functional summaries from this analysis are shown in blue boxes. Clinical biomarkers (S3 and S4 Tables) correlated
with the key genes from each metagene are shown in the purple boxes; atopy is based on allergen-specific IgE levels (S3 Table, Phadiatop) and IgE
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between the two leaves (S4 Table) suggesting the need for new biomarkers. The inclusion of
the adiponectin receptor in the C-PC2 gene signature points to adiponectin as a possible bio-
marker of importance for identifying the Leaf 2 asthma endotype.

B-PC2 (Fig. 2B) separates atopic asthmatics (Fig. 3A) from the other eosinophilic subjects
(Leaves 2–3). Lymphocytes and monocytes are the cellular drivers for this metagene, account-
ing for approximately a third of its variation (Adjusted R2 = 0.37), and are similar in magnitude
of their parameter estimates (S1 Table). The B-PC2 network (S3 Fig.) has four genes (IGHM,
S100A10, EIF4A1, TCL1A) associated with the left branch leading to Leaf 1. While S100A10
and EIF4A1 are involved in more general cellular functions, IGHM and TCL1A are specific to
T cell maturation and adaptive immune response. Equally compelling is the association of
PRELID1 with the right branch of B-PC2 where inhibition of Th2 cell development [28] poten-
tially reduces the contribution of adaptive immunity to asthma (Fig. 3B); subjects in Leaf 1
where Th2 cell-activated eosinophils and lymphocytes dominate have the complementary ab-
sence of any PRELID1-induced protection. The remaining genes associated with the right
branch of B-PC2 relate to chemokine signaling and immune cell activation.

C-PC2 (Fig. 2C) separates the subjects from the right branch of B-PC2 into an asthmatic
endotype Leaf 2 characterized by lower allergen specific IgE levels and Leaf 3 characterized by
high atopy with low asthma prevalence. The network for the C-PC2 metagene (S4 Fig.) contains
three informative hub nodes (i.e. highly connected genes within the network) which potentially
play a prominent role in the biological processes underlying the observed gene expression
changes. The immunoglobulin hub node suggests underlying adaptive immune responses for
the Leaf 2 asthma endotype. A second hub is an NFkB complex, broadly associated with en-
hanced inflammation associated with adaptive and innate immune response. A third hub un-
derscores the importance of insulin with connections to immunoglobulin, NFkB, and key genes
from C-PC2. One of the key genes from the C-PC2 metagene is the adiponectin receptor, which
plays a role in glucose homeostasis [29] and is associated with asthma risk in women [30,31].
Two clinical markers associated with metabolic syndrome (triglycerides, VLDL) were signifi-
cantly correlated with the genes in the C-PC2 network (S4 Fig.); however, there was no substan-
tive difference in the geometric means for these markers between Leaves 2 and 3. The clinical
measures associated with atopy (total IgE, allergen-specific IgE) are higher in Leaf 3.

Non-Eosinophilic Asthma Endotypes, Innate Immunity, and Metabolic
Syndrome
The two asthma endotypes (Fig. 3 C, D) falling on the right hand side of the tree show little evi-
dence for involvement of eosinophils or adaptive immunity, which is consistent with a Th2-low
classification [11]. Both the B-PC1 (Fig. 2D) and J-PC2 (Fig. 2E) metagene networks contain
genes associated with innate immune cell activation (S2 and S8 Figs.); the F-PC2 (Fig. 2F) and
E-PC2 (Fig. 2G) metagene networks contain genes associated with metabolic syndrome (S5 and
S7 Figs.). In particular, both the F-PC2 and E-PC2 networks contain the HNF4A or MODY1
gene, which has long been associated with Type 2 diabetes [32] but not previously associated
with asthma. As with the Leaf 2 endotype on the left hand side of the tree, clinical biomarkers
associated with metabolic syndrome (body mass index, leptin, triglycerides, VLDL) are associat-
ed with the E-PC2 and F-PC2 metagenes but alone are insufficient to define either asthma
endotype. The mechanistic differences between the Leaf 5 (Fig. 3C) and Leaf 8 (Fig. 3D)

represents total serum IgE. (A) K-PC1, no IPA network (B) B-PC2, S3 Fig. (C) C-PC2, S4 Fig. (D) B-PC1, S2 Fig. (E) J-PC2, S8 and S9 Figs. (F) F-PC2, S7
Fig. (G) E-PC2, S5 and S6 Figs.

doi:10.1371/journal.pone.0117445.g002
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Fig 3. Four distinct asthma endotypes identified by data-driven integration of blood gene expression and clinical biomarkers. Underlying
mechanistic information is suggestive of metabolic syndrome and potential biomarkers.

doi:10.1371/journal.pone.0117445.g003
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endotypes appear to be subtle. One interesting clue is the stronger association of Leaf 5 with
clinical markers of dyslipidemia (VLDL, triglyderides) and Leaf 8 with glucose homeostasis
(leptin). Another clue is the strong influence of monocytes on the B-PC1 metagene correspond-
ing to a noticeable difference in monocyte count in Leaves 4–6 compared with Leaves 7–8.

B-PC1 (Fig. 2D) separates 58 subjects, where approximately one fourth are asthmatic, from
29 subjects, where over half the subjects have asthma. As with its counterpart on the left side of
the tree (B-PC2, Fig. 2B), B-PC1 is partially driven (Adjusted R2 = 0.35) by monocytes and
lymphocytes as indicated by the linear regression results (S1 Table). The two most highly con-
nected hubs in the B-PC-1 network (S2 Fig.) are interferon-gamma and beta-estradiol. The in-
terferon-gamma protein is a potent activator of macrophages, which coupled with the fact that
the majority of key genes for this metagene are associated with its left branch, suggests that
macrophage activation maybe an important driver for the Leaf 5 asthma endotype (Fig. 3C).
This interpretation is further supported by the association of monocytes (a macrophage pre-
cursor) with B-PC1’s left branch and consequent higher levels of monocytes in all its corre-
sponding Leaves (4–6) relative to B-PC1’s right branch (Leaves 7 and 8) (S3 Table). Four genes
(S100A10, CX3CR1, EIF4A1, PRELID) from the B-PC1 network (S2 Fig.) are associated with
regulation of immune cell activation and differentiation. Two other genes (LGALS1, PTP4A2)
are generally associated with increased cellular proliferation and migration, both of which play
a role in neutrophil and monocyte activation and invasion of these cells to target tissues. Pro-
tein complexes including two other key genes from this network (S100A10, ANXA2) also influ-
ence macrophage activation by plasmin [33,34].

J-PC2 (Fig. 2E) is the next metagene below B-PC1’s left branch and partitions the corre-
sponding non-asthmatics mostly into Leaf 6, rendering the leaf with the smallest percentage of
asthmatics (<10%). The J-PC2 network (S8 Fig.) shares two hub genes (immunoglobulin,
NFkB) with C-PC2 but has no genes associated with metabolic syndrome. Instead, the majority
of the key genes from this metagene are associated with immune cell activation and cell growth
as seen with B-PC1 (e.g. TNFRSF1A, colony stimulating factor 2 receptor (CSF2RB), formyl
peptide receptor 1 (FPR1), and several chemokine and cytokine receptors). This network in-
cludes integrin (ITGAX), which has been specifically shown to mediate the adherence of mono-
cytes and neutrophils to stimulated endothelial cells, increasing the confidence in the B-PC1
suggestion that a heightened activation state of these cells may increase asthma susceptibility by
making themmore prone to invasion of the lung tissue. The heightened state of activation is
further indicated by the presence of a regulator of cytokine production (NAMPT) and a gene
(HCK) previously implicated in respiratory burst, migration, and degranulation in neutrophils.

F-PC2 (Fig. 2F) is the next metagene below B-PC1’s right branch and it partitions subjects
into Leaf 7, a mixed group with slightly less than 50% asthmatics, and Leaf 8, a putative asthma
endotype. The central hub node in the networks for both E-PC2 (S5 Fig.) and F-PC2 (S7 Fig.)
is HNF4A (often referred to as MODY1). Mutations in this gene are associated with Type 2 di-
abetes [32]. The clinical biomarkers BMI and leptin are correlated with this metagene and are
commonly associated with metabolic syndrome, but as for C-PC2, there was no substantive dif-
ferentiation of subjects into Leaves 7 and 8. F-PC2 is unique among the metagenes associated
with metabolic syndrome (the others being C-PC2 & E-PC2) in that the associated biomarker
is involved with glucose regulation (leptin) rather than a marker for dyslipidemia (triglycerides,
VLDL). The F-PC2 network (S7 Fig.) includes several genes that support the overall theme of a
heightened activation state for the innate immune system. A membrane bound cytokine
(CKLF) is a potent chemoattractant for neutrophils, monocytes, and lymphocytes; a pair of the
key genes (S100A12, S100A9) bind the cytoskeleton and regulate oxidative metabolism in neu-
trophils [35]. Asthmatic subjects are not partitioned cleanly into Leaves 7 and 8; thus, these
two leaves may represent a single asthma endotype. Leaf 7 does have a slightly different profile
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of clinical markers with the highest total and antigen-specific IgE of all the leaves on the right
hand side of the tree. This suggests that Leaf 7 could have something in common with Leaf 2 as
well. Despite the ambiguity with this particular leaf, the F-PC2 metagene still provides addi-
tional support for the role of both metabolic syndrome and inflammatory cell activation in de-
termining the mechanistic basis underlying an asthma endotype.

E-PC2 (Fig. 2G) defines the one potential asthma endotype (Leaf 5) that falls under the left
branch of B-PC1. The central hub node in networks for both E-PC2 (S5 Fig.) and F-PC2 (S7
Fig.) is HNF4A (aka MODY1), which has long been associated with Type 2 diabetes [32]. The
key genes for this metagene do not provide the same level of mechanistic information seen
with the other metagenes. The majority of the key genes correspond to ribosomal proteins, and
all the genes in this network perform general cellular functions relating to cellular proliferation,
differentiation, and energetics. E-PC2 shares clinical biomarkers with F-PC2 (BMI) and C-PC2
(triglycerides, VLDL) related to metabolic syndrome.

Impact of Medication Use
A survey of asthma medication use among the eight leaves resulting from the decision tree
analysis (S4 Table) showed no correspondence between the frequency of medication use and
any of the resulting endotypes. A similar analysis focusing on different classes of medication
(i.e. corticosteroids, leukotriene inhibitors, beta-adrenergic agonists) also showed no relation-
ship between drug class and the putative endotypes. In addition, the close correspondence be-
tween the putative endotypes in Leaves 1 and 2 and previous clinical classifications suggest that
while medication use may relieve the overt symptoms, the mechanistic biomarkers (e.g. eosino-
phils, FeNO, total IgE, allergen-specific IgE) are still altered. While medication use does not ap-
pear to explain our results, it represents a confounding factor in this analysis. It is interesting to
note that all asthmatics falling into leaves with predominantly non-asthmatic subjects (Leaves
3, 4, 6, and 7) were on medications, which could indicate a slight dampening of the molecular
markers by the asthma medications. The incidence of daily medication use also tended to be
higher for asthmatics in the non-asthmatic leaves. An open question is the impact of medica-
tion use on the lack of distinction seen between asthma and no asthma in Leaf 7.

Discussion
Our novel, multi-step, systems-based decision tree approach using principal components-sum-
marized gene expression and clinical biomarker correlations [23] differentiated asthmatics
from non-asthmatics revealing biological pathways that potentially underlie the varied asth-
matic endotypes (Fig. 1). The results of this study are for children aged 9 to 13 years and cannot
be extrapolated to all ages. In adults, for example, there are higher prevalence rates of other
asthma phenotypes and endotypes, such as non-allergic asthma and aspirin-exacerbated asth-
ma [36]. Characteristics of the data-driven derived endotypes from this study are consistent
with previously published endotypes based solely on clinical diagnostic criteria [3,4,6,7,9], but
our data-driven method provides mechanistic understanding that is not possible when using
established clinical markers alone. One theme that emerges from this analysis is the interplay
between innate and adaptive immune responses. We clearly see a dominant role for adaptive
immunity in Leaf 1, innate immunity in Leaves 5 and 8, with a mixed contribution in Leaf 2
(Fig. 3). Our results also suggest a role for broad systemic inflammation in addition to the local-
ized hyperreactivity in the lung as a major driver for asthma. This was particularly prominent
with the innate immune mediators. The role for monocytes in mediating asthma has not been
explored to the same degree as neutrophils probably due to the prevalence of resident
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macrophages in the lung. Our results from blood suggest a prominent role for an enhanced ac-
tivation state of these circulating cells in at least one of our asthma endotypes.

Our findings are consistent with studies demonstrating that weight loss improves asthma
symptoms without significant changes in markers of airway inflammation [37]. Of note, BMI
alone is not a predictor of asthma in our study (S4 Table) in contrast with other recent studies
[38]; this may be because we are looking at asthma prevalence in children rather than correlates
of asthma onset. Our study, among others [39–42], putatively identifies underlying mechanisms
linking obesity and asthma through systemic inflammation related to metabolic syndrome and
increases the relevance and understanding of clinical findings. This knowledge, coupled with
genetic associations of obesity with asthma [43] and targeted mechanistic studies [44], should
foster better treatment and diagnosis of these endotypes. An example is the C-PC2 metagene
support for adiponectin as an asthma biomarker in addition to its recognized role in metabolic
syndrome and chronic obstructive pulmonary disease [45,46]. In addition, the prominence of
the HNF-4A gene in the networks for E-PC2 and F-PC2 suggest that polymorphisms in this
gene could influence asthma in addition to their known role in diabetes susceptibility.

In addition to providing mechanistic information important for developing new biomark-
ers, our results provide additional context for interpreting several existing asthma biomarkers.
RNASE2 and catalase (CAT) are highly expressed in eosinophils and have been shown to be
predictive biomarkers for atopy [26] and asthma [27], respectively. Our data-driven study sup-
ports the ATS clinical recommendations regarding the use of fractional exhaled nitric oxide
(FeNO) for asthma diagnosis [47,48]. For children, the predictive ability of FeNO is consider-
ably stronger for atopy in allergic non-asthmatics [49], and there is some question regarding
clinical significance in adults [50]. Since all three biomarkers are critical players for the top left
branch in our tree, our results suggest that they better reflect eosinophilia rather than IgE-
mediated atopy or asthma specifically. In our study, FeNO shows no relationship with asthma
(S1 Table) when considering either the left or right sides of the tree separately (i.e., after the
K-PC1 split on eosinophilia).

Induced sputum eosinophilia has also been used as a biomarker in clinical trials and has prov-
en informative for regulating corticosteroid dose for asthma control [51]. More recently, an assay
based on three IL-13 regulated genes showed promise in distinguishing Th2 driven asthma (Th2-
high) from alternate mechanisms (Th2-low) [17]. Molecular indicators from airway samples for
Th2-low asthmatics have remained elusive. Our results indicate the possibility that airway hyper-
responsiveness in these endotypes is elicited by triggers due to a heightened state of alert for circu-
lating innate immune cells. Detection of increased airway inflammation will consequently be
restricted to periods of active airway constriction during an asthma attack, highlighting the im-
portance of systemic biomarkers for asthma diagnosis. Given that inhaled corticosteroids are
most effective in Th2-high individuals [24,47], our putative endotypes from the right hand side of
the decision tree (Leaves 5, 8, and possibly 7) provide important information for development of
new therapies and diagnostic biomarkers for this ever-growing population [52,53]. Specifically,
our results suggest that a biomarker panel including markers of systemic inflammation as well as
metabolic syndrome is needed for better diagnosis of distinct asthma endotypes.

The strong association between our asthma endotypes and both systemic inflammation and
metabolic syndrome-associated clinical indicators suggests that asthma incidence for the Th2-
low endotypes described here (Leaves 5 and 8) may continue to rise with the worldwide escala-
tion in obesity. Given that inhaled corticosteroids are most effective in Th2-high individuals
[24,47], our putative Th2-low endotypes [17,24] add important mechanistic information for
development of new therapies and diagnostic biomarkers for this ever-growing population.
These proposed endotypes, along with their associations with key biological pathways, should
also provide valuable insights for interpreting the continually expanding list of genes putatively
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identified as genetic risk factors for asthma. Finally, a better understanding of the various asth-
ma endotypes from this and complementary studies provides a scientifically defensible founda-
tion for the evaluation of the many environmental factors influencing each mechanistically
distinct endotype. These synthesized patterns of gene expression and clinical markers from our
research may lead to development of novel serum-based biomarker panels that have improved
sensitivity and specificity in clinical diagnosis of asthma over biomarkers currently available
and reflected in conventional studies of asthmatics.

Materials and Methods

Study Design/Details of Cohort
Details of the Mechanistic Indicators of Childhood Asthma (MICA) study have been previous-
ly published [20]. MICA was a cross-sectional study of a cohort of 205 children comprising
two strata: children with asthma and children without asthma selected in an approximately 1:1
ratio. The rationale for including both asthmatics and non-asthmatics was to provide a basis
for classifying the individuals, rather than simply clustering asthmatics, in evaluation of several
methods for differentiating asthmatics from non-asthmatics [23]. Children aged 9 to 13 years
residing in the communities of Detroit, Dearborn, Highland Park, or Hamtramck and who are
served by the Henry Ford Health System were eligible for selection into the MICA study. Inclu-
sion criteria for asthmatic children: a parent reported doctor’s diagnosis of asthma, both gen-
ders, and all racial/ethnic groups were eligible. Exclusion criteria: medical history or
underlying health problems that preclude participation in the protocol per the physician (in-
cludes cystic fibrosis, viral bronchiolitis, bronchopulmonary dysplasia, heart disease, vocal
cord dysfunction, laryngotracheomalacia, tracheal stenosis, bronchostenosis, or who received
oxygen for more than two weeks after birth or at home), history of respiratory illness in the last
two weeks, had ever smoked five or more cigarettes, or who had been a carrier of a communica-
ble disease. Study participants completed two health questionnaires and underwent a clinical
exam including lung function and analysis of exhaled breath. In addition, blood was drawn
from each participant for analysis of clinical biomarkers and gene expression analysis from
whole blood. The study design and protocols were approved by the Institutional Review Boards
(IRB) at Henry Ford Health System (Detroit, MI), Westat Inc. (Rockville, MD), and the Uni-
versity of North Carolina at Chapel Hill (US EPA’s IRB of record; Chapel Hill, NC). Written
consent was obtained from guardians, and written assent was obtained from each child, with
an oral review of both consent and assent prior to study enrollment.

Of the 205 participants in the original study, data from 192 were used in the clustering of
gene expression and clinical biomarkers (independently of clinical asthma status). Ten of the
205 subjects were excluded because there was insufficient RNA for the gene expression study.
Two other subjects were excluded from the analysis because data were mislabeled (one “male”
and one “female”) and appeared erroneously in two clear sex-specific clusters in a principal
component that explained 62% of the variation in Y-chromosome gene expression. For the re-
maining subject excluded from the analysis, data were missing for 52 of the 81 clinical bio-
markers. Subjects were classified as asthmatic or non-asthmatic based on both clinical records
and a parental questionnaire. A child was considered asthmatic if the clinical record showed
one or more asthma-related emergency department visits, two or more asthma-related outpa-
tient visits, or two or more asthma-related medications. From the parental questionnaire, a
child was considered asthmatic with a parental report of a physician’s diagnosis of asthma. The
decision tree was built using data from 146 children (72 asthmatics, 74 non-asthmatics) with
concordant parental and clinical information, thus excluding children with conflicting or in-
complete asthma status data.
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Collecting clinical biomarker data
See [23] for a detailed description of the clinical biomarker data. The biomarker data include a
number of clinical measures of hematologic, immunologic, and cardiopulmonary variables,
body size measures, allergen exposure indicators, and characterization (titers and types) of cir-
culating white blood cells. Although individual slices of this rich dataset deserve focused study,
the present analysis used data for the 81 biomarkers appropriate for our biomarker-genomic
analysis. The biomarkers were chosen for completeness (i.e. missing data minimized), sam-
pling distribution (normality was checked before correlations were calculated), and compari-
son of our data with expected values from previous studies [23].

Gene expression analysis
Total RNA from blood collected during observational clinic visits [20] was used for Affymetrix
gene expression analysis as previously described [23]. Briefly, blood collected in PAXgene
tubes was used for total RNA isolation using DNAase treatment. Blood gene expression was
measured by Expression Analysis, Inc. (www.expressionanalysis.com, Durham, NC) using the
Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. The raw microarray data were
subjected to the Reduction of Invariant Probes (REDI) algorithm (http://www.
expressionanalysis.com/images/uploads/tech_notes/REDI_Tech_Note1.pdf ) to remove data
from unresponsive probes, were MAS5 normalized, and were adjusted for sex because this bio-
marker dominated the changes in expression seen among the subjects. Finally, genes were fil-
tered using the interquartile range to keep genes whose expression varied across the study
population and log2 transformed to yield a roughly Gaussian distribution. Of the more than
56,000 probe sets collected for each subject, a subset of 1,279 was selected for the multi-step de-
cision tree method. Of these, 901 probe sets showed a significant correlation (p< 0.0006) with
at least one of the clinical biomarkers; these 901 probe sets were used in this study.

The microarray data from this publication have been submitted to the Gene Expression
Omnibus (GEO) repository (http://www.ncbi.nlm.nih.gov/geo/) with identifier GSE35571.

Data analysis strategy (contextual approach)
Following a detailed evaluation of methods based on the ability to segregate asthmatics from
non-asthmatics and provide information regarding the mechanistic drivers underlying the seg-
regation, a novel multi-step process (Fig. 1) was chosen [23]. Briefly, the first step was to calcu-
late the correlation of each clinical biomarker with each gene expression variable for the 192
subjects retained in the study, giving a distribution of Pearson correlation coefficients relating
the 81 biomarkers to each of the 901 genes passing the non-specific IQR filter. Second, to reveal
patterns in the gene-biomarker correlations, we performed unsupervised heat map clustering
(complete linkage; Euclidean distance) using the absolute correlation values [0,1] for all signifi-
cant biomarker-associated genes (Fig. 1A). Certain biomarkers heavily influenced the heat map
clustering of the genes due to the large number of associated genes. These biomarkers included
measures of white blood cell types (e.g. percent lymphocytes), nutrition (e.g. triglycerides),
body size (e.g. BMI), blood chemistry (e.g. total protein), and immune markers (e.g. interleukin
4). Third, the genes in the 11 groups/clusters (labeled Gene Cluster A-K in Fig. 1A) were used
as the basis for constructing metagenes that summarized information content across all gene
expression variables in each of the cluster groups. The metagenes were created as 11 linear
combinations of the 901 genes, a substantial reduction of the dimensionality of the data, by
performing separate principal component analyses (PCA) on the expression data for each gene
cluster identified above. This use of PCA was for data reduction [54] and did not factor into
the separation of the subjects performed in the fourth step. Metagenes were named according
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to gene-biomarker cluster and principal component number (e.g. F-PC2 for the second princi-
pal component (PC) from the PCA on genes in cluster F). Fourth, in order to identify asthma
endotypes, these metagenes were input to a recursive partitioning/decision tree method; the
rendered tree was comprised of 7 metagenes selected for optimally partitioning subjects ac-
cording to biomarker-associated gene expression patterns (Fig. 1B). Finally, interpretation of
our decision tree involved 3 main aspects of the MICA data: internal annotation via biomark-
er-genomic correlation patterns, factor loadings from PCA, and pathway analysis via external
annotation (Ingenuity Pathway Analysis).

Regression analysis of metagenes on cell type
All metagenes identified in the development of the decision tree were evaluated by linear re-
gression to estimate variation in the summarized gene expression attributable to the cell types
(eosinophils, lymphocytes, neutrophils, monocytes, basophils). Adjusted R2 values for the final
models are shown in S1 Table, and these may be mildly inflated as a consequence of partial col-
linearity among cell type percentage variables. Collinearity diagnostics were performed on the
final models [55], and no evidence was found of collinearity with substantive consequence.

Specifically, linear models were fit for metagene expression using stepwise selection criteria
of 0.2 for entry and 0.05 to stay in the SAS REG procedure [55]. Collinearity diagnostics were
performed on the final models in SAS REG, which follows Belsley, Kuh, and Welsch [56] in its
approach and includes calculation of condition indices. Belsley, Kuh, and Welsch suggest that
when the condition index is around 10 that weak dependencies may start to affect the regres-
sion estimates and when larger than 100 may reflect a fair amount of numerical error. Clusters
B-PC2 and B-PC1 each have a condition index of 10.64 paired with very small p-values, so any
corresponding variance inflation probably would not change the significance reflected by p-
values. F-PC2 has a condition index of 55.62 but an Adjusted R2 of only 0.05, so the variation
in F-PC2 is only weakly correlated with any of the cell types. An additional model was fit for F-
PC2 removing the neutrophils variable; the resulting Adjusted R2 was lower (0.0157), lympho-
cytes were significant (p-value = 0.0463), and the corresponding condition index was 8.24.

Pathways analysis with Ingenuity Pathways Analysis
Because the metagenes in our decision tree contained summary information from a large set of
genes, those genes identified as key (see below) for each metagene were used to help define bio-
logical pathways that potentially contribute to mechanistic underpinnings of the different
endotypes. Gene lists for each metagene were uploaded to Ingenuity Pathways Analysis (Inge-
nuity Systems, www.ingenuity.com) to identify these underlying biological pathways. The
highest scoring network for each principal component was interpreted for all metagenes, and
the second highest network was considered when the difference in score between it and the top
network was relatively small (S2 Table). S2–S9 Figs. show all networks evaluated.

Key genes were derived for each metagene from the tree by restricting to genes from the clus-
ter where the absolute value of the loading (a measure of the influence for that gene on the prin-
cipal component) was greater than 0.1. This value was empirically set to generate lists of the
appropriate size (13–52) for downstream pathway analysis without considering gene identity or
function. The K-PC1 metagene was excluded from this analysis since there were only three
genes in that cluster. Each gene identifier was mapped to its corresponding gene object in the In-
genuity Pathways Knowledge Base. These genes were overlaid onto a global molecular network
developed from information contained in the Ingenuity Pathways Knowledge Base. Networks of
these focus genes were then algorithmically generated based on their connectivity. The loading
of the gene relative to the metagene was used in place of a raw expression score. As a result,
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genes with a negative loading (green nodes) are positively associated with the left branch (lower
values for the metagene) in the decision tree. Genes with a positive loading (red nodes) are asso-
ciated with the right branch (higher values for the metagene) in the tree. The Functional Analy-
sis of the top scoring network identified the biological functions and/or diseases that were most
significant to the genes in the network. The network genes associated with biological functions
and/or diseases in the Ingenuity Pathways Knowledge Base were considered for the analysis.
Fisher’s exact test was used to calculate a p-value determining the probability that each biologi-
cal function and/or disease assigned to that network is due to chance alone.

Supporting Information
S1 Fig. Representation of raw data. (A) Heatmap showing the 81 clinical biomarkers (X axis)
for all subjects (Y axis). (B) Heatmap showing the gene expression (X axis) for 901 genes used
in downstream analyses for all 192 subjects (Y axis). For both panels, values are scaled by col-
umn using Z scores. Asthma status based on doctor diagnosis is indicated on the left hand side
of the heatmap (red = no asthma, green = asthma, blue = unknown). The total number of asth-
matics is 96 and the total number of non-asthmatics is 88. Eight individuals did not have a re-
ported asthma status from the doctor diagnosis.
(PNG)

S2 Fig. B-PC1, Network 1. The networks were generated through the use of Ingenuity Path-
ways Analysis (Ingenuity Systems, www.ingenuity.com). The loading value for each gene was
imported in place of an expression value, so green nodes (negative loadings) indicate a gene as-
sociated with the left branch (Down) of the metagene whereas red nodes (positive loadings) in-
dicate genes associated with the right branch (Up).
(JPG)

S3 Fig. B-PC2, Network 1. The networks were generated through the use of Ingenuity Path-
ways Analysis (Ingenuity Systems, www.ingenuity.com). The loading value for each gene was
imported in place of an expression value, so green nodes (negative loadings) indicate a gene as-
sociated with the left branch (Down) of the metagene whereas red nodes (positive loadings) in-
dicate genes associated with the right branch (Up).
(JPG)

S4 Fig. C-PC2, Network 1. The networks were generated through the use of Ingenuity Path-
ways Analysis (Ingenuity Systems, www.ingenuity.com). The loading value for each gene was
imported in place of an expression value, so green nodes (negative loadings) indicate a gene as-
sociated with the left branch (Down) of the metagene whereas red nodes (positive loadings) in-
dicate genes associated with the right branch (Up).
(JPG)

S5 Fig. E-PC2, Network 1. The networks were generated through the use of Ingenuity Pathways
Analysis (Ingenuity Systems, www.ingenuity.com). The loading value for each gene was imported
in place of an expression value, so green nodes (negative loadings) indicate a gene associated with
the left branch (Down) of the metagene whereas red nodes (positive loadings) indicate genes asso-
ciated with the right branch (Up). See S6 Fig. for the second highest scoring IPA network for E:
PC2 since its score was still reasonably high relative to the top scoring network (S3 Table).
(JPG)

S6 Fig. E-PC2, Network 2. The networks were generated through the use of Ingenuity Path-
ways Analysis (Ingenuity Systems, www.ingenuity.com). The loading value for each gene was
imported in place of an expression value, so green nodes (negative loadings) indicate a gene

Data-Driven Asthma Endotypes

PLOS ONE | DOI:10.1371/journal.pone.0117445 February 2, 2015 14 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117445.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117445.s002
http://www.ingenuity.com
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117445.s003
http://www.ingenuity.com
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117445.s004
http://www.ingenuity.com
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117445.s005
http://www.ingenuity.com
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117445.s006
http://www.ingenuity.com


associated with the left branch (Down) of the metagene whereas red nodes (positive loadings)
indicate genes associated with the right branch (Up). Second highest scoring IPA network for
E:PC2 since its score was still reasonably high relative to the top scoring network (S3 Table).
(JPG)

S7 Fig. F-PC2, Network 1. The networks were generated through the use of Ingenuity Path-
ways Analysis (Ingenuity Systems, www.ingenuity.com). The loading value for each gene was
imported in place of an expression value, so green nodes (negative loadings) indicate a gene as-
sociated with the left branch (Down) of the metagene whereas red nodes (positive loadings) in-
dicate genes associated with the right branch (Up).
(JPG)

S8 Fig. J-PC2, Network 1. The networks were generated through the use of Ingenuity Pathways
Analysis (Ingenuity Systems, www.ingenuity.com). The loading value for each gene was imported
in place of an expression value, so green nodes (negative loadings) indicate a gene associated with
the left branch (Down) of the metagene whereas red nodes (positive loadings) indicate genes asso-
ciated with the right branch (Up). See S9 Fig. for the second highest scoring IPA network for J:
PC2 since its score was still reasonably high relative to the top scoring network (S3 Table).
(JPG)

S9 Fig. J-PC2, Network 2. The networks were generated through the use of Ingenuity Path-
ways Analysis (Ingenuity Systems, www.ingenuity.com). The loading value for each gene was
imported in place of an expression value, so green nodes (negative loadings) indicate a gene as-
sociated with the left branch (Down) of the metagene whereas red nodes (positive loadings) in-
dicate genes associated with the right branch (Up). Second highest scoring IPA network for J:
PC2 since its score was still reasonably high relative to the top scoring network (S3 Table).
(JPG)

S1 Table. Contribution of cell type to metagene summarized expression. Results from a for-
ward-reverse multi-step regression of each metagene from the asthma decision tree on the white
blood cell counts and percentage of each individual cell type. Overall contribution of relative
changes in cell type was based on the Adjusted R2 coefficient of determination. The sign of the
parameter estimate was used to determine the branch of the tree associated with the cell type.
(DOCX)

S2 Table. Top scoring Ingenuity Pathways Analysis networks with associated annotations.
B-PC1 and F-PC2 had only one significant network each. For all other metagenes, the highest
scoring network that was not considered is included and the score shown. Full page views of all
networks considered in the interpretation phase are shown in S2-S9 Figs.
(DOCX)

S3 Table. Inflammation/allergy-related characteristics of subjects by leaf (�endotype). Geo-
metric means and CIs were calculated using SAS-callable SUDAAN [57]; other statistics were
calculated using SAS [58].
(DOCX)

S4 Table. Metabolic syndrome-related clinical markers along with lung function and medi-
cation use by leaf (�endotype).
(DOCX)

S5 Table. Gene clusters from Fig. 1A. Gene symbols as of the date of analysis along with Affy-
metrix probe ids are provided. Clusters are identified by color (from the dendrogram) and

Data-Driven Asthma Endotypes

PLOS ONE | DOI:10.1371/journal.pone.0117445 February 2, 2015 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117445.s007
http://www.ingenuity.com
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117445.s008
http://www.ingenuity.com
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117445.s009
http://www.ingenuity.com
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117445.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117445.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117445.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117445.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0117445.s014


letter (from labels) in reference to Fig. 1A of the main manuscript.
(XLSX)

S6 Table. Biomarker listing with rows and groups as in Fig. 1A dendogram.
(DOCX)
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