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Abstract

Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a 

heterogeneous cell type depending on their tissue of origin and host they are derived from. 

Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and 

the various types of macrophages used to study tuberculosis (TB). This review will summarize 

current concepts regarding macrophage responses to M.tb infection, while pointing out relevant 

differences in experimental outcomes due to the use of divergent model systems. A brief 

description of the lung environment is included since there is increasing evidence that the alveolar 

macrophage (AM) has immunoregulatory properties that can delay optimal protective host 

immune responses. In this context, this review focuses on selected macrophage immunoregulatory 

pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid 

mediators and microRNAs (miRNAs).
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1. Introduction

Macrophages serve as the major host cell niche for intracellular growth and persistence of 

M.tb during all phases of TB, from primary infection with bacillary dissemination, through 

latency (with bacterial persistence within granulomas) and reactivation TB. In addition, 

macrophages are responsible for activation of protective immune responses, both innate and 

acquired, thus playing a critical role in the ongoing cross-talk that is necessary to control or 

eliminate the infection [1-6].

Our understanding of the great heterogeneity and plasticity of macrophages residing in 

diverse tissues of different mammals continues to evolve [7-10]. If our goal of finding 

relevant tissue bio-signatures and therapeutic targets to combat human M.tb is to be 
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achieved, we must pay particular attention to the stage of TB infection being modeled (e.g. 

primary infection, latency with bacterial persistence, reactivation), source of the macrophage 

(e.g. primary or cell line, human, or other mammal), and experimental conditions, 

particularly as they apply to the specific tissue microenvironment being modeled (e.g. media 

for in vitro studies, organ for in vivo studies, granuloma).

In this review, we will summarize current concepts in macrophage biology as they pertain to 

M.tb pathogenesis. We place the discussion in the context of lung biology and alveolar 

macrophages (AMs), given their prominent role in airborne TB. AMs are unique mucosal 

immunoregulatory cells and there is increasing evidence that they are important in allowing 

M.tb to replicate for an extended period of time prior to complete activation of protective 

immune responses [11-16]. We have coined the time period necessary for optimal responses 

to occur in the lung “the switching time” [11] and provide evidence that M.tb itself can 

further drive the immunoregulatory activation state of macrophages to enhance its survival 

[12]. Thus we highlight emerging key macrophage immunoregulatory determinants for M.tb.

2. Airborne M.tb infection and the lung

M.tb nearly always infects humans via inhalation of airborne droplets released by 

individuals with active TB that are deposited in the lung alveolus, where as few as one to 

five bacteria can result in infection. Deposited M.tb are engulfed by the resident AMs, which 

are less able to kill and clear all of the bacteria, ultimately becoming the microbe’s home 

and allowing for dissemination to occur. Primary M.tb infection is generally self-limited 

(subclinical), most often resulting in latency and containment of the bacteria that were not 

eradicated, although complete clearance is possible. During primary infection bacteremia 

can occur, resulting in bacterial deposition in other organs which serve as a nidus for 

extrapulmonary reactivation later [17].

Fourteen thousand liters of inhaled air passes through the nose, mouth and trachea each day, 

where mechanical defenses clear particulates and microbes ≥ 5um in diameter. Smaller 

inhaled items may pass through the bronchioles and settle in the alveoli where they 

encounter AMs. The alveoli are delicate grape-like clusters which exchange gases with the 

surrounding capillary meshwork [18]. Due to the fragility of alveoli and the need for gas 

exchange, clearance of pathogenic matter without excessive and destructive inflammation is 

extremely important in this locale.

2.1. Alveolar physiology and cell types

A thin lining of epithelial type I and type II cells surrounds the alveolus. Type I cells are 

thin, flat and cover 93-97% of the alveolar surface, allowing for efficient gas exchange. 

Type II epithelial cells are cuboidal with apical microvilli and cytoplasmic lamellar bodies. 

They produce and secrete pulmonary surfactant lipids and proteins as well as other soluble 

components of the innate immune system [19]. These substances have widespread immune 

activity, functioning as opsonins and/or microbial aggregating agents, signaling molecules 

that shape immune cell phenotypes and microbicides that destroy or destabilize microbial 

cell walls [20-32]. In addition to AMs, and the epithelium and interstitium which contain 
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capillaries and venules, there are several other innate immune cells including intravascular 

and interstitial macrophages (IMs), dendritic cells (DCs) and scattered neutrophils [33,34].

2.2. Surfactant Proteins and hydrolases

Pulmonary surfactant is a lipid and protein complex which forms a thin film at the air-liquid 

alveolar interface for the purpose of reducing surface tension and preventing alveolar 

collapse during expiration. AMs are bathed in surfactant which is primarily composed of 

phospholipids such as dipalmitoyl phosphatidylcholine (DPPC) with lesser concentrations of 

other lipids and cholesterol [35]. There are four surfactant associated proteins, Surfactant 

protein -A (SP-A), SP-B, SP-C and SP-D. Surfactant lipids adsorb to the air-liquid interface 

with the assistance of SP-B and SP-C [reviewed in [36, 37]. SP-A and SP-D are large, 

multimeric and relatively hydrophilic collagenous lectins (collectins) with carbohydrate 

recognition domains (CRDs) that are important in the Ca2+-dependent recognition of 

microbes [reviewed in [37]. SP-A and SP-D are key regulators in the pulmonary innate 

immune response through several mechanisms including microbe binding, agglutination, 

and direct effects on immune cells [38].

SP-A enhances macrophage phagocytosis of apoptotic cells and various pathogens including 

M.tb [39-43] through direct interaction with macrophages [44] as well as binding to the 

bacterial cell wall proteins and lipoglycans [45,46]. SP-A is a major regulator of 

macrophage phenotype and function with effects on PRRs, the oxidative burst, and negative 

regulators of inflammation [21,47-49]. By interacting with mannosylated 

lipoarabinomannan (ManLAM) found on virulent M.tb (and some other pathogenic 

mycobacteria) [22], SP-D agglutinates M.tb and decreases macrophage phagocytosis while 

enhancing phagolysosomal fusion and killing of the bacilli that are phagocytosed [22,23,50]. 

Type II cells produce lamellar bodies which are packed with surfactant phospholipids and 

hydrolytic enzymes and hydrolases in the extracellular lining of the lung [51,52]. Hydrolases 

can alter the outer cell wall of M.tb with the potential to change the macrophage-microbe 

interaction and host immune response [20].

3. Macrophage phenotype and functional diversity

Macrophages are phenotypically heterogeneous, having diverse functions in different 

tissues. Some studies indicate that the initial interaction of macrophages with specific 

cytokines determines their functional phenotype, while others have shown that macrophages 

can be continuously altered as the environment changes [53-55]. Macrophage heterogeneity 

has a direct impact on M.tb interactions in different tissue environments. Macrophages have 

been categorized into two major groups: the pro-inflammatory, “classically” activated M1 

type macrophage and the immunoregulatory, “alternatively” activated M2 type macrophage 

[56,57]. However, it is increasingly clear that macrophage function represents a spectrum, 

with biological activities varying greatly among mammalian species and experimental 

stimuli [7,58-65]. For example, mouse macrophages express unique phenotypic markers for 

M1/M2, not expressed by human macrophages [57,61].
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3.1. Classically activated macrophage (CAM)

Once primed by IFNγ, followed by a second signal such as TNFα or LPS, the CAM 

mediates more efficient antigen presentation, increased synthesis and release of pro-

inflammatory mediators and more efficient phagocytosis [57]. One of the most reliable 

markers of mouse CAMs is robust nitric oxide (NO) production; however, human 

macrophages produce limited NO even after activation [66], an observation which holds 

relevance for TB research, discussed below.

3.2. Alternatively activate macrophages (AAMs)

AAMs are generated by IL-4, and IL-13, which are produced by T helper 2 (Th2) cells, and 

partially share receptor complexes [67]. AAMs generally mediate Th2 type immune 

responses [57]. In antithesis to CAMs, AAMs are generally anti-inflammatory, producing 

high levels of IL-10 and TGF-β and are less efficient antigen presenting cells due to reduced 

MHC class II expression [56,57,60]. AAMs also demonstrate impaired killing of 

intracellular pathogens, but play an important role in controlling extracellular parasites [68]. 

In general, AAMs are believed to promote resolution of inflammation and wound healing. 

The impact of these types of macrophages in TB pathogenesis is being increasingly realized 

[11-16,69].

3.3. AMs

AMs reside beneath the surfactant monolayer on the luminal side of the alveolar epithelial 

cells and are a first line of immune cell defense in the alveolus (Fig. 1). It is estimated that 

there are 8-12 AMs per alveolus [70-72] , which through irradiation studies, were 

determined to originate from blood monocyte precursors [73]. Following differentiation in 

the lung, resident AMs are relatively long lived, with a turnover rate of around 40% of the 

population per year [74]. However, there is also evidence in mice for local production of 

macrophages from stem cells [75].

AMs are uniquely adapted to functioning in the alveolar environment, where they act as 

sentinels against invading organisms but also serve to limit inflammation and minimize lung 

injury to preserve alveolar function. AM activation is tightly regulated and involves a 

complex balancing act between activating and repressing signals. On the one hand, PRRs 

like Toll-like Receptors (TLRs) recognize pathogen associated molecular patterns (PAMPs) 

and initiate inflammatory responses, while receptors for inflammatory cytokines such as 

TNFα, IL-1β and IFN-γ perpetuate inflammation [7]. On the other hand, signaling through 

IL-10 and TGFβ, as well as non-TLR PRRs such as the mannose receptor (MR, CD206) 

limit the progression of inflammation [7]. Negative regulation of inflammation is also 

achieved by cell-to-cell interactions, via epithelial cell ligation of AM receptors such as 

CD200 Receptor (CD200R) [76], triggering receptor expressed by myeloid cells 2 (TREM2) 

[77,78] and signal-regulatory protein-α (SIRP-α) [79]. AMs control inflammation by 

suppressing the induction of innate and adaptive immunity through decreased antigen 

presentation, limited oxidant production, and enhanced release of anti-inflammatory 

cytokines [7,80]. AMs from healthy human donors make low levels of O2 metabolites when 

compared to neutrophils or PBMCs following stimulation [80-82] and there is no detectable 

oxidative burst following M.tb infection of MDMs [23]. The lack of robust oxidative 
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responses in human AMs and MDMs are an important contrast to the substantial evidence 

for a protective role of ROIs and NO for elimination of M.tb in the murine model of 

infection [83-88]. AMs are ineffective APCs [80], which delays and limits the initiation of T 

cell inflammatory responses [7]. In concert, CD28 co-stimulation is defective in AMs [89] 

and the APC ability of DCs in vitro and in vivo and can be inhibited by AMs [90].

Due to the unique, intermediate phenotype exhibited by AMs (Fig. 2), the conventional 

categorization of CAM versus AAM does not hold [7]. In accordance with their distinct role 

in maintaining lung homeostasis, our group has designated AMs as “immunoregulatory 

macrophages”. Additional efforts in characterizing AMs are required, particularly in regard 

to human AMs.

3.4. Intravascular and interstitial macrophages (IMs)

Intravascular and interstitial macrophages (IMs) differ in location and function from AMs. 

IMs are believed to function in regulating tissue fibrosis, inflammation, and antigen 

presentation [91] whereas intravascular macrophages function in the cross talk between 

APCs in the lung interstitium for recruiting neutrophils or myeloid cells [92]. The existence 

of lung macrophage subsets with different functional properties requires additional 

exploration to better understand their contributions to M.tb pathogenesis, although 

challenges exist in isolating and modeling them. There is recent evidence that IMs from 

rhesus macaque lungs exhibit short lived and higher turnover rates compared to AMs. In 

contrast to AMs, ex-vivo stimulation of IMs with IFNγ and LPS significantly increased 

TNFα expression providing support for their role in regulating mucosal macrophage 

functions [93].

4. Macrophage PRRs

AMs express PRRs, which initiate signaling cascades in response to ligand recognition, 

and/or the engulfment and destruction of fluid and particulate matter via endocytosis. 

Involvement of specific receptors in the phagocytic process determines the cytoskeletal 

elements and signals involved in phagosome formation and maturation, resulting 

inflammatory response and, ultimately, intracellular fate of pathogen [94]. Several 

macrophage membrane and cytosolic PRRs are involved in recognition and response to M.tb 

that differ significantly depending on the macrophage source and experimental conditions.

4.1. Toll-like receptors

TLRs are generally considered to be pro-inflammatory, since their ligation leads to 

phosphorylation and deactivation of the NFκB -inhibitor, IκBα, resulting in NFκB 

activation and an inflammatory response. However, various TLRs also activate the signaling 

molecules TRIF and IRF, which result in increased IFN-β gene expression and an anti-

inflammatory response [95]. Furthermore, recent evidence has reinforced the idea that TLRs 

can form complexes with other surface receptors to modulate the nature of the inflammatory 

response (reviewed in [96,97]). Relative to monocytes, human AMs express lower levels of 

TLR2, comparable levels of TLR4 and increased levels of TLR9 [98], and contrastingly, 

murine AMs do not express TLR9 [99] . The mycobacterial 19 kDa lipoprotein (LpqH) 
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interacts with TLR2 to induce TNFα, IL-12 and NO in both murine and human 

macrophages [100]. Other mycobacterial molecules, e.g., LprA, LprG, PhoS1, LAM, LM 

and PIMs act as ligands for TLR2 leading to the production of IL-10, IL-4 and TGFβ [101] 

which can inhibit IFN-γ signaling in macrophages, allowing M.tb to evade host innate and 

adaptive immune responses. Other mycobacterial antigens, e.g. the 38kDa glycolipoprotein 

and PIM6 are sensed by TLR4/TLR2 and generate Th1-polarized cytokine responses in 

M.tb-infected mouse lungs [102,103]. Mycobacterial DNA generates a robust immune 

response through TLR9/TLR2 in murine macrophages [104]. Much work remains to be done 

in clarifying the role of TLRs in mycobacterial infection, particularly in regards to TLR 

cross-talk with non-TLR PRRs and phagocytic receptors in human cells.

4.2. Mannose receptor

The MR (CD206), a member of the C-type lectin family, is highly expressed on AMs 

[105,106], monocyte derived macrophages (MDMs) and DCs [107], but not on monocytes 

[108,109]. It interacts with endogenous mannose N-linked glycoproteins via its eight CRDs 

to maintain homeostasis [110] and also associates with mannose-containing surface PAMPs 

found on pathogenic microbes [reviewed in [111], representing a form of molecular mimicry 

for intracellular pathogens like M.tb [112]. It is the dominant C-type lectin on human AMs 

and monocyte-derived macrophages (MDMs) and, along with complement receptors, 

mediates the phagocytosis of M.tb [113]. This interaction shows specificity in that the MR 

can differentiate between M.tb strains [114] and binds to the mannose caps of mannosylated 

LAM (ManLAM) [115] and higher order PIMs (more mannosylated) found in greater 

amounts on pathogenic mycobacteria [25]. This receptor-specific interaction affects the fate 

of M.tb since entry through the MR leads to a decrease in phagosome lysosome (P-L) fusion 

[24,25] and an increase in the activity of Peroxisome Proliferator-Associated Receptor-γ 

(PPARγ, see below), leading to survival of intracellular bacteria [12]. The importance of the 

MR in mycobacterial infection is corroborated by evidence that MR polymorphisms are 

associated with enhanced susceptibility to M. leprae infection [116-120].

The MR is also a prototypic PRR linking innate and adaptive immunity [65,107,121-127]. 

These properties have been exploited to deliver DNA vaccines to APCs [126,128-130]. The 

MR may also contribute to the chronic stages of M.tb infection by mediating homotypic 

cellular adhesion and giant cell formation [131], which are characteristic in granulomas, and 

is a marker of AAMs [61,132]. The MR is being used in several ways to modulate the 

immune system for both therapeutic and vaccine purposes [130].

4.3. Scavenger receptors

Scavenger receptors comprise a large family (divided into 8 classes) that generally 

contribute to homeostatic functions of macrophages, being best characterized for their role 

in binding to oxidized low density lipoproteins (oxLDL) in the context of atherosclerosis 

[reviewed in [133]. However, scavenger receptor ligation leads to several downstream 

events, with outcomes ranging from the removal of unwanted self-molecules and apoptotic 

cells to the recognition of PAMPS in conjunction with TLR signaling [reviewed in [134]. 

Scavenger receptors play a role in M.tb binding to macrophages [135]. Three class A 

scavenger receptors are present on AMs: Scavenger Receptor A isoforms I and II (SRA-I/
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II), and macrophage receptor with collagenous structure (MARCO). SR-A binds to most 

polyanionic molecules [136,137], and MARCO binds to and removes unopsonized 

environmental particles in the lung [138]. MARCO can tether mycobacterial trehalose-6,6-

dimycolate (TDM) to the host cell surface, enabling pro-inflammatory signaling through 

TLR2 [139]. Knockout mice for SRA-I/II and MARCO are more susceptible to pulmonary 

pathogens and have a greater inflammatory response to inhaled particulate matter [140-142] 

indicating a host protective role for these receptors. Expression of the class B scavenger 

receptor CD36 is induced through PPARγ in human AMs [143] and contributes to the 

removal of apoptotic cells and oxLDL (reviewed in [144]). CD36 involvement in lipid 

removal contributes to foam cell generation during TB [145]. CD36 knockout mice fared 

better during early stages of M.tb infection [146] although the redundancy in scavenger 

receptor expression patterns complicates the interpretation of these results [147]. Much 

remains to be elucidated, but scavenger receptors’ role in maintaining lung homeostasis 

places them in an important position during TB pathogenesis.

4.4. Mincle

Mincle (Clec4e), a C-type lectin family member, is highly expressed on mouse macrophages 

upon stimulation with LPS, TNFα, IL-6 and IFNγ [148]. Since Mincle does not contain an 

activating signal motif in the cytoplasmic region, it associates with the immunoreceptor 

tyrosine-based activation motif containing Fc receptor γ chain (FCRγ) to function as an 

activating receptor for damaged cells and fungi [149,150]. Mincle serves as a receptor for 

M.tb TDM to enhance inflammatory cytokine production leading to granuloma formation in 

mice [151,152].

4.5. Dectin I and II

Dectin I, a non-classical C-type lectin, is highly expressed in DCs, macrophages, monocytes 

and neutrophils [153]. There are 2 isoforms of Dectin I in mice and eight in humans, 

although only 2 have a CRD [154,155]. The Dectin I cytoplasmic region contains an ITAM 

motif for initiation of signaling cascades [156] by its ligands β-1,3 and β-1,6 linked glucans 

[157]. Dectin I activation by non-pathogenic mycobacteria M. smegmatis and M. phlei, and 

attenuated BCG and M.tb H37Ra strains enhances TNFα, IL-6 and RANTES in macrophages 

but fails to induce an inflammatory response to virulent M.tb H37Rv [158]. However, Dectin 

I and TLR4 mediate an IL-17A response by M.tb [159]. Consistent with earlier findings, we 

found that Dectin I activation by β-glucans inhibits the intracellular growth of M. bovis BCG 

but not virulent M.tb in human macrophages [160]. Inducible expression of Dectin I on non-

phagocytic airway type II epithelial cells mediates antimicrobial effects against M.tb [161].

Expression of Dectin II, another C-type lectin [162] , is restricted to macrophages and DC 

subsets [163] and it associates with FcRγ for generating activation signals [164]. Dectin II 

can function as a receptor for M.tb ManLAM, inducing both a pro-and anti-inflammatory 

cytokine response and promoting T cell-mediated adaptive immunity in mice [165]

4.6. NOD proteins

NOD (nucleotide binding oligomerization domain-containing protein) like receptors (NLRs) 

are intracellular PRRs that recognize pathogens or PAMPs [166,167] and are expressed on 
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antigen presenting cells and epithelial cells. Both NOD1 and NOD2 detect bacterial 

peptidoglycan fragments such as d-glutamyl-meso-diaminopimelic acid (DAP) and muramyl 

dipeptide (MDP), respectively, to regulate innate immune responses [168]. M.tb produces a 

glycolated form of MDP (GMDP) that activates NOD2-dependent host immune responses in 

human and murine macrophages and mice [169,170]. M.tb-mediated immune responses are 

significantly reduced upon NOD2 knockdown in human macrophages and M.tb growth 

increased [171]. Consistent with this, NOD2 expressed in AMs recognizes MDP and 

induces IL-1β, IL-6 and TNF-α. Pretreatment of AMs with MDP significantly increased the 

intracellular killing of virulent M.tb by increasing expression of LL37 and autophagy 

proteins IRGM and LC3 [172].

5. Macrophage negative regulators of inflammation

Various regulatory molecules such as IRAK-M, the SOCS proteins and CD200R can 

suppress macrophage activation and thus are important in protecting the alveolar space from 

inflammatory damage[49,76,173]. There is some evidence for their role in TB pathogenesis 

[49,76,174-178].

5.1. IRAK-M

Interleukin-1 receptor associated M (IRAK-M) is an important negative regulator of innate 

immune responses [179-181]. Its expression is enhanced by TLR ligands indicating a 

negative feedback loop to dampen inflammation [180]. We have shown that basal 

expression of IRAK-M is higher in human AMs relative to MDMs and that MDM treatment 

with SP-A or Survanta (commercially available bovine surfactant) enhances IRAK-M 

expression, subsequently decreasing LPS-induced pro-inflammatory cytokine responses 

[49]. These data support the idea that AMs are immunologically shaped by the proteins and 

lipids in the lung alveolus. LAM-mediated up-regulation of IRAK-M dampens TLR4-

mediated IL-12 p40 expression in murine macrophages [182] and M.tb infection delays the 

Th1 immune response by up-regulating the expression of IRAK-M expression in lung APCs 

in mice [183].

5.2. SOCS proteins

Expression of the 8 suppressor of cytokine signaling (SOCS) family of proteins is induced in 

macrophages following cytokine stimulation, which blocks further inflammatory signaling 

in a classic feedback loop [184,185]. Several microorganisms, including M.tb, have 

developed sophisticated strategies to hijack SOCS protein pathways in order to block 

immune defense signaling pathways [174]. M. avium infection enhances SOCS1 and 

SOCS3, which correlates with a lack of IFNγ-mediated signaling in human macrophages 

[175]. Similarly, M.tb infection enhances SOCS expression in murine and human 

macrophages and the subsequently impaired IFNγ secretion results in enhanced bacterial 

load [176,186]. SOCS1 knockdown in murine macrophages significantly enhances the 

ability of infected macrophages to clear M.tb through an IFNγ–dependent mechanism 

[176,178]. Finally, SOCS1 mRNA transcripts are increased in the peripheral blood 

mononuclear cells (PBMCs) of advanced pulmonary TB patients when compared to 

moderately infected patients [187,188].
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5.3. CD200R

CD200R is an immunoglobulin superfamily member expressed on most leukocytes, 

particularly cells of the myeloid lineage [7,189-191] and Th2 polarized T cells [189]. 

Engagement of CD200R by its only known ligand, CD200, inhibits the activation of both 

myeloid and T cells. CD200R is expressed on murine AMs and plays a critical role in 

mediating homeostasis in the lung environment [76]. CD200 is highly expressed on type II 

alveolar epithelial cells and apoptotic leukocytes in the inflamed airway [76,173]. CD200 

knockdown results in an increase in AM number and spontaneous up-regulation of activity 

[76]. CD200 knockout mice succumb to a sub-lethal dose of influenza virus due to 

uncontrolled inflammation [76]. These data illustrate the critical role of CD200R in the 

chronic suppression of AM activation, a topic of current interest in our laboratory.

6. Macrophage immunoregulatory cytokines

Cytokines fall in 3 general classes: innate, adaptive, and stimulators of hematopoiesis. 

Studies of the host cytokine responses TB infection are abundant and vary markedly 

depending on the model and mammalian species used. It has become clear that M.tb 

generates cytokine responses in all 3 categories and that the “optimal” protective response to 

infection will represent a balance of the various cytokines produced. In addition, most of 

these cytokines have pleiotropic effects depending on the context of their activation and 

local tissue environment. Thus, it is difficult to correlate host protection with any particular 

cytokine. Here we will focus on two important immunoregulatory macrophage cytokines for 

M.tb: IL-10 and type I IFNs.

6.1. Interleukin 10

IL-10 is produced by many cell types and was initially shown to inhibit synthesis of IFNγ in 

Th1 cells [192-194]. Human IL-10 shares 80% homology with murine IL-10 [195]. Binding 

of IL-10 to its receptors, IL-10 R1 and IL10R2, results in activation of Jak1 and Tyk2, 

which subsequently activate STAT-1, 3 and 5 [195]. IL-10 can suppress Ag presentation as 

well as production of pro-inflammatory cytokines, chemokines, adhesion molecules and co 

stimulatory molecules in macrophages and other cell types [196]. IL-10 also inhibits nuclear 

translocation of NFκB and blocks DNA binding activity of translocated NFκB [197]. IFNγ-

inducible genes are suppressed by IL-10 through inhibition of STAT1- and 3-mediated 

induction of SOCS3 [196,198-200]. Pulmonary TB patients have increased levels of IL-10 

and TGFβ in their bronchoalveolar lavage (BAL) fluid [201,202] and serum [203]. Both 

IL-10 and TGFβ can inhibit CD4 T cell proliferation and IFNγ production in PBMCs from 

healthy PPD+ patients, possibly through the inhibition of APC function [204,204,205]. 

Additionally, neutralization of IL-10 produced by PBMCs from active TB patients results in 

increased T cell proliferation and enhanced IFNγ production [204,206]; the same trend was 

observed in patients with anergic TB [207]. Increased sputum IL-10 levels of active TB 

patients correlate with increased levels of M.tb antigen CFP32 [208]. Also IL-10 production 

following M.tb infection of human MDMs or AMs blocks phagosome maturation [209]. 

Finally, IL-10 polymorphisms are associated with susceptibility to TB [210-212]. 

Collectively, these human studies provide strong evidence that IL-10 acts a limiting factor 

for optimal host immune responses to M.tb.
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Results on IL-10 in M.tb pathogenesis in mice are variable, partly dependent on the mouse 

strain used. Early studies in the IL 10 -/- mouse (C57Bl/6 background) showed that despite 

increased IFNγ levels during every stage of infection, IL-10 deficiency did not result in a 

significant difference in lung bacterial load compared to wild type mice following aerosol 

infection [213-215]. In contrast, others have reported that IL-10 deficient mice (C57BL/6, 

CBA/J and BALB/c) show increased resistance to aerosol M.tb infection, with reduced lung 

bacterial load and increased IFNγ [216-218]. IL-10 over-expression in mice did not increase 

the susceptibility of mice during early stages of M.tb infection, but there was increased 

reactivation and higher lung bacterial burdens during the chronic phase of infection [219]. 

Another study demonstrated that M.tb infection of IL10 -/- mice treated with anti-IL-10R 

monoclonal antibody have reduced lung and spleen bacterial growth when compared to 

control mice [217]. Macrophages infected with M.tb or BCG have reduced surface 

expression of IFNγ-mediated MHC class II molecules due to IL-10-dependent inhibition 

[220]. Finally, blockade of IL-10 signaling during BCG vaccination increases the efficacy of 

the vaccine against M.tb [221]. On balance, mouse studies are generally congruent with 

human studies with regard to the immunoregulatory effects of IL-10.

6.2. Type I interferons

Type 1 Interferons (IFNs) are produced in response to many pathogens and can subvert anti-

TB host defenses by inhibiting production of iNOS, IL-12 p40, IL1-α and IL-1β, while 

inducing mediators of immune suppression such as IL-10 and IL1R antagonist [222,223]. 

Although type I and type II IFNs share similar STAT1-dependent signaling pathways, type I 

IFNs appear to promote bacterial growth. M.tb and activation of TLR2 significantly reduce 

the expression of TLR9-mediated type I IFNα/β and DC Ag presentation [224]. Type I IFNs 

are increased during M.tb infection and M.tb-infected type I IFN receptor deficient mice 

display lower bacterial burden when compared with wild type mice [225,226]. Intranasal 

delivery of a type I IFN inducer to M.tb-infected mice results in exacerbated lung pathology 

and increased bacterial load in the lungs [227]. The M.tb ESX-1-mediated secretion system 

can mediate the Type I IFN response during infection [228,229]. The relevance of these 

findings to human TB is supported by evidence that type I and II IFN-induced genes 

dominate the whole blood transcriptional profile of TB patients and this gene signature 

correlates highly with disease severity [230]. In human leprosy the expression of host 

protective IFN-γ and host susceptible IFN-β is inversely correlated [231]. The IFN-γ 

induced vitamin D-dependent macrophage antimicrobial peptide response was significantly 

inhibited by IFN-β and downstream IL-10 during M. leprae infection [231]. Recent studies 

demonstrate that IL-1 confers host resistance through the induction of eicosanoids that limit 

excessive type I IFN production and foster bacterial containment [232]. Further, the study 

showed that reduced IL-1 response and excessive type I IFN induction in infected mice and 

humans are linked to an eicosanoid imbalance associated with disease exacerbation [232].

7. Macrophage immunoregulatory transcription factors

7.1. Peroxisome Proliferator-Associated Receptor-γ

The nuclear receptor-associated transcription factor PPARγ acts as a negative regulator of 

macrophage activation by trans-repression of the transcription factors NF-κB, AP-1 and 
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STAT [233-235] and attenuating the respiratory burst [234,236,237]. PPARγ expression is 

high in AMs and its deletion in AMs increases Th1-associated gene expression such as 

iNOS, IFN-γ, IL-12 p40, MIP1α and IP-10 [238]. These attributes have important 

implications for controlling M.tb infection. Mycobacterial infection causes increased PPARγ 

expression in human and murine macrophages through PRRs such as the MR and TLRs 

[12,239], while PPARγ knockdown in infected human macrophages increases anti-

mycobactericidal activity and TNFα production [12,145]. M.tb-mediated induction of 

PPARγ also regulates host cell metabolism, leading to increased lipid body formation and 

down-regulation of the host immune response [239].

7.2. Liver X receptor

The liver X receptors (LXRs) are a second class of nuclear receptors activated by oxidized 

lipids. LXRs are mainly considered cholesterol sensors that regulate the expression of genes 

in lipid metabolism in response to specific oxysterol ligands [240,241]. In macrophages, 

these ligands may be derived from internalized oxLDL or generated intracellularly through 

cholesterol modification. Macrophage lipid import and export mechanisms are tightly 

regulated, since unbalanced lipid homeostasis affects the inflammatory status of the 

organism. Recently, LXRα and LXRβ have emerged as master regulators of macrophage 

transcriptional programs involved in cholesterol, fatty acid and glucose homeostasis 

[242-244] [241,245], and also negatively regulate macrophage inflammatory gene 

expression such as iNOS, COX2 and IL-6 [241]. Persisting M.tb in lung granulomas use 

lipids as the sole carbon source for growth [246] and mycobacterial persistence is critically 

linked to its ability to acquire and catabolize cholesterol from the host [247]. In addition, 

cholesterol is essential for M.tb phagocytosis by macrophages and for inhibition of 

phagosome maturation [248]. Intratracheal infection of mice with M.tb enhances LXR and 

LXR-dependent gene expression [249]. Further, mice deficient in both LXR isoforms were 

susceptible to M.tb infection, developing higher bacterial burdens and increased 

granulomatous lesions [249]. LXR knockout mice exhibit dysregulation of both pro- and 

anti-inflammatory functions [249]. An LXR gene polymorphism is associated with M.tb 

susceptibility [250] further emphasizing the importance of LXRs in the protective immune 

response against M.tb.

7.3. TR4

Testicular orphan receptor 4 (TR4) (aka TAK1 and Nrc2c2) does not have an identified 

ligand but is expressed in numerous tissues, including in macrophages [251,252].Upon 

activation, TR4 can repress genes targeted by PPARγ, LXR, vitamin D3 receptor and 

thyroid hormone receptor [252]. TR4 deficiency decreases CD36 expression and reduces 

foam cell formation in mice [253]. TR4-mediated CD36 transactivation is enhanced by 

polyunsaturated fatty acids and their metabolites, as well as the synthetic PPAR agonists 

[253]. TR4 knockdown in human macrophages enhances their ability to control M.tb growth 

by lowering CD36 expression and decreasing foam cell formation [145]. The same group 

reported that M.tb oxygenated keto-mycolic acids function as ligands for TR4 and increase 

its transcriptional activity, resulting in increased abundance of foam cells and granuloma 

formation [254]. Thus, PPARγ and TR4 appear to synergistically contribute to M.tb-induced 
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lipid biogenesis through increased CD36 expression and modulate foam cell formation by 

driving macrophages towards an immunosuppressive phenotype.

8. Macrophage lipid metabolism

Host-derived lipid mediators play an important role during M.tb infection and glycolipids 

from the mycobacterial cell wall can also function as potent antigens and 

immunomodulators [255,256]. Mycobacterial metabolism of host lipids serves as a source of 

nutrients [247] and protection from oxidative damage during infection [257], while 

dysregulation of host lipid metabolism contributes to foamy macrophage generation and 

granuloma caseation, leading to bacterial persistence [246]. This section will focus on 

macrophage prostaglandins, lipoxins and leukotrienes during M.tb infection. These 

polyunsaturated eicosanoids (20-carbon fatty acids) are hydroxylated during enzymatic 

modification of essential fatty acids and contribute to both homeostasis of the immune 

system and disease processes (reviewed in [258]).

8.1. Prostaglandins

Prostaglandins (PGs) are derived from the membrane fatty acid arachidonate and are 

produced by virtually all cells [259,260]. PGs can induce chemokines to enhance trafficking 

of myeloid cells to inflamed tissues [261] and contribute to the amplification of pro-

inflammatory cytokine production [262]. The type of PG produced is tissue specific; 

however, the bulk of these molecules are deactivated in the lungs after entering the 

circulatory system [258]. PGJ2, in opposition to the majority of PGs, has predominantly 

anti-inflammatory effects and acts as an endogenous ligand for PPARγ [263]. As mentioned 

earlier, PPARγ activity can increase intracellular survival of virulent M.tb in macrophages 

with a decrease in TNFα production [12]. Through PPARγ activation, PGJ2 production may 

thus be detrimental to the host during M.tb infection.

PGE2 expression in mice gradually increases during M.tb infection [264]. Low levels of 

PGE2 during early infection were necessary to control the infection, due to PGE2-dependent 

iNOS production [264] and stabilization of the T cell response [265]. However, during later 

chronic infection, lipid-laden infected macrophages express high PGE2 levels, which can 

inhibit the inflammatory response and contribute to progressive pneumonia [264]. Thus, the 

concentration and kinetics of PG expression are important in considering their role during 

TB pathogenesis.

8.2. Lipoxins

Lipoxins (LXs) are produced by leukocytes [266], pulmonary endothelial cells and 

macrophages during M.tb infection [267]. LXs are known as pro-resolving lipid mediators, a 

class which also includes resolvins and protectins [266], contributing to the cessation of the 

inflammatory response [268]. They have autocrine and paracrine effects [268]. To mediate 

resolution of inflammation, LXs function to inhibit neutrophil migration and degranulation 

[269], and prevent pre-mature macrophage apoptosis. The 5- and 15-lipoxygenases (LOs) 

use arachidonic acid as a substrate for the production of 15-epilipoxin-A4 and leukotriene B4 

(see below). 15-epi-LXA4 can inhibit the production of IL-6, TNF-α and IL-8 [270,271]. 
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Mice lacking 5LO, the enzyme responsible for LXA4, are more resistant to M.tb infection 

than wild type controls, attributed to increased production of IL-12, IFNγ and iNOS. 

Knockout mice given an LXA4 analog reverted to the wild type infection response [267]. 

Infection of human and murine monocytes with M.tb increases LXA4 production, which 

blocks PGE2-dependent repair of the cell membrane, causing necrosis and dissemination of 

bacteria [272]. As with PGJ2 and PPARγ, the anti-inflammatory functions of LXA4 appear 

to work against the host in this disease.

8.3. Leukotrienes

Lipoxygenase enzymes are responsible for the production of leukotrienes (LTs) through the 

conversion of arachidonate to hydroxyeicosatetraenoic acid (HETE). 5-HETE is further 

converted to the unstable LTA4, the precursor to all other LTs [273]. The main sources of 

LTs are macrophages, neutrophils, DCs and mast cells. LTs are pro-inflammatory molecules 

that induce smooth muscle contraction and vasoconstriction, contributing to allergies 

[274,275], asthma [276] and autoimmune diseases [277].

LTs are host protective in the mouse. M.tb-infected BALB/c mice given the drug celecoxib 

(LTB4 stimulator/PGE2 inhibitor) exhibited a slight increase in survival. Conversely, the 

LTB4 synthesis inhibitor MK886 reduced 60 day survival rates by half [278]. LTB4 is also 

important for human neutrophil killing during BCG infection [279]. However, BALB/c mice 

treated with MK866 are still protected from TB when pre-treated with a prime-boost 

heterologous vaccine [280], indicating that the effects of LTs can be overridden. LTB4 is 

induced in both human TB and the zebrafish model of M.tb infection [281,282], and its 

levels regulate host protection [283].

9. Macrophage microRNAs

9.1. miRNA function and biogenesis

MicroRNAs (miRNAs) are endogenous, non-coding, small RNAs that function as gene 

regulators by primarily mediating translational repression or degradation of target mRNAs 

[284]. They are implicated in a variety of biological processes [285] and are transcribed 

from intergenic or intragenic regions of the genome in pri-miRNA form, which may contain 

one or multiple miRNAs. [286]. Although the role of miRNAs in regulation of the immune 

system and response to infection is becoming clearer, we do not yet have a clear picture of 

the global impact of miRNAs on the immune response to M.tb. Recent evidence indicates 

that there is one and that macrophage immune pathways play a role.

9.2. miRNAs in M.tb infection

Several studies have compared miRNA profiles in TB patients (active or latent) verses 

healthy controls, with little agreement between the reports. These profiles were obtained 

from serum and sputum, which mostly rely on detection of extracellular sources of miRNAs; 

thus, miRNA profiles obtained in this fashion may not be truly indicative of M.tb-induced 

processes [287-291].
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There are recent studies of miRNAs in M.tb infection with validated targets. However, some 

were carried out exclusively in murine models or murine cell lines and although miRNAs 

are conserved between species, regulation of their expression may differ, and so miRNA 

expression patterns and their targets must be validated in human model systems [292-294]. 

It was reported early that there is increased expression of miR-144* in the PBMCs of 

pulmonary TB patients. This increase was later localized to the T cell population and 

observed to inhibit IFN-γ and TNF-α secretion[295]. Soon after, we reported increased 

miR-125b expression with virulent M.tb infection (but not with avirulent M. smegmatis) 

which resulted in destabilization of TNF-α mRNA and decreased TNF-α secretion in human 

primary macrophages [255]. These studies indicate that modulation of cytokine production 

by miRNAs may be an effective mechanism for M.tb to escape immune control.

M.tb may also inhibit apoptosis through miRNAs. miR-29a targets the anti-apoptotic 

proteins B-cell lymphoma 2 (Bcl-2), myeloid cell leukemia -1 (Mcl-1) p85a and GTP-

binding protein CDC42 [296] and M.tb infection can suppress miR29a [297], thereby 

potentially inhibiting apoptosis. Additionally, miR-29a targets the 3’UTR region of IFN-γ 

mRNA, suppressing IFN-γ production. miRNA-29a expression was down-regulated after 

BCG infection and miR-29a knockdown induced IFN-γ expression in NK cells and T cells, 

and promoted murine survival after M.tb infection [297].

Mycobacteria can modulate TLR signaling pathways through up-regulation of various 

miRNAs. In murine AMs and cell lines, high levels of miR-124 were detected in response to 

BCG infection. miR-124 inhibits TLR signaling by down-regulating the expression of 

MyD88, TRAF6 and TLR6 [298]. Patients with active TB have increased levels of miR-147 

[299], which acts as a negative regulator of TLR/NFκB-mediated pro-inflammatory 

cytokines such as TNF-α and IL-6 [300]. However, TNFα and IL-6 levels in sputum did not 

differ significantly between active TB and control groups. The anti-inflammatory miRNA, 

miR-99b, was highly up-regulated in M.tb-infected DCs and macrophages and blockade of 

miR-99b expression significantly reduced bacterial growth in DCs and increased TNFα, 

IL-6, IL-12 and IL-1β [294]. Autophagy pathways are also influenced by miRNAs. miR-155 

expression was enhanced in murine macrophages upon M.tb infection, leading to increased 

autophagy-mediated killing [301]. miR-155 targets the 3’-UTR region of Ras homologue 

enriched in brain (Rheb), a negative regulator of autophagy. Finally, a host-protective 

increase in miR-223 expression was observed during miRNA expression profiling of TB 

patient blood and lung tissue, followed by functional studies in a miR-223 knockout mouse 

[302]. These studies indicated that miR-223 directly targets CXCL2 and CCL3, and IL-6 to 

regulate neutrophil chemotaxis and inflammatory function.

miRNAs potentially serve as a biomarker for TB disease diagnosis and prognosis. However, 

importantly, individual miRNAs or miRNA families can regulate hundreds of genes and, 

conversely, gene targets can be regulated by different miRNAs. Thus, a clear picture of 

miRNAs and other non-coding RNAs in TB pathogenesis will require further study.
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10. Differences in macrophage biology between man and mouse

Although murine models have been used extensively to study TB pathogenesis, or identify 

and test drug and vaccine candidates for subsequent human trials, there is more evidence and 

attention to the substantial differences between the two species in the nature of their 

inflammatory pathways, in ways that impact our understanding of TB pathogenesis [303]. 

For example, in terms of fundamental aspects of host defense, macrophages from humans 

and mice differ in expression/activity of PRRs, including TLRs and C-type lectins 

[304-306], signaling pathways [307,308], autophagy pathways [305], and host defense 

molecules such as antimicrobial peptides [309] and NO [310,311] to name a few. Mouse KO 

studies targeting host defense pathways have often yielded negative findings leading to 

interpretations contrary to in vitro findings despite these known differences between species 

as well as the known redundancy in the innate immune system, a cardinal feature of this 

evolutionarily conserved arm of immunity. Thus, future studies must take these differences 

into account and continue to foster new animal models that better reflect human in vitro and 

in vivo systems to advance the field.

11. Conclusions

Recent focus on the plasticity and functional diversity of macrophages has raised new and 

important questions for the TB community in terms of assessing: 1) organ-specific effects, 

particularly in regards to the lung; 2) macrophage activation states; 3) differences in 

macrophage function and protective responses during the continuum of TB (primary 

infection, latency and re-activation); 4) in vitro cultivation conditions [e.g. recent studies on 

TB and diabetes highlight the importance of using autologous serum with macrophages to 

maintain undefined soluble immune factors [312], and 5) similarities and differences among 

mammalian macrophage sources. As we gain more knowledge about macrophage responses 

in the context of organ-specific microenvironments, our understanding of the molecular 

details underlying the pivotal M.tb-macrophage interactions occurring during TB will 

become more defined.

Abbreviations

IM Interstitial Macrophage

DPPC Dipalmitoylphosphatidylcholine

CRD Carbohydrate recognition domain

CAM Classically activated macrophage

AAM Alternatively activated macrophage

SP surfactant protein

ManLAM mannosylated lipoarabinomannan

PIM phosphatidyl inositol mannoside

LM lipomannan
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P-L fusion phagosome-lysosome fusion

AM alveolar macrophage

DPPC dipalmitoyl phosphatidylcholine

BAL bronchoalveolar lavage

M.tb Mycobacterium tuberculosis

PG prostaglandin

LX lipoxin

LT leukotriene

miRNA microRNA
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Highlights

• We review current concepts in macrophage responses to M. tuberculosis

• We emphasize macrophage heterogeneity and the unique immunoregulatory 

alveolar macrophage

• We describe major macrophage immunoregulatory pathways that influence the 

host inflammatory response to M. tuberculosis

• We compare similarities and differences in macrophage responses among 

different sources
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Figure 1. Depiction of the generation of AMs within the alveolar tissue environment
Blood monocytes traverse the pulmonary alveolar capillary bed and differentiate into 

intravascular macrophages in situ or transit to the interstitium to become interstitial 

macrophages (IMs), or to the alveolar space to become AMs (there is also evidence for local 

production of macrophages in mice). On route, the macrophages are “shaped” by locally 

produced determinants such as cytokines like GM-CSF, etc. Upon entering the alveolar 

space, AMs encounter surfactant components which play a role in differentiating these cells 

to their unique immunoregulatory phenotype, enabling them to acquire their primary 

function of enhancing clearance of particulates while limiting excessive pro-inflammatory 

“collateral” damage. Step 1 AM changes are immediate as a result of surfactant components, 

and other ligands, engaging their cognate receptors to generate a signaling cascade which 

alters the phenotype and function. Step 2 is long term resulting from an alteration in 

transcriptional programming. The unique AM phenotype requires constant input from the 

alveolar environment.
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Figure 2. Schematic of macrophage activation by different stimuli that drive macrophage 
differentiation to different phenotypes
(a) Classically activated M1 macrophages are differentiated by IFN-γ, LPS and TNFα which 

lead to increased expression of pro-inflammatory mediators such as cytokines (TNFα, IL-1β, 

IL-12 and IL-6), iNOS, MHC-II molecule, and TLRs, as well as increased expression of 

FcγRs. (b) Alternatively activated M2 macrophages are differentiated by IL-4 and IL-13 

which lead to an anti-inflammatory signature with increased expression of the MR (CD206), 

PPARγ, IL-10, CD200R, CD163, CD36, MARCO and SR-A. (c) AMs are unique 

immunoregulatory cells which express both M1 and M2 markers. Their activation is tightly 

regulated by molecules such as PPARγ, IRAK-M, IL-10 and SOCS proteins.

Rajaram et al. Page 35

Semin Immunol. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. Schematic of macrophage regulatory factors that alter M.tb growth
(a) Activation of PRRs by M.tb and/or M.tb cell wall components, and downstream 

responses. TLR activation by M.tb cell wall components 38 kDa glycoprotein, LpqH, or 

PIMs promote inflammation; in contrast, LprA, LprG, PhoS1, LM and LAM increase the 

expression of anti-inflammatory mediators such as IL-10, IL-4 and TGF-β which enhance 

M.tb growth. MR-mediated phagocytosis of M.tb or MR stimulation by ManLAM delays P-

L fusion and enhances PPARγ expression, leading to increased M.tb growth. TDM binding 

to Mincle or ManLAM to Dectin II enhance TNF1, IL-12 and IL-6 leading to granuloma 

formation and M.tb control. (b) Negative regulators of macrophage responses to M.tb and/or 

cell wall components. M.tb or ManLAM stimulation enhances the expression of various 

negative regulators, e.g. IRAK-M, SOCS-1 and SOCS-3, PPARγ, and TR4 as well as IL-10 

and type I-IFNs which suppress host protective inflammatory mediators and promote M.tb 

growth. (c) Regulation of macrophage microRNAs and their functions in response to M.tb 

and/or cell wall components. miRNAs are important immune regulators during M.tb 

infection. Increased miR-125b targets TNFα for degradation, and miR-124 and miR-147 

target TLR pathway genes such as MyD88 and TRAF6, are highly induced by M.tb 

infection and promote M.tb growth. (d) Impact of macrophage lipid mediators in response to 

M.tb and/or cell wall components. Lipid metabolites such as PGE2, LXA4 and LTB4 also 

regulate the macrophage immune response during M.tb infection. PGE2 and LXA4 are anti-

inflammatory and promote M.tb growth. In contrast, LTB4 enhances bacterial killing during 

the early stage of infection and later promotes M.tb growth.
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