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Abstract

Tree growth is an important indicator of forest health, productivity, and

demography. Knowing precisely how trees’ grow within a year, instead of across

years, can lead to a finer understanding of the mechanisms that drive these lar-

ger patterns. The growing use of dendrometer bands in research forests has

only rarely been used to measure growth at resolutions finer than yearly, but

intra-annual growth patterns can be observed from dendrometer bands using

precision digital calipers and weekly measurements. Here we present a workflow

to help forest ecologists fit growth models to intra-annual measurements using

standard optimization functions provided by the R platform. We explain our

protocol, test uncertainty in parameter estimates with respect to sample sizes,

extend the optimization protocol to estimate robust lower and upper annual

diameter bounds, and discuss potential challenges to optimal fits. We offer R

code to implement this workflow. We found that starting values and initial

optimization routines are critical to fitting the best functional forms. After

using a bounded, broad search method, a more focused search algorithm

obtained consistent results. To estimate starting and ending annual diameters,

we combined the growth function with early and late estimates of beginning

and ending growth. Once we fit the functions, we present extension algorithms

that estimate periodic reductions in growth, total growth, and present a method

of controlling for the shifting allocation to girth during the growth season. We

demonstrate that with these extensions, an analysis of growth response to

weather (e.g., the water available to a tree) can be derived in a way that is com-

parable across trees, years, and sites. Thus, this approach, when applied across

broader data sets, offers a pathway to build inference about the effects of

seasonal weather on growth, size- and light-dependent patterns of growth,

species-specific patterns, and phenology.

Introduction

Growth can integrate important influences on an individ-

ual’s fitness. Tree diameter growth correlates with biomass,

and therefore carbon uptake, as well as with pathogen

damage, nutrient availability, and the influence of climate

on photosynthesis among others Barford et al. (2001).

Growth is most often measured in annual censuses or

longer, periods greater than the physiological processes

operating. Developing a better sense of the mechanisms

that determine growth requires more frequent measure-

ments that can be used to develop models of the processes.

For ecological inference, these models need to be synthe-

sized across many individuals, populations, species, and

sites, and so require a consistent method of extracting

growth parameters.

Modeling how the subannual growth of individual trees

has largely been the purview of physiological ecologists.

Ecosystem ecologists have focused on measuring carbon

movement into and out of forest systems using coarse

spatial-scale instrumentation, such as eddy-flux towers.

Demographic data on tree growth and mortality from plot

networks have also been used to infer carbon stocks (e.g.,

(Chave et al. 2005; McMahon et al. 2010)). Carbon fluxes

have been estimated from growth for plots with multiple

censuses of bole diameter at breast height (DBH, or

1.34 m), but these have often been drawn from data with

coarse temporal grain (i.e., census intervals often equal to or
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exceeding 5 years Condit (1998), so we miss the timescale of

driving processes. This approach offers insight into the pat-

terns of carbon stocks and flux, but offers limited inference

on mechanisms, especially related to plant physiology.

Dendrometer bands, steel, or plastic bands that are per-

manently attached to trees with a spring can be measured

easily with precision digital calipers, and offer a low-cost,

accurate method of measuring tree diameter. They have

most often been used for developing more precise esti-

mates of annual growth, the core vital rate measurement

for forest demography. Some examples of intra- annual

uses of dendrometer bands include investigation of sea-

sonal dynamics and growth phenology. Girardin et al.

(2010) measured dendrometer bands every 3 months to

capture seasonal changes in NPP, as did Palmer and

Ogden (1983) who used monthly diameter measurements

in kauri trees in New Zealand. More intensive measure-

ment protocols have been used. Edwards and Hanson

(1996) measured diameter biweekly and monthly, and

Deslauriers et al. (2007) automated dendrometer bands to

investigate 3 years of growth at 15-min intervals for four

trees in the Italian Alps. These studies produced a more

detailed pattern of tree growth, and Deslauriers et al.

(2007) were able to estimate day of starting growth for

their four trees. These studies demonstrate the importance

of fine-scale analyses of growth, but none produce a way

of assessing differences in growth that can be reproduced

across many trees and species and sites. Here we propose

an extension of these approaches, where a weekly or

biweekly measuring protocol (as with Deslauriers et al.

(2007)) is applied to many trees, with a fitting function

that can be used to estimate annual growth, the shape of

the growth function, and provide deviations from that

function that indicate pauses in growth due to weather.

In 2010, we collected weekly measurements of dend-

rometer bands on � 100 trees in a 16 ha Smithsonian

forest dynamics plot at the Smithsonian Environmental

Research Center, Edgewater, MD. This protocol produced

a refined assessment of intra-annual tree growth, one that

has showed, even by visual inspection, a remarkably pre-

cise description of tree diameter change the growing sea-

son, one that can show subtle, weekly, responses of tree

growth to precipitation and temperatures. Our approach

has been to use cases of weather-driven growth response

to build a library of annual scenarios and fit functional

forms to these data to be able to compare tree growth

patterns within and among years.

The core of our workflow involves fitting a functional

form to the time series of diameter measurements that

captures the intra-annual process of individual tree growth

(Fig. 1). Such a growth model reflects the allocation of car-

bon to bole biomass, which is fundamental to establishing

a biological baseline process of plant growth (Paine et al.

2012). As such, deviations from the model may offer

insight into when allocation is constrained by resource

acquisition, such as during periods of high temperatures

or drought. Inference about such fine-scale physiological

dynamics is necessarily sensitive to the precision of the

growth process model that determines, from measurement

data, what the “expected” growth trajectory over a season.

Important inference on biome response to climate requires

developing a growth process model that works across stud-

ies for many trees at many sites over multiple years and

thus modeling process requires more than fitting post hoc

functions to individual data sets, but a complete approach

that can be reproduced in diverse study systems.

The biggest challenge to fitting growth process models

to single-tree data is the complex parameter space that

can describe the growth function, especially when very

small deviations from this function are being interpreted

as environmental (biotic or abiotic) influences on an

“expected” growth process. There are some key criteria

we apply when searching for a growth function.

1. The function must be parametric. Nonparametric

functions can produce very precise fits, but they can-

not parsimoniously reflect the process of growth, that

is, the fundamental goal of this workflow.

2. The fit needs to be repeatable. Through reliance on sto-

chastic fitting algorithms (i.e., simulated annealing or

Metropolis-Hastings), stochastic starting points (from

random draws), or highly customized starting values

(where tracking and comparing starting values from

one tree to another can lead to ambiguous compari-

sons), we aimed to create a workflow that could be

used on every tree in every year at every site and find

the same optimal solution with similar precision.

3. The function can lead to ecologically and physiologi-

cally meaningful metrics. A goal of the overall work-

flow was to develop consistency in fitting functions

and therefore maximize our ability to compare obser-

vations.

There are additional potential criteria for fitting, such

as fit statistics and parsimony. We will address some of

these in the discussion, but the items above we see as fun-

damental to the analysis of multiple growth trajectories,

while other criteria are more subject to the goals and

interests of particular studies. Overall, however, we

selected a highly flexible function, the 5-parameter logistic

function ([LG5], also known as the Richard’s function

(Oswald et al. 2012)), and a suite of potential optimiza-

tion algorithms that are part of the optim() function

in R base R Core Team (2014). We demonstrate that the

LG5 function, and our final protocol, serves all three

goals and offers robust results for a variety of data forms.

Because we understand the physiological processes that

constrain growth, without even conducting an analysis,
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we can draw line by hand through data that gives a rea-

sonable estimate of growth over time. Optimizing func-

tions, conversely, are not informed by biology. For

example, where we see a spring- time beginning of

growth, an optimizing function sees a few observations.

Where we see a progressive slowing of growth in autumn,

an optimization procedure sees noise.

These challenges encouraged a workflow that appreci-

ates the strengths and weaknesses of search algorithms

while testing them for best fits. Specifically, we will here

address (1) starting values, (2) identifying the optimizing

function(s) that lead to best fits, and (3) analyses of the

resulting optimization, including uncertainty, residuals,

and output statistics. We also demonstrate a method to

estimate the starting and ending diameter of the growing

season – one that may not be captured by the estimated

asymptote parameters in the logistic function.

Methods

Site and measurement protocol

In the fall of 2009, we installed dendrometer bands on

100 trees in the Smithsonian Institutions Global Earth

Observatory (SIGEO) plot at the Smithsonian Environ-

mental Research Center (SERC) (Latitude:38.889, Longi-

tude:�76.559). The forest is a mature stand of trees of

the tulip poplar (Liriodendron tulipifera) association

(Brush et al. 1980). The data we use here contain tulip

poplar, beech (Fagus grandifolia), sweetgum (Liquidambar

styraciflua, and white oak (Quercus alba). The bands were

measured approximately once a week through the grow-

ing season in 2010. Each band was measured in the

morning using digital calipers. We used twenty trees from

the 2010 growing season containing different species and

size classes to develop the model workflow.

The structure of the data

Dendrometer band data consist of a series of measure-

ments of the band circumference over the course of the

growing season. Using precision digital calipers, resolu-

tions are typically � 0.01 mm, while observational error

(two standard deviations in measurements of the same

tree) is around 0.03 mm (note that analog calipers have a

precision of 0.1mm and will fail to provide data on

growth response to climate that digital calipers will).

Two transformations of these gap data are helpful for

analysis. First, changing the date of measurement into a

day of the year allows for function fitting of the date as a

continuous variable. This can be done using the

julian() function in the chron package [not

executed here]). For example, for a list of days in months

in a particular year, the day of the year can be calculated

as:

>doy <� julian (day, month, year,origin = c (1, 1,

year))

Additionally, it can be worthwhile to translate the gap

increment measured with calipers into units of dbh so

that all further analyses are carried out on the appropri-

ately scaled data. This merely takes the circumference of

the band (which should be recorded when the band is

installed) and relates gap size to circumference, with a

division by pi (multiplied by 10 to convert the mm cali-

per measurement to cm DBH) producing diameter val-

ues.

A data sample from a single 19 cm dbh beech (Fagus

grandifolia) tree in 2010 from SERC follows.

doy.1 <� c(112, 120, 124, . . . , 301)

dbh.1 <� c (18.99449, 18.99512, 19.00085, . . .,

19.45890)

Plotting these data shows the basic series of observa-

tions to which we will fit functional forms. Figure 2 dem-

onstrates the detail that can be captured with weekly (or

better) measurements.

Models and comparisons

A family of functions, known collectively as Richards

models, can produce good candidate parameterizations

for intra-annual tree growth data (Oswald et al. 2012).

Here we use a five-parameter logistic function. We found

the effort to fit so many parameters worthwhile because

the parameter number is important for precise fits, neces-

sary to discover small fluctuations in growth during the

year. The parameters have straightforward interpretations:

two parameters define the lower and upper asymptotes

(L and K, respectively), doyip marks the day of the year

when the inflection of the curve is predicted to occur,

and the rate parameter r describes the slope of the curve

at the inflection point. The final parameter, h, allows

asymmetrical fits by changing the approach of the upper

asymptote. This is a critical parameter as when h = 1 the

curve is symmetrical but growth forms are rarely symmet-

rical and so its inclusion merits the increased efforts in

fitting a 5-parameter model. The model is then:

dbhdoy ¼ Lþ ðK � LÞ
1þ 1=h � expð�rðdoy � doyipÞ=hÞh

(1)

We created a predicting function from this equation

(pred.lg5), which we use for optimization (see

below). A major problem in fitting such high-parameter

models is the flat- or complex-likelihood surface that

cumulative growth data with five-parameter models can

tend to provide. This is because there may be many com-

binations of parameters that can produce very similar fits.
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Our workflow solves this by proposing appropriate start-

ing values and then honing the fit using a broad search

before employing more focused search techniques.

The optimization workflow

Figure 1 offers a graphical representation of the workflow.

The data are collected (and transformed). Next we fit a

model to the data, followed by several post hoc analyses

that can return values from the data depending on the

questions asked.

Fundamentally, we wanted a function to predict values

of diameter given the day of the year 1. We use this pre-

dictive function to optimize the likelihood (minimizing

the log-likelihood). For any parameter set P, the log-like-

lihood for data x is written as:

lnL ¼ l̂ðPjx1; . . .; xnÞ ¼ l̂ðx01; . . .; x0njx1; . . .; xnÞ
¼

Xn

i¼1

ln f ðx0ijxi; r2Þ; (2)

What this means in terms of the dendrometer band

data is that for any proposed set of parameters (P) and

the known days of the year which the actual data were

taken (doy), (1) gives a predicted vector (time series) of

dbh data (x
0
). The likelihood of these proposed dbh data

comes from a normal probability density function with a

mean vector l = x, the observed dbh data, and a variance

r2 (which we set to 0.12). More “likely” parameter sets

(i.e., L, K, doyip, r, and h) produce predicted dbh data

(x
0
that is closer to the observed dbh data (x). The R

function we use to return a negative log-likelihood value

to the optimization algorithm follows:

>lg5.ML <� function(params, doy, dbh, resid.sd){

pred.dbh <� lg5.pred(params, doy)

pred.ML <� �sum(dnorm(dbh, pred.dbh, resid.sd,

log = TRUE))

return(pred.ML)

}

Here the data are the day of the year (doy) and the

observed dbh measurements (dbh), and the parameters

(params) are proposed by the optimization function

through its search algorithm. The lg5.pred function

(which can be found in the code supplement) returns the

predicted series of dbh measurements given proposed

parameters and doy using (1). The pred.ML line takes

the sum of the log-likelihood (as (2)) using the dnorm
call, which is simply the probability density function a

normal distribution (or in this case log-normal [note the

“log = TRUE” argument]). resid.sd is the standard

deviation used for the probability density function against

which the data are tested (as stated above, we set this to

r = 0.1). When the optim() function is called, an

optimization algorithm (we use a several algorithms in to

develop our workflow) searches for optimal parameter

values by minimizing the pred.ML value(see Bolker

(2008) Chapter 7 for an excellent discussion of general

Figure 1. A diagram of the workflow for intra-annual diameter data.
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Figure 2. Typical data from an intensively measured dendrometer

band. These data are of the first tree in the sample used in this

paper. The data are of an extrapolated diameter (from the steel band

and gap) on each day of the year (numbered from January 1) that

measurements were taken.
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maximum likelihood optimization using the R optim
() function). An example of the optim() call looks

like:

>lg5.output.NM <� optim(par = params, fn = lg5.ML,

resid.sd = resid.sd,

method = “Nelder–Mead”, hessian = TRUE, doy = doy,

dbh = dbh)

Here params are starting parameter values. The

function to be minimized is lg5.ML, and other argu-

ments for that function are given in the call. Other than

the starting parameters, the “method” argument is the

primary argument that we change. Under one algorithm,

we add a “weighting” to the likelihood function that pref-

erentially weights the extreme diameter measurements

(see Appendix S1 for details).

In order to find an efficient protocol, we initially tested

many combinations of potential algorithms (the methods

argument for optim(), which Bolker (2008) Chapter

7 explains in detail), as well as different functional forms

(not presented here, as we found the 5-parameter logistic

function to be sufficiently flexible). Ultimately we found

rules for starting values and boundaries (see Appendix

S1) that supplied both reasonable starting values and then

moved through all of the available optimization algo-

rithms in optim() including using weighting func-

tions for the early- and late-season diameter values. We

then applied that protocol to growth data for 20 trees

selected randomly from the data measured at SERC in

2010. Best models were chosen from the returned maxi-

mum likelihood values.

Starting values

Good starting values for parameter estimation are impor-

tant primarily in order to avoid false maxima in the

parameter surface (Bolker 2008). We proposed starting

values for the data that reflect the complete lower and

upper limits of diameters, and a positive slope. Negative

slope (r) values can be produced by optim() when it

also switches the lower asymptote value for the upper

(the parameter K becomes the lower asymptote). This can

create a fit equivalent to the positive r, but complicates

comparing asymptote and slope values across. Our search

protocol begins by exploring initial potential parameter

values using the L-BFGS-B method (low-memory

Broyden–Fletcher–Goldfarb–Shanno bounded algorithm),

which allows lower and upper bounds on parameters and

conducts a fairly broad search. We then used the parame-

ters proposed by this method as starting parameters for

the other functions. We did initially try to start every

method with the base starting parameters, but these often

produced very poor fits. When output from the bounded

parameters were used instead, all of the algorithms

performed consistently better. (Note that testing these

assumptions simply requires changing some of the sup-

plied R code and is an interesting exercise in optimization

sensitivities.)

The methods we then applied to the Nelder-Mead algo-

rithm, the BFGS algorithm (without lower and upper

bounds), and a simulated annealing (SANN) search algo-

rithm (using something similar to a Metropolis-Hastings

algorithm that employs stochastic jump steps). We also

ran all three of these algorithms using the maximum like-

lihood function with parameter weights to preferentially

fit early and late diameter measurements.

Diagnostics and post hoc procedures

Uncertainty

By running the optim() function with the argument

hessian = TRUE, the output includes the hessian

matrix. Using solve(model$hessian) returns

the covariance matrix of the parameters. Adding and

subtracting 29 the diagonal of this inverse hessian matrix

to the parameter vector gives approximate 95% confidence

intervals on the parameters.

Sample size analysis

We tested whether sample size might influence curve fits.

To do this, we reran estimates of a single tree using fewer

measurements of diameter spaced evenly in the interval

between first and last measurements.

Upper and lower bounds

We also used the a separate likelihood test to search for

potential minimum and maximum diameter sizes. We

did this assuming that the fitted function was correct in

estimating growth, but could not necessarily estimate

accurate starting and ending diameter sizes. This makes

our model a “semi-parametric” model or a threshold

model (Bolker 2008). Our estimate of lower and upper

diameter sizes connects directly to the optimal method

selected in the fitting component. These values were

retained as estimated diameters of trees at the beginning

and end of the growing season, independent of the

growth model parameters.

To estimate these values, we chose minimum and max-

imum values based on the data and the “best” model.

Then, we ran a broad analysis of the best maximum like-

lihood fits of these lower and upper cutoff parameters.

Because this exploratory analysis can be large, we refo-

cused the search on parameter values within the expected

range of the maximum (using a chi-squared test as with
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the profile log-likelihoods) and then estimated values

within the new, focused constraints.

Results

We found that all of the optim algorithms showed

very similar fits, but only after starting parameter values

were described by summary statistics and improved by a

broad-bounded search (“L-BFGS-B”). After establishing

this parameter set (following Fig. 1), the BFGS was rerun

without bounds, along with fits for the data for four of

the trees, including the beech tree (tree 1, Table 1). Fig-

ures for all trees are included as Supplemental material.

All fits were very similar for trees with high growth, and

in fact all unweighted fits often tied with equivalent log-

likelihoods (even as parameter values varied by small

amounts). For 19 of the 20 trees, the Nelder-Mead

method was either optimal or tied for optimal when

another model had an identical likelihood. Only for tree

nine (Fig. 3C), was there a different optimal method,

which was BFGS weighted. Interestingly, this was the only

methods that captured the high asymptote. We changed

values for the starting parameters and bounding parame-

ters, and reran the fits with exactly the same result, 19 of

20 optimized best or tied for best by Nelder-Mead, and

tree nine optimized best by BFGS weighted.

Uncertainty and sample size

Uncertainty was reasonably constrained for all parameter

values for tree 1 (Fig. 5), and sample size had little effect

on parameter estimates or uncertainty, except the inflec-

tion point (doyip). This parameter had narrow uncer-

tainty, but its value varied depending on sample size.

Apparently small changes in data points number (and

hence location) can lead to consistent values for all

parameters except doyip, which likely bounces around as

the “free parameter.” The fit of this parameter encourages

the use of other methods to estimate temporal patterns in

these fits (see “Day of starting and ending growth” in the

Discussion).

Upper and lower bounds

We successfully fit consistent and satisfactory upper and

lower limits of diameter (Table 1). If the curve is long

and smooth, these values will be similar or identical to

the L and K parameters, but in many instances, for exam-

ple, when growth begins abruptly, these will be different.

Thus, it is important to fit the optimal growth process

model first, and follow that fit with an estimate of upper

and lower diameters.

Discussion

We recommend using a series of optimization routines,

each fed by new starting values. This effectively hones a

search to achieve consistent results across a variety of

growth forms. The first set of starting values was

derived from summary statistics in the data, default val-

ues, and a series of lower and upper constraints (see

code). These values were entered in a bounded L-BFGS-B

search. The parameter estimates from this broad search

were then used as starting values for the Nelder-Mead

method. The only exception to this was when the

weighted BFGS search captured important growth data

in one tree (tree 9; Fig. 3C), which the Nelder-Mead

method failed to capture. Unlike the SANN method,

which is an MCMC search algorithm and can thus be

computationally intensive, running the N-M and

weighted BFGS methods is similarly fast. That said, a

balance between finding the optimal model in each

instance (in this case, one in twenty trees indicates a

better fit from an algorithm other than the Nelder-

Mead), and having easily comparable results must be

weighed. This is discussed further below in the section

“ Lowerand upper bounds.”

The maximum likelihood search for upper and lower

bounds was fast, straightforward, and accurate. This fit

fed easily into an algorithm to estimate high and low

diameter values. The logistic optimization also established

a solid beginning to a workflow that derived other impor-

tant features of intra-annual tree growth.

Table 1. Results from model runs using the 5-parameter logistic function. Parameter values are listed beside the optimization method. The

asterisk in the final column refers to the best model

Optim.call L K doy_ip r theta ML Best.ML

Starting 54.539 55.274 187 0.080 1.000 NA NA

L-BFGS-B 54.402 55.270 187 0.044 3.655 �44.7814 0

L-BFGS-B wt 54.447 55.264 187 0.049 3.624 �44.7215 0

N-M 54.402 55.270 187 0.044 3.679 �44.7814 *

N-M wt 54.446 55.263 188 0.049 3.964 �44.7181 0

SANN 54.402 55.270 187 0.044 3.655 �44.7814 0

SANN wt 54.429 55.268 187 0.047 3.689 �44.7427 0

248 Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Ecology and Evolution published by John Wiley & Sons Ltd.

A General Model of Intra-annual Tree Growth S. M. McMahon & G. G. Parker



Residuals

One of the goals of estimating a process model for these

intra-annual growth data is to use the residuals of

observed growth to infer the way in which a growth

process might be affected by weather. The residuals for

tree one differed very little across the different optimiza-

tion algorithms (Fig. 4). The final fitted models captured

the pattern of residuals across all 20 trees, as is evident

in how the responses of trees around the fitted growth

models are synchronized (Fig. 4 bottom panel). This

synchronicity across trees indicates two important fea-

tures of these fits: (1) that trees deviate similarly from

their expected growth trajectories across the year (i.e.,

this is a good parametric function with which to capture

growth), and (2) that the optimization of this function

is consistent across data structures, tree size, and species.

The synchronicity also indicates something of the phe-

nomenon itself here. All of the trees are responding

together–there is a signal of physiology in the growth

response.

Lower and upper bounds

Starting and ending diameter describes a tree’s annual

growth, the most common measurement derived from

dendrometer bands. Although we are promoting an

expansion of the use of dendrometer bands to model

intra-annual growth, the total growth is an important

value to have. In fact, our intra-annual measurements
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Figure 3. Four different trees fit with selected optimization arguments. Each tree was fit with the suite of optimization algorithms with the same

starting parameter constraints. Solid red line shows the best fit (lowest AIC).
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show that for many trees, annual or twice-annual mea-

surements may not provide an accurate growth estimate.

That is, the starting and ending diameter of a tree within

a year is uncertain and is best estimated from a full sea-

son of data. We separated our estimation of the process

(functional form) and the result (total growth) of diame-

ter change, allowing the upper and lower asymptotes of

the logistic function to vary independent of estimates of

initial and final growth, freeing the logistic function to

focus on the intra-annual growth process. Only after cap-

turing the function of growth, did we search for starting

and ending diameter values. For trees with substantial

growth (such as tree 1 [Fig. 3A]), this may seem trivial,

as the upper and lower diameter measurements align with

a casual interpretation of total growth. However, trees

with low growth (low signal to noise in the data) or

abrupt starting and/or ending growth patterns will have

asymptote parameters (L and K) that are outside the

range of diameter data. Instead, we estimate two new

parameters, a and b, So, we which describe the initial and

final diameters in the year.

Estimating a and b uses the available diameter data as

bounds for the low point and high point of the search.

That is, we are not allowing initial or final diameters to

lie outside of observed data. If multiple years of data have

been collected, then estimates of a and b for adjacent

years can also be used to inform these bounds, as infor-

mation from other years may change this estimate. In

estimating a and b, we are also accepting the fit of the

optimized process model based on the lg5 function. So

we do not rerun an optimization of the growth process

model, but extend that model to have two potential

threshold points, one at the beginning of the growing sea-

son and one at the end, that mark the shift from zero

growth to seasonal growth and back to zero growth.

Although this works well for most growth patterns, it

may not always be appropriate.

If the functional form of the lg5 does not extend above

high points or below low data points, these horizontal

values will be excluded from optimizing the a and b

parameters. For example, tree nine (Fig. 3C) shows that

only the weighted BFGS model captures the upper asymp-

tote well. Were we to rely on other models as the func-

tional fit to these data, then our estimates for b, the

maximum diameter at the end of the growing season,

would fall significantly below the cloud of data that

describe the late-season diameter measurements. This

reminds us that using maximal fits from different
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Figure 4. Residuals for the four LG5 models.

The first six panels show residuals from the

expected optimized model for a single tree

(see Fig. 3A), and the last panel shows means

of all 20 trees, with two standard errors from

the mean shown in segments. Despite

different species, locations, and sizes, the

residuals show similar growth increment

responses to weather during the growing

season.
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methods may be important in some cases and that

defaulting to only one method for efficiency can miss

some special cases that have unique data structures. One

can always take “problem” data and refit process model

with new constraints, but for efficiency and consistency in

estimating many trees, such deviations from optimal

models can be simply accepted as fitting error. Such pat-

terns, however, often occur for trees with low growth and

therefore have small errors in estimates.

Measurement frequency

The data used in this manuscript were collected from a

protocol that required weekly measurements. This may

not always be feasible and so we tested for changes in

parameter estimates and parameter uncertainty when pro-

tocols sample regularly through the season, but with

decreasing frequency. We found that for all parameters,

fewer samples maintained good fits with high precision,

except for dip, which although precise in its estimation,

changed around a range of values for each parameter fit

(Fig. 5). This indicates that the inflection parameter acts

somewhat as a “free parameter,” that moves within its

range as the other parameters optimize to the different

data patterns. This does not pose a serious concern

because the fits all result in good models, and the dip is

not used as an ecological metric (we instead use days of

growth quantiles to investigate phenological changes in

growth rates [see below]). Although measurement fre-

quency does not influence model fit, it will influence

inference about deviations from model fits and will influ-

ence optimization for noisier data sets or data from trees

with little growth.

Implications of data from slow-growing trees

Annual growth increments that are smaller can approach

both observational error and/or the deviations in growth

due to weather or water volume in the trunk. Although

growth estimates for these data are robust, function fits may

lead to seasonal growth patterns that do not, visually, appear

to reflect a reasonable growth model. If inference on the

growth process for these trees is important to the research

question, a more intensive measurement protocol may dis-

tinguish between observation error and growth changes.

One of the measured trees showed very little growth,

giving us some insight into this observational error. The

variance of the dbh data collected for tree five (Fig. 3B) is

0.03 mm. This estimate includes actual growth as well as

some shrinkage in line with other trees in the forest. So,

this estimate of error in measurements contains some

process and growth variance as well, making it conserva-

tive, but illustrative of the precision of the process and

the fitting approach. A simple repeated measurement of

the same dendrometer band using different trees and

repeated measurements by individuals would better iden-

tify this value in a particular study site.

In studies where comparison of the growth process

across individuals, sites, and/or species is of interest,

excluding or down-weighting these trees in analyses may

be worth considering. For example, tree number five

(Fig. 3B) shows that regardless of the accuracy of the fit,

phenological values, such as the day of first, last, or 50%

growth (see below for an explanation of how to derive

these values), will add error to an analysis that compares

these estimates to numbers derived from a clearer process

model (such as for tree one [Fig. 3A]). We recommend

excluding such outliers from synthetic analyses.

It is also worth noting that not all data are of a form

amenable to this analysis. Data from less seasonal sites,

such as the wet tropics, may need to be clipped to forms

that best approximate annual growth. Also, trees with

very slow growth will find that error in measurements

approaches variance in measurements, and so no clear

trend will appear. It is easy to see that with such slow

growth, other methods to infer growth patterns, such as

micro-cores, are preferred.

Extensions for expanded inference

Day of starting and ending growth

Using the inverse of the logistic function (which is also

used in the identification of upper and lower diameter

bounds), it is easy to estimate the day of the year that

certain growth values occur, such as the first day of

growth and last day, or the day of fastest growth. The

inverse function is:

doy ¼ doyipr � hlogððððK � LÞ=ðd � LÞ � 1ÞhÞ1=h
r

(3)

After fitting the function and obtaining values for the

key parameters, one can use the inverse function to

obtain a day of the year at which certain parameters

have certain values. For example, using tree one (Fig.

3A), we estimate the start day as 118, the last day of

growth as 289, and the day of 50% growth as day 164,

or June 11th. Collected values of these dates can be used

in analyses of phenology, physiology, or patterns of car-

bon allocation.

Maximum growth rate

The maximum growth rate in cm day�1 can be obtained

using the derivative function lg5.deriv() folded
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into the function max.growth(). The max.
growth() function uses the argument paras (which

contain the five parameters of the logistic function given

by the output from the optimization routines. For maxi-

mum growth rate, every day of the year is fed to the

function (i.e., seq(365)). The maximum growth rate

for tree one was 0.01, and this occurred on the day of the

year 160.

Quantile-convex hull

One of the main features of modeling intra-annual

growth is relating changes in growth rates to climate.

Two primary factors determine intra-annual growth pat-

terns: (1) the change in the allocation of carbon to bole

growth (this might be termed “the fundamental growth

rate”); and (2) the deviations from this functional form

due to external influences (e.g., drought).

The process of intra-annual tree growth that we mod-

eled using the logistic function allows us to estimate a

progression of growth given diameter data. Factor (1)

We have shown that using this fit and residual diver-

gence from that fit can indicate how an individual tree,

or the entire forest, responds to external influences. Fac-

tor (2) Although the residuals from this fit show a pat-

tern of faster and slower growth due to weather, the

residual values themselves are not the ideal way to quan-

tify growth rates. This is, in this view, slower growth

(negative residuals) shows a deviation from a maximum

growth rate, but positive residuals do not equivalently

reflect a faster than normal growth rate, but merely a

return to normal growth. That is, slower growth is influ-

enced by poor-growing conditions (e.g., high tempera-

tures or drought), whereas high growth is due not to

good conditions, but merely the lack of poor conditions.

Therefore, we sought to extend our model of the growth
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Figure 5. Parameters fit to different

measurement frequencies. The five parameters

from the output for tree number 1 are shown

with 95% confidence intervals in blue.

Connected dots show the parameter estimates.

The x-axis shows the number of data used to

fit the model, with 33 days of data being the

full data set. In all sets, the first and the last

days of data were retained and then remaining

N�2 data points were retained in a roughly

evenly distributed fashion (see Appendix S1 for

details). Plots show that uncertainty is

conserved across sample sizes, except for the

inflection day (doy.ip), which has narrow CI,

but changes for different fits.
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process that uses information from all of the growth data

(i.e., the optimal fit from the logistic function) but esti-

mates the growth pattern that only allows deviations

from normal growth. Essentially, we want to fit a type of

convex hull to the data so that all residuals from that

hull are negative.

In fitting a model that captured the outer curve of

growth, we did not want to lose the benefits of the

logistic function (such as the derivative, rates, and para-

metric form), so we developed an approach we call the

“quantile-convex hull” (QCH). This approach uses the

parameters of the logistic function derived from all of

the diameter data as a starting function, but is then

refit using only the upper 80% quantile of the base

model residuals. We cannot anticipate how a tree might

have grown where it never perturbed, but the QCH

offers insights into when and how severely growth devi-

ated from the observed growth trajectory. Figure 6

shows the original fit, the QCH, and the data used to

estimate it.

Weighted deviation from QCH

The QCH provides an estimate of the functional form of

optimal intra-annual growth. Deviations from that growth

form can be interpreted as the cessation of carbon alloca-

tion to growth or bole shrinkage. To tease apart mecha-

nisms that might cause change in that allocation (such as

high temperatures or drought) from the trunk water vol-

ume, one can use the deviations from the QCH in regres-

sion models. These deviations, or the sum of them over

the year, should be weighted by the expectation of

growth. To do this, we multiplied the deviations from the

QCH by slope of expected growth at the time of measure-

ment (i.e., the derivative of the QVH function). Panels b

and c in Fig. 6 show the deviations from the hull in an

unweighted and weighted, respectively. Low growth dur-

ing times of the season where little growth is expected

(such as late in the year) should not be as important to

interpreting overall drought response as when growth is

high. Summing the weighted deviations of each tree offers

150 200 250 300

54
.6

54
.8

55
.0

55
.2

Annual growth for tree 1

D
B

H
 (

cm
)

Quantile hull
ML fit

(A)

150 200 250 300−
0.

10D
ef

ic
it

(B)

150 200 250 300

−
0.

04

W
ei

gh
te

d 
de

fic
it

(C)

150 200 250 300

24
0

32
0

Day of the yearW
at

er
 b

al
an

ce
 (

m
m

)

(D)

Figure 6. Quantile hull. This takes as

endpoints the meeting of the ML fit with the

asymptotes (high and low bounds) and then

refits the LG5 to the points between these

bounds that form the 80th quantile of the

residuals (A). This allows us to keep the

strengths of a parametric fit, as well as

maintaining features of the fit of the total

data. All residuals are now (mostly) negative,

so that slower growth is isolated from the

smooth process curve, allowing statistics on

lags in growth. Lower panels show deviations

from this growth trajectory both unweighted

(B) and weighted by growth slope (C), and the

annual water balance (D).
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an index of annual deviation from growth. This value can

be thought of as an integrated metric of growth over the

year, facilitating comparisons between individual trees,

species, plots, or years. The water balance graph (Fig. 6D)

shows an estimate of available water over the growing

season. The dips in the water balance line up with dips in

the deviations from the outer hull, with earlier drops in

available water showing a greater impact.

Conclusions

We have detailed a pathway to use dendrometer band

measurements of trees to capture an array of important

features of tree growth. We hope that this effort will allow

scientists currently measuring intra-annual growth to

think about how these measurements can be used to infer

processes such as carbon acquisition and allocation, and

how deviations from growth models can be used to inves-

tigate features of forests important to large-scale vegeta-

tion models, such as drought response for different

species. We also hope it will encourage ecologists who

have dendrometer bands installed for annual censuses to

measure them more often, as these intra-annual data can

tell us a great deal about the physiological process of

growth using an inexpensive tool (calipers) and a little bit

of R code (Appendix S1).
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Additional Supporting Information may be found in the

online version of this article:

Appendix S1. R code for all analyses.

Appendix S2. Forest_data.csv provides the data for

analyses.

Appendix S3. WaterBalance.csv provides the data for

analyses.
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