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BACKGROUND AND PURPOSE
Tricyclic antidepressants are used clinically as first-line treatments for neuropathic pain. Opioid receptors participate in this
pain-relieving action, and preclinical studies in receptor-deficient mice have highlighted a critical role for δ-, but not μ-opioid
receptors. In this study, we investigated whether κ-opioid (KOP) receptors have a role in the antiallodynic action of tricyclic
antidepressants.

EXPERIMENTAL APPROACH
We used a model of neuropathic pain induced by unilateral sciatic nerve cuffing. In this model, the mechanical allodynia was
evaluated using von Frey filaments. Experiments were conducted in C57BL/6J mice, and in KOP receptor-deficient mice and
their wild-type littermates. The tricyclic antidepressant nortriptyline (5 mg·kg−1) was delivered twice a day for over 2 weeks.
Agonists and antagonists of opioid receptors were used to test the selectivity of the KOP receptor antagonist
norbinaltorphimine (nor-BNI) in mice with neuropathic pain.

KEY RESULTS
After 12 days of treatment, nortriptyline relieved neuropathic allodynia in both wild-type and KOP receptor-deficient mice.
Surprisingly, acute nor-BNI reversed the effect of nortriptyline in both wild-type and KOP receptor-deficient mice. Further
experiments showed that nor-BNI action was selective for KOP receptors at a late time-point after its administration (8 h), but
not at an early time-point, when it may also interact with δ-opioid (DOP) receptors.

CONCLUSIONS AND IMPLICATIONS
KOP receptors are not necessary for the effect of a tricyclic antidepressant against neuropathic allodynia. These findings
together with previous data indicate that the DOP receptor is the only opioid receptor that is necessary for the antiallodynic
action of antidepressants.

Abbreviations
DOP receptor, δ-opioid receptor; KOP receptor, κ-opioid receptor; MOP receptor, μ-opioid receptor; nor-BNI,
norbinaltorphimine; SNC80, 4-[(R)-[(2S,5R)-2,5-dimethyl-4-prop-2-enylpiperazin-1-yl]-(3-methoxyphenyl)methyl]-
N,N-diethylbenzamide; TCA, tricyclic antidepressant; U-50,488H, trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-
cyclohexyl]-benzeneacetamide

BJP British Journal of
Pharmacology

DOI:10.1111/bph.12963
www.brjpharmacol.org

1034 British Journal of Pharmacology (2015) 172 1034–1044 © 2014 The British Pharmacological Society

mailto:mbarrot@inci-cnrs.unistra.fr


Introduction
Neuropathic pain is defined as a consequence of a lesion or a
disease affecting the somatosensory system (Jensen et al.,
2011). It is generally a chronic condition resistant to classical
analgesic drugs (Attal et al., 2010). The recommended phar-
macotherapy for neuropathic pain includes the use of mono-
amine re-uptake inhibitors, such as tricyclic antidepressant
(TCA) drugs or 5-HT and noradrenaline re-uptake inhibitors
(Dworkin et al., 2007; Attal et al., 2010). Preclinically, studies
on TCA action in neuropathic pain models highlighted the
involvement of opioid receptors (Valverde et al., 1994; Gray
et al., 1998; Marchand et al., 2003; Anjaneyulu and Chopra,
2006; Mico et al., 2006; Nozaki and Kamei, 2006; Benbouzid
et al., 2008a,b; Bohren et al., 2010; Wattiez et al., 2011).
However, these pharmacological studies showed some discrep-
ancies concerning the roles of the different opioid receptors.

Some studies have shown a preferential involvement of
the δ-opioid (DOP) receptor in the antinociceptive effect of
antidepressants (Gray et al., 1998; Schreiber et al., 1999;
Benbouzid et al., 2008a), while others have demonstrated the
involvement of both μ-opioid (MOP) and DOP receptors
(Schreiber et al., 2000; Marchand et al., 2003; Nozaki and
Kamei, 2006). The conflicting results observed in the litera-
ture may be related to differences between the neuropathic
pain models that were used or the symptoms that were
studied, but also to the limited in vivo selectivity of opioid
receptor antagonists. Selectivity problems may be solved in
part by using genetic approaches with different opioid recep-
tor knockout mice. Indeed, in a murine model of neuropathic
pain that is sensitive to long-term, but not acute antidepres-
sant treatment (Benbouzid et al., 2008a,b; Yalcin et al., 2009;
2014), we recently showed that the antiallodynic effect of
chronic nortriptyline treatment was lost in DOP receptor-
deficient mice (Benbouzid et al., 2008b). Conversely, this
effect was maintained in MOP receptor-deficient mice
(Bohren et al., 2010), demonstrating the critical role of DOP,
but not of MOP receptors, in the antiallodynic action of a
TCA. However, the role of κ-opioid (KOP) receptors in the
treatment of neuropathic pain remains unclear.

The endogenous κ-opioid system is involved in a variety of
physiological processes including analgesia, addiction, anti-
pruritic activity, diuresis, feeding, respiratory and cardiovas-
cular functions (Butelman et al., 2012; Feng et al., 2012). KOP
receptors are widely expressed throughout the brain, spinal

cord and dorsal root ganglia (Minami and Satoh, 1995; Sim
and Childers, 1997), and they can display antinociceptive
activity in a variety of animal pain models, especially visceral
pain (Simonin et al., 1998; Riviere, 2004). Moreover, mice
lacking prodynorphin display increased tail-flick responses
(Wang et al., 2001), while an up-regulation of dynorphin, an
endogenous KOP receptor ligand, occurs in the dorsal horn of
the spinal cord following persistent inflammatory pain (Parra
et al., 2002). This suggests that KOP endogenous pathway
modulates pain responses. In neuropathic pain models, intra-
plantar injection of a KOP receptor agonist produces a signifi-
cant antinociceptive effect, reversed by the co-administration
of the KOP receptor antagonist norbinaltorphimine (nor-BNI)
(Keita et al., 1995). Partial sciatic nerve ligation induces a
sustained release of endogenous prodynorphin-derived
opioid peptides and the increased KOP receptor activation in
the spinal dorsal horn produces antinociceptive effects (Xu
et al., 2004). Moreover, KOP receptor-deficient mice have
enhanced thermal hyperalgesic responses, similar to nor–BNI-
treated mice following sciatic nerve ligation (Xu et al., 2004).
While the κ-opioid system can be altered in neuropathic
conditions, its involvement in the therapeutic effect of anti-
depressant drugs has yet to be elucidated. A pharmacological
study in neuropathic mice treated with the TCA nortriptyline
showed that nor-BNI could acutely reverse the antiallodynic
action of the chronic TCA treatment (Benbouzid et al., 2008a).
However, this effect was only present with 5 mg·kg−1, but not
2 mg·kg−1, of nor-BNI and has not been confirmed using KOP
receptor-deficient mice.

In the present study, we use genetic and pharmacological
approaches to determine whether the KOP receptor partici-
pates to the action of nortriptyline in neuropathic pain. Our
data provide evidence that KOP receptors are not necessary
for the antiallodynic action of nortriptyline. We also showed
that the KOP receptor antagonist nor-BNI displays a time-
dependent selectivity. In particular, nor-BNI still acts in KOP
receptor knockout mice at early time-points after s.c. admin-
istration, demonstrating a lack of acute selectivity.

Methods

The nomenclature for drugs and their molecular targets con-
forms to the British Journal of Pharmacology Guide to Recep-
tors and Channels (Alexander et al., 2013).

Tables of Links

TARGETS

Opioid receptors κ receptor (KOP receptor)

δ receptor (DOP receptor) μ receptor (MOP receptor)

LIGANDS

Dynorphin Norbinaltorphimine

Morphine Nortriptyline

Naloxone SNC80

Naltrexone U-50,488H

Naltrindole

These Tables list key protein targets and ligands in this article which are hyperlinked to corresponding entries in http://
www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al., 2014) and are
permanently archived in the Concise Guide to PHARMACOLOGY 2013/14 (Alexander et al., 2013).
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Animals
Mice lacking KOP receptors were generated as described pre-
viously (Simonin et al., 1998). These mice were under a
C57BL/6J background for over 10 generations. Heterozygous
mice (KOP+/−) were bred in our animal facilities, genotyped
upon weaning, and the experiments were conducted in adult
male KOP+/+ and KOP−/− littermate mice weighing 25–30 g.
The pharmacological experiments of Figure 6 used adult male
C57BL/6J mice provided by the onsite breeding facilities of
the Chronobiotron UMS3415, and were between 8 and 12
weeks-old at the time of surgery.

Mice were group-housed three to five per cage, main-
tained under a 12 h light/dark cycle and allowed access to
water and food ad libitum. The animal facilities are legally
registered for animal experimentation under the Animal
House Agreement C67-482-1. All procedures were performed
in accordance with the guidelines for animal experimenta-
tion of the International Association for the Study of Pain
and the European Community Council Directive 86/609. All
studies involving animals are reported in accordance with the
ARRIVE guidelines for reporting experiments involving
animals (Kilkenny et al., 2010; McGrath et al., 2010), and a
total of 192 animals were used in the experiments described
here.

Neuropathic pain model
Neuropathic pain was induced by inserting a cuff around the
main branch of the right sciatic nerve (Yalcin et al., 2014).
Surgical procedures were carried out under ketamine/xylazine
anaesthesia (ketamine: 17 mg·mL−1, xylazine: 2.5 mg·mL−1,
i.p., 4 mL·kg−1; Centravet, Taden, France). The common
branch of the right sciatic nerve was exposed and a 2 mm
section of split PE-20 polyethylene tubing (Harvard Appara-
tus, Les Ulis, France) was placed around it (cuff group). The
shaved skin was closed using sutures. Sham-operated mice
underwent the same surgical procedure described above but
did not have a cuff inserted (sham group).

Nociceptive test
The mechanical threshold of hindpaw withdrawal was deter-
mined using von Frey filaments and the results were
expressed in g (Bohren et al., 2010; Barrot, 2012; Yalcin et al.,
2014). Mice were placed in clear Plexiglas® boxes (7 × 9 ×
7 cm; SEPIB, Strasbourg, France) on an elevated mesh screen.
Calibrated von Frey filaments (Bioseb, Chaville, France) were
applied to the plantar surface of each hindpaw in a series of
ascending forces. Each filament was applied until it bent
slightly. The g value of the lower filament that gave a positive
response, that is, that induced at least three paw responses
out of five trials, was considered as the paw withdrawal
threshold for this animal. The effect of long-term antidepres-
sant treatment was evaluated at given time-points (at least
twice per week), before the morning antidepressant injection
(Figure 1). The rationale for this protocol was that a thera-
peutic treatment must stay effective over time: an animal
treated on the previous evening should not be allodynic
again on the following morning (Benbouzid et al., 2008a).
The effect of acute drug injections was evaluated before (pre-
test) and at different time-points (post-tests or time course)
following the injection of the drug under consideration.

Treatments
The nortriptyline (5 mg·kg−1) treatment began 15 days after
the surgery, and lasted at least 20 consecutive days without
interruption (Figure 1) (Benbouzid et al., 2008a). Both
nortriptyline and NaCl solutions were administered i.p. twice
a day (morning and evening) in a volume of 5 mL·kg−1

(Figure 1). This dose and the treatment regimen were chosen
based on a previous dose–response study (Benbouzid et al.,
2008a) in which nortriptyline at this dose displayed an antial-
lodynic action after chronic treatment, but no acute analgesic
action. The s.c. injection of the DOP receptor antagonist
naltrindole (5 mg·kg−1), of its control (NaCl 0.9%), or of the
KOP receptor antagonist nor-BNI (5 mg·kg−1) was done after
at least 2 weeks of nortriptyline treatment (Figure 1).

Pharmacological profile of nor-BNI
The s.c. injection of either morphine, the KOP receptor
agonist U-50,488H or the DOP receptor agonist SNC80 was

21 days of  treatment (Nor. or Sal.) Time  

Surgery

Chronic treatment procedure

Day 0 Day 15 Day 36

Overall time course

Daily treatment

09 h 10 h 17 h

Test (on testing days only)

Injection 1 Injection 2
Time

Opioid antagonists

0 30 min

Test Test 

nor-BNI

8 h

Test 

Effect of  nor-BNI

0 30 min

Test Test 

Sal. or 

Naltrindole

Effect of  naltrindole

Figure 1
Timeline of the long-term nortriptyline treatment procedures.
Nortriptyline treatment began at day 15 post-surgery, with mice
receiving two daily injections, morning and afternoon. For the time-
course experiment (Figure 3), animals were tested for mechanical
allodynia at least twice a week. The mechanical threshold was tested
before a morning injection. For the opioid antagonist experiments,
after at least 2 weeks of treatment and while the daily saline and
nortriptyline treatments were still maintained, the acute effect of the
DOP receptor antagonist naltrindole (Figure 4) and of the KOP
receptor antagonist nor-BNI (Figure 5) were tested.
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done in the neuropathic condition only. Beforehand, a pre-
treatment was done with nor-BNI or its control (NaCl 0.9%).
In order to test the selectivity of nor-BNI in the early
phase after its injection, morphine (10 mg·kg−1), SNC80
(10 mg·kg−1) and U-50,488H (5 mg·kg−1) or saline (NaCl 0.9%)
were injected 30 min later. The mice were tested before and
60 min after the pretreatment (experimental design in
Figure 6A), that is 30 min after the agonist administration. In
order to test the selectivity of nor-BNI in the late phase after
its injection, morphine, SNC80 and U-50,488H were injected
7 h 30 min after the pretreatment. In this condition, the mice
were tested before and 8 h after the pretreatment (experimen-
tal design in Figure 6B), that is 30 min after the agonist
administration. The 30 min test delay after the agonist
administration was chosen based on the known analgesia
time course of these compounds (Sounvoravong et al., 2004;
Nozaki et al., 2012). Independent sets of mice were used for
each condition.

Statistical analysis
Data are expressed as mean ± SEM. Statistical analyses were
performed using multifactor ANOVA. The surgical procedure
(sham or cuff) and the treatments (saline vs. drug injections)
were taken as between-group factors. When needed, the time
of nociceptive testing (either time course or preinjection vs.
postinjection data) was taken as a within-subject factor. The
Duncan test was used for post hoc comparisons. The signifi-
cance level was set at P < 0.05.

Chemicals
The following drugs were used: nortriptyline hydrochloride,
nor-BNI dihydrochloride, the DOP receptor antagonist
naltrindole hydrochloride, and the DOP receptor agonist
4-[(R)-[(2S,5R)-2,5-dimethyl-4-prop-2-enylpiperazin-1-yl]-(3-
methoxyphenyl)methyl]-N,N-diethylbenzamide (SNC80)
were obtained from Sigma-Aldrich (St Quentin Fallavier,
France), and the KOP receptor agonist trans-3,4-dichloro-N-
methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide
(U-50,488H) was obtained from Tocris Biosciences (Bristol,
UK). Morphine sulphate was kindly supplied by Francopia
(Paris, France). All the drugs were dissolved in 0.9% physi-
ological saline solution (NaCl) that was also used for control
injections.

Results

Mechanical sensitivity
KOP−/− mice had the same baseline values for mechanical
sensitivity as their wild-type littermates KOP+/+ (Figure 2A and
2B). The sham surgery did not affect the long-term paw with-
drawal threshold, although a transitory drop in mechanical
sensitivity was observed after the surgical procedure
(Figure 2B). Conversely, cuff-implanted mice showed long-
lasting ipsilateral mechanical allodynia, which was present in
KOP+/+ and in KOP−/− mice (Surgery × Time interaction; KOP+/+

F6,138 = 2.4, P < 0.05; KOP−/− F6,132 = 2.4, P < 0.05; post hoc: cuff
< sham in each genotype at P < 0.0001 on post-surgery days
1–15) (Figure 2B). Mechanical allodynia was unaffected by

the presence or absence of the KOP receptor (genotype effect;
F6,270 = 1.0, P > 0.40).

Antiallodynic effect of the antidepressant
drug nortriptyline
Two weeks after the surgery, we started the treatment with
either nortriptyline (5 mg·kg−1) or the control saline solution
(NaCl 0.9%). The mice received two injections per day and
were tested in the morning before drug injection. Previous
data showed that this treatment has no acute analgesic effect
whereas it relieves neuropathic allodynia after 10–12 days of
treatment (Benbouzid et al., 2008a; Bohren et al., 2010). Simi-
larly, the nortriptyline treatment alleviated the cuff-induced
allodynia in KOP+/+ mice after 13 days of treatment [Surgery ×
Treatment × Time interaction; F9,189 = 6.71, P < 0.0001; post
hoc: (CuffNor = Sham) > CuffSal at P < 0.01 on post-surgery
days 28–35] (Figure 3A). The same antiallodynic effect was

KOP–/–, Sham (6)  

KOP–/–, Cuff (6) 

KOP+/+, Sham (6) 

KOP+/+, Cuff (7) 

Left paw

W
it
h

d
ra

w
a

l 
th

re
s
h

o
ld

 (
g

)

Time (days post-surgery)

–3 0 3 6 9 12 15
0

1

2

3

4

5

6

7

A

B Right paw

–3 0 3 6 9 12 15
0

1

2

3

4

5

6

7

W
it
h

d
ra

w
a

l 
th

re
s
h

o
ld

 (
g

)

Time (days post-surgery)

Figure 2
Long-lasting mechanical allodynia after sciatic nerve injury in KOP+/+

and KOP−/− mice. Unilateral cuffing of the main branch of the sciatic
nerve induced long-lasting mechanical allodynia, as tested using von
Frey filaments. (A) Insertion of the cuff did not affect the mechanical
threshold of the contralateral paw (left paw). (B) The cuff induced an
ipsilateral (right paw) mechanical allodynia in both KOP+/+ and KOP−/−

mice. Data are expressed as mean ± SEM, n (number of animals) are
given in parentheses.
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also present in KOP−/− mice (F9,180 = 3.7, P < 0.0001; post hoc:
(CuffNor = Sham) > CuffSal at P < 0.01 on post-surgery days
26–35] (Figure 3B). In both cases, nortriptyline reversed the
cuff-induced allodynia without affecting the mechanical
threshold of the mice in the sham group. Thus KOP receptors
did not appear to be necessary for the antiallodynic action of
nortriptyline.

DOP receptor antagonist effect
Previous data highlighted a critical role of DOP receptors in
the antiallodynic action of nortriptyline (Benbouzid et al.,
2008a,b; Choucair-Jaafar et al., 2014). We thus tested the
effects of an acute injection of the DOP receptor antagonist
naltrindole (5 mg·kg−1) in the KOP+/+ and KOP−/− mice. After at
least 2 weeks of treatment with nortriptyline, the injection of
naltrindole acutely blocked the antiallodynic effect of
nortriptyline (KOP+/+ F1,20 = 10.6, P < 0.01; KOP−/− F1,20 = 9.8,
P < 0.01) (Figure 4A and 4B). The injection of naltrindole

induced a relapse of allodynia within 30 min after its admin-
istration, and this effect was present in both KOP−/− and
KOP+/+ mice. We also observed that naltrindole did not induce
any change in the mechanical sensitivity of mice with sham
surgery or of neuropathic mice treated with saline (Figure 4A
and 4B).

KOP receptor antagonist effect
A previous study showed that an acute administration of
5 mg·kg−1 of the KOP receptor antagonist nor-BNI, but not
2 mg·kg−1, attenuated the antidepressant-induced antiallo-
dynic action (Benbouzid et al., 2008a). On account of these
discrepancies between pharmacological and knockout results,
we then tested the effects of an injection of nor-BNI
(5 mg·kg−1) in the KOP+/+ and KOP−/− mice. After at least 2
weeks of treatment with nortriptyline or saline, the injection
of nor-BNI suppressed the antiallodynic effect of nortriptyl-
ine (Figure 5A). However, this effect was present in both
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Figure 3
A chronic antidepressant treatment relieves neuropathic allodynia in KOP+/+ and KOP−/− mice. Nortriptyline treatment (5 mg·kg−1, i.p. injection
twice a day) or its saline control (NaCl 0.9%) began on post-surgery day 16 and was maintained for at least 20 days (the black line above the graph
indicates the treatment period). The mechanical threshold was measured before the morning drug injection to test the effect of chronic treatment.
In KOP+/+ (A) and KOP−/− mice (B), the antidepressant treatment did not affect the mechanical threshold of the contralateral paw (left paw), but
it reversed the neuropathic allodynia on the ipsilateral paw (right paw). Data are expressed as mean ± SEM, n (number of animals) are given in
parentheses. *P < 0.05, **P < 0.01, ***P < 0.001 cuff treated versus cuff saline group.
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KOP+/+ and KOP−/− animals when we tested the mice 30 min
after nor-BNI injection [KOP+/+ F1,20 = 3.4, P < 0.05; KOP−/− F1,20

= 3.4, P < 0.05; post hoc: (CuffNor = CuffSal) < Sham at P <
0.001] (Figure 5A and 5B). The effect of nor-BNI in KOP−/−

mice suggests a lack of selectivity of the nor-BNI at the
30 min time-point. Previous studies showed that nor-BNI has
long-lasting antagonist activity at KOP receptors (Spanagel
et al., 1994; Patkar et al., 2013). Moreover, it was proposed
that nor-BNI may act on MOP receptors in the first hour after

its administration, whereas the KOP receptor antagonist
action gradually increases, reaching its maximum effect a few
hours after the injection (Endoh et al., 1992; Wettstein and
Grouhel, 1996). Therefore, we tested the mice 8 h after the
nor-BNI injection, and at this time-point, nor-BNI no longer
had an effect on the mechanical threshold of either KOP+/+ or
KOP−/− neuropathic nortriptyline-treated mice (Figure 5A and
5B).

Time-dependent selectivity of nor-BNI
To further study the selectivity of nor-BNI, we analysed the
antiallodynic action of a KOP receptor agonist, U-50,488H
(5 mg·kg−1) and a DOP receptor agonist, SNC80 (10 mg·kg−1)
in the neuropathic mice (Figure 6). We observed an acute
antiallodynic action of the KOP and DOP receptor agonists
60 min after a saline pretreatment [F1,15 = 26.4, P < 0.0001;
post hoc (U-50,488H = SNC80) > Sal, P < 0.0001]. However,
these antiallodynic effects of U-50,488H and SNC80 were lost
60 min after nor-BNI pretreatment (F1,15 = 0.5, P > 0.6)
(Figure 6A). Therefore, at an early time-point, the nor-BNI is
able to block the antiallodynic effect of both a KOP and a
DOP receptor agonist.

We then did a similar experiment 8 h after pretreatment
with saline or nor-BNI. The KOP and DOP receptor agonists
displayed an antiallodynic action after the saline pretreat-
ment [F1,15 = 11.00, P < 0.01; post hoc (U-50,488H = SNC80) >
Sal, P < 0.0001], but 8 h after the nor-BNI pretreatment, the
antinociceptive action of the KOP receptor agonist was
blocked, whereas the DOP receptor agonist remained fully
effective [F1,15 = 19.6, P < 0.0001; post hoc: (U-50,488H = Sal) <
SNC80 at P < 0.001] (Figure 6B). These data illustrate that
nor-BNI becomes selective for KOP receptors a few hours
after its injection, but may also affect DOP receptors at early
time-points.

We also tested whether nor-BNI could block the antiallo-
dynic effect of morphine (10 mg·kg−1), which acts mainly
through the MOP receptor to induce its analgesic action
(Matthes et al., 1996; Sora et al., 1997). We observed that
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nor-BNI had no effect on the morphine-induced mechanical
analgesia either 60 min (F1,10 = 0.02, P > 0.8) (Figure 6C) or 8 h
(F1,10 = 0.8, P > 0.1) (Figure 6D) after nor-BNI pretreatment.
These experiments show that nor-BNI becomes selective for
KOP receptors several hours after injection, and the non-
specific effect observed at the early time-point was mainly
due to an action on DOP, but not MOP receptors.

Discussion and conclusions

In this work, we studied the involvement of KOP receptors in
the antiallodynic action of the TCA nortriptyline. We show
that this antiallodynic action, which can be reversed by a
DOP receptor antagonist, does not require KOP receptors.
Finally, we provide evidence supporting the poor selectivity
of nor-BNI at early time-points after its injection.

The basal mechanical sensitivity was similar in KOP+/+ and
KOP−/− mice. This is in agreement with findings from other
laboratories (Xu et al., 2004; Schepers et al., 2008), even
though in one study a slight reduction in the basal mechani-
cal sensitivity threshold was detected in the KOP−/− mice
(Gaveriaux-Ruff et al., 2008), which may depend on the von
Frey testing procedure (Barrot, 2012). Following the induc-
tion of neuropathy by sciatic nerve cuffing, the intensity of
the mechanical allodynia was also similar for both genotypes.
However, it should be noted that enhanced allodynia can be
observed in another model of neuropathic pain, the partial
sciatic nerve ligation (Xu et al., 2004). In certain conditions,
KOP receptors may thus have a modulatory action on
mechanical sensitivity, but these receptors do not play a
critical role in the establishment or the maintenance of neu-
ropathic allodynia.

Behavioural pharmacology studies have shown that the
antidepressant-induced analgesia can be inhibited by nalox-
one, a non-selective opioid receptor antagonist (Biegon and
Samuel, 1980; Eschalier et al., 1981; Gray et al., 1998; Wattiez
et al., 2011). Moreover, it has also been proposed that chronic
antidepressant treatment can change opioid receptor densi-
ties and increase the level of opioid peptides in different
regions of the nervous system (Antkiewicz-Michaluk et al.,
1987; Hamon et al., 1987). While some authors provide phar-
macological evidence for the involvement of MOP receptors
(Schreiber et al., 2000; Marchand et al., 2003), this is not
supported by studies in MOP receptor-deficient mice (Bohren
et al., 2010), and the DOP receptor appears to be a major
target for the antiallodynic action of antidepressants (Gray
et al., 1998; Schreiber et al., 1999; Ozturk et al., 2006;
Benbouzid et al., 2008b; Choucair-Jaafar et al., 2014). The link
between the opioid system and antidepressant drugs is not
limited to their action in a pain context (Lutz and Kieffer,
2013). Indeed, pharmacological blockade of opioid receptors
antagonizes the antidepressant effect of antidepressant com-
pounds in a behavioural model of depression (Berrocoso
et al., 2004). DOP receptor-deficient mice display anxiety-like
and depressive-like behaviours compared with the wild-type
animals (Filliol et al., 2000), and recruitment of DOP recep-
tors by a selective agonist has antidepressant-like effects in
rodents (Pradhan et al., 2011). Although the opioidergic
system appears to be a common target for the treatment of

depression and pain, the precise downstream mechanism
involved remains to be elucidated.

The role of the KOP receptor in the antidepressant treat-
ment of neuropathic pain remains controversial, only a few
studies have suggested the involvement of the KOP receptor
(Schreiber et al., 1999; 2002; Benbouzid et al., 2008a). Using a
genetic approach, we observe that the therapeutic benefit of
a chronic antidepressant treatment remains present in KOP−/−

mice. These results suggest that, as for the MOP receptor
(Bohren et al., 2010), the KOP receptor is not necessary for
the antiallodynic effect of nortriptyline. However, it has pre-
viously been shown that the acute administration of the KOP
receptor antagonist nor-BNI acutely blocked the antiallo-
dynic effect of chronic nortriptyline treatment (Benbouzid
et al., 2008a). In the present study we confirmed this acute
action of nor-BNI, but we observed it in both wild-type and
KOP−/− mice.

Our data question the in vivo selectivity of nor-BNI. Nor-
BNI is a dimeric naltrexone derivative (Munro et al., 2012)
that has a high in vitro binding selectivity for KOP versus
MOP and DOP receptors, with Ki values of 0.28, 47.2 and
42.9 nM for KOP, MOP and DOP receptors respectively
(Takemori et al., 1988). Although nor-BNI has a high KOP
receptor antagonist activity in vitro (Takemori et al., 1988) and
a long-lasting KOP receptor antagonist activity in vivo (Endoh
et al., 1992; Horan et al., 1992; Broadbear et al., 1994), the
temporal component seems to be a critical factor for its in vivo
selectivity (Endoh et al., 1992; Spanagel et al., 1994; Munro
et al., 2012). For example, in the tail pinch test, the antago-
nistic action of nor-BNI at KOP receptors gradually increased
to reach a maximum effect at 2 h and was maintained over 4
days (Endoh et al., 1992). Moreover, while over 80% of
plasma nor-BNI was eliminated within 2 h (Munro et al.,
2012; Patkar et al., 2013), nor-BNI (after 10 mg·kg−1 injection)
was still present at a low concentration in brain homogenates
up to 21 days after a single i.p. administration, and was still
able to block KOP receptor agonist-induced analgesia up to 7
days after nor-BNI pretreatment (Patkar et al., 2013). This
long-lasting action of nor-BNI in vivo (Horan et al., 1992;
Butelman et al., 1993; Broadbear et al., 1994) was present
despite non-covalent binding in vitro (Bruchas et al., 2007). It
should be noted that previous pharmacokinetic studies
(Munro et al., 2012; Kishioka et al., 2013; Patkar et al., 2013)
have only detected the nor-BNI molecule itself, which cannot
exclude the possibility that nor-BNI may also be biotrans-
formed in vivo into long-lasting metabolites that bind cova-
lently to KOP receptors (Bruchas et al., 2007). However, the
selectivity of a drug is usually decreased after biotransforma-
tion (except for prodrugs). It has also been proposed that the
long-lasting action of nor-BNI could be related to a long-
lasting JNK1-mediated desensitization of KOP receptors
(Bruchas et al., 2007; Munro et al., 2012).

The non-selective early action of nor-BNI might be partly
due to peripheral opioid receptors. Indeed nor-BNI is mostly
distributed in plasma, after its systemic administration, with
levels peaking at 30 min and declining within 2 h (Munro
et al., 2012). Nor-BNI has been reported to antagonize
morphine-induced, but not U-50,488H-induced analgesia in
the first 30 min after its administration (Endoh et al., 1992).
In fact, nor-BNI suppressed morphine-induced analgesia at a
very high dose (30 mg·kg−1), but not at lower doses (3 and
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10 mg·kg−1) (Wettstein and Grouhel, 1996), which is in agree-
ment with our results, showing no effect of 5 mg·kg−1 nor-BNI
on morphine-induced analgesia. At a dose often used for in
vivo studies (Butelman et al., 1993; Menendez et al., 1993),
our study establishes an interaction of nor-BNI with DOP
receptor-related mechanisms at early time-points after its
administration, but confirms the selectivity of nor-BNI for
KOP receptors 8 h after its administration. Lastly, it should be
noted that our experiments were all conducted on the antial-
lodynic action in a model of neuropathic pain. Most of the
studies that showed a time-dependent selectivity of nor-BNI
on the KOP receptor have been done in naïve animals (Endoh
et al., 1992; Horan et al., 1992; Butelman et al., 1993).
However, there is evidence of neuropathy-induced plasticity
of the endogenous κ-opioid system (Stevens et al., 1991; Xu
et al., 2004). Therefore, we cannot rule out the possibility that
a yet unknown mechanism induces off-target actions of nor-
BNI in a neuropathic pain state.

In conclusion, KOP receptors are not necessary for the
antiallodynic action of the TCA nortriptyline. Together with
previous studies on opioid receptor-deficient mice, the
present findings support the idea that the DOP receptor is the
only opioid receptor that is critical for the relief of neuro-
pathic mechanical allodynia following TCA treatment. Fur-
thermore, caution should be taken when using nor-BNI as a
KOP receptor antagonist for behavioural studies. In particu-
lar, its time-dependent selectivity should be taken into
account.
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