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Abstract

New high throughput technologies are now enabling simultaneous epigenetic profiling of DNA 

methylation at hundreds of thousands of CpGs across the genome. A problem of considerable 

practical interest is identification of large scale, global changes in methylation that are associated 

with environmental variables, clinical outcomes, or other experimental conditions. However, there 

has been little statistical research on methods for global methylation analysis using technologies 

with individual CpG resolution. To address this critical gap in the literature, we develop a new 

strategy for global analysis of methylation profiles using a functional regression approach wherein 

we approximate either the density or the cumulative distribution function (CDF) of the 

methylation values for each individual using B-spline basis functions. The spline coefficients for 

each individual are allowed to summarize the individual’s overall methylation profile. We then 

test for association between the overall distribution and a continuous or dichotomous outcome 

variable using a variance component score test that naturally accommodates the correlation 

between spline coefficients. Simulations indicate that our proposed approach has desirable power 

while protecting type I error. The method was applied to detect methylation differences, both 

genome wide and at LINE1 elements, between the blood samples from rheumatoid arthritis 

patients and healthy controls and to detect the epigenetic changes of human hepatocarcinogenesis 

in the context of alcohol abuse and hepatitis C virus infection. A free implementation of our 
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methods in the R language is available in the Global Analysis of Methylation Profiles (GAMP) 

package at http://research.fhcrc.org/wu/en.html.
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variance component testing

Introduction

Recent advances in high-throughput biotechnology have culminated in the development of 

large-scale epigenome wide association studies (EWAS) in which the DNA methylation at 

hundreds of thousands of CpGs along the genome can be simultaneously measured across a 

large number of samples [Bibikova et al., 2011; Rakyan et al., 2011; Sandoval et al., 2011]. 

EWAS have resulted in the identification of differentially methylated CpGs associated with 

differences in disease states, clinical outcomes, environmental exposures, or other 

experimental conditions [Heyn et al., 2012, 2013; Joubert et al., 2012; Shen et al., 2013]. 

These discoveries can provide a breadth of information from fundamental insights into the 

mechanisms underlying complex disease and to potential biomarkers for diagnosis or 

prognosis [Attar, 2012; Laird, 2003]. Despite many successes, analysis of EWAS remains 

challenging. In addition to open questions concerning preprocessing and normalization 

[Dedeurwaerder et al., 2011; Teschendorff et al., 2013], association analysis with outcome 

variables is also difficult. Standard analysis proceeds via individual CpG analysis wherein 

the association between each CpG and an outcome variable (e.g., disease state, 

environmental exposure, etc.) is assessed one-by-one. After computing a P-value for each 

CpG, multiple testing criteria such as the false discovery rate (FDR) or Bonferroni 

corrections are applied. CpGs surviving this correction are called differentially methylated 

and followed for validation and interpretation. Recently, alternative approaches based on 

pathway analysis have also been applied and largely mimic the analyses conducted for gene 

expression data.

Although individual CpG analysis has been extremely successful in identifying individual 

CpG sites associated with a variety of outcomes, a question of considerable interest lies in 

whether there is global differential methylation across the entire epigenome [Eng et al., 

2000]. For example, global hypomethylation is believed to occur in cancer [Brothman et al., 

2005; Kim et al., 2006] and has been reported in age-related frailty [Bellizzi et al., 2012].

The traditional analytical chemistry-based approaches (e.g., high performance liquid 

chromatography and mass spectrometry) for evaluating global methylation profiles are 

highly quantitative and reproducible [Beck and Rakyan, 2008; Song et al., 2005] but require 

large amounts of DNA and provide no information on the distribution of methylation across 

the genome.

A popular surrogate approach to evaluating global methylation uses polymerase chain 

reaction (PCR)-based assays that measure methylation of repetitive Alu elements and long 

interspersed nucleotide elements (LINE), which sample CpG methylation at hundreds of 
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thousands of repeat regions located across the genome. Such methods have been used for a 

wide range of diseases and experimental conditions [Bollati et al., 2007; Chalitchagorn et 

al., 2004; Figueiredo et al., 2009; Sharma et al., 2008], and correlate well with analytical 

chemistry methods [Lisanti et al., 2013]. Changes in methylation at repeat elements may 

have a significant biological meaning because repeat element hypomethylation, particularly 

in tumors, may be associated with retrotransposon reactivation and subsequent genome 

instability [Yang et al., 2004]. However, these technologies are limited only to repeat 

regions. New technologies, such as high-resolution methylation microarrays, can provide 

genome-wide methylation profile with more thorough coverage and higher resolution than 

repeat element-based methods.

Three important methylation platforms used in more and more EWAS studies include: (1) 

Infinium HumanMethylation450 BeadChip from Illumina that has a whole genome coverage 

of 485,000 CpG, near 99% of RefSeq genes, 96% of CpG islands, and other expert selected 

content [Dedeurwaerder et al., 2011]; (2) Reduced representation bisulfite sequencing 

(RRBS) that provides methylation data on 5–10 million CpG dispersed around the genome 

[Meissner et al., 2005]; (3) Whole genome bisulfite sequencing (WGBS) that provides 

methylation data at all mappable CpGs in the genome. The increasing availability of such 

array or sequencing-based approaches calls for statistical methods to detect methylation 

differences across the entire genome or a large subset of methylation markers, such as 

markers that are within repeat regions, or are restricted to specific genomic context such as 

Cpg islands (CGIs), CGI shore, non-CGI regions, or within a biological pathway.

In this paper, we develop two new related methodologies for the global analysis of 

methylation profiles (GAMP), either across the epigenome or restricted to a large number of 

CpGs. The intuition behind our approach is that global methylation differences may be 

observable through differences in the overall distribution of CpG methylation levels, yet 

changes in a select, small subset of CpGs (which fails to reflect “global” methylation 

differences) will not dramatically change the entire distribution. Consequently, for our first 

strategy, we approximate the density of the methylation distribution for each individual 

using B-Spline basis functions [Ramsay and Silverman, 2005]. For our second strategy, we 

approximate the cumulative distribution function (CDF) of the methylation distribution for 

each individual using B-spline basis functions. Then for both approaches, we summarize the 

entire distribution of methylation values using the estimated B-spline coefficients. To test 

for differential global methylation, we employ a variance component test [Lin, 1997] 

previously used for regression-based analysis of gene expression [Goeman et al., 2004; Liu 

et al., 2007, 2008] and genetic variants [Kwee et al., 2008; Wu et al., 2010, 2011]. In this 

paper, we mainly focus on methylation data obtained through Illumina 

HumanMethylation450 microarray, but the method is directly applicable to other high-

throughput methylation platforms.

Our approach offers a number of attractive features. First, since we are using a more robust 

summary measure rather than the original CpGs, the approach is therefore targeted toward 

comprehensive, modest changes in methylation globally. Furthermore, it is robust to very 

strong differential methylation in a few CpGs of interest—while interesting this scenario 

may not reflect true global differential methylation. Second, we will employ a 
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computationally fast variance component test from the kernel machine framework that 

accommodates the high degree of correlation between spline coefficients while allowing for 

covariate adjustment. Finally, our variance component testing approach can be used for a 

range of outcome types including continuous, dichotomous, survival [Cai et al., 2011; Lin et 

al., 2011], and multivariate [Maity et al., 2012] outcomes while adjusting for covariates. The 

ability to adjust for covariates and confounders is an important feature given recent concerns 

regarding the need for controlling cell type effects [Houseman et al., 2012].

Methods

The idea behind our approach is that large scale, global differences in methylation will be 

reflected in differences between individuals in the distribution of their CpG methylation 

measurements. Thus, our general approach is to approximate the distribution of methylation 

values for each individual and then test for an association between the distributions and an 

outcome variable. In this method section, we focus first on approximating each individual’s 

methylation profile using either the density or the cumulative density function (CDF). 

Subsequently, we will describe the hypothesis testing procedure using the variance 

component test in Section.

Estimation of the Methylation Distribution

Estimation of the Density for Each Sample—Our first approach for approximating 

the overall methylation profile for each individual is based on approximation of each 

individual’s density function. In short, we will compute the methylation profile for each 

individual by first creating a fine histogram of the methylation values and then fitting a B-

spline to the binned histogram data. The spline coefficients will be used to summarize the 

profile and be analyzed in the testing stage.

For the ith sample in the study, i = 1, … , n, suppose that the true underlying density 

function of the methylation values is Hi(·). However in practice, the actual form of this 

density function is unknown. Instead, we only observe methylation percentages {Xi11, … , 

Xim}, where m is the number of observed methylation probes, and Xij is the methylation 

level of the jth CpG on the ith sample. To estimate the underlying density, we first generate 

a fine histogram of the methylation values. In particular, for a prespecified large number B, 

we define bins  for k = 1, … , B, and calculate the empirical relative 

histogram by

where tk denotes the mid-point of the bin Ik for k = 1, … , B. Noting that each Xij is the 

percent methylation (between 0 and 1), then  with t ∈ Ik is the density of probes falling 

into the kth bin. In principal, B is a constant that can be tuned, and is related to the kernel 

bandwidth in kernel density estimation area. Larger values of B correspond to more bins and 

a finer histogram and better capture of small effects, yet greater sensitivity to differences 
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generated by small changes in the overall distribution rather than global changes. Our 

experience suggests that setting B = 200 produces a reasonably fine histogram (Fig. 1A), but 

in practice, B is also a tuning parameter that can be selected.

Once we have constructed the histogram, we can estimate the smooth methylation profile by 

fitting a B-spline to the histograms to obtain a smooth curve. In particular, we take a 

functional data analysis view of the problem and assume that the  is simply the 

observed value from the functional process Hi(·). The underlying Hi(·) is the profile of the 

methylation distribution for the ith sample, which we use to summarize the global 

methylation values for the sample. We can apply standard B-splines to model each Hi(·).

Briefly, B-splines are a sequence of joined polynomial segments between a series of knots 

that are used to model functional data. Between each pair of knots the curves are modeled as 

a polynomial of some order greater than 1. For a prespecified number of interior knots R and 

order L of the polynomials, the total number of B-spline basis functions is given by p = R + 

L. We model the true methylation profiles Hi(·) by

where ϕ1(·), … , ϕp(·) are the unique B-spline basis functions, and ci1, … , ciL are unknown 

coefficients specific to the ith sample. To estimate the coefficients, we propose to minimize 

the penalized least squares criterion

where Φk = {ϕ1(tk), … , ϕp (tk)}’, Ci = (ci1, … , cip)’ and S is a roughness penalty matrix 

calculated as the integrated squared second-order derivative of the B-spline function. Here λ 

is a penalty parameter that controls the roughness of the fitted function. A larger value of λ 

results in a smoother estimate while a smaller values of λ produces rougher fit. The resulting 

estimate of the coefficient vector c has a closed form and can be computed using standard 

penalized least squares estimation.

Two important issues in this context are the number and placement of the knots, and the 

choice of the penalty parameter λ. Since methylation percentages are between 0 and 1 and 

approximately bimodal, we place more knots in the areas with strong curvature (closer to 0 

and 1) and fewer knots in between. In general, we observed that 25–35 knots with 

polynomial order 4 seems to be a reasonable model for the data. Regarding the choice of λ, 

there are many available data-based methods such as leave-one-out cross-validation, 

generalized cross-validation and the restricted maximum likelihood criteria [e.g., Ruppert 

and Carroll, 2003]. In this article, we use generalized cross-validation (GCV) method to 

select λ.
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Although  can be thought of as an approximation of the density for the methylation 

values, strictly speaking, adjustments are needed to ensure that it has the properties of being 

a probability density function. However, since we are simply using the profile of the 

histogram as a tool for summarizing the entire profile of methylation values, this is not 

necessary from the perspective of testing.

Estimation of the CDF for Each Sample—Our second approach for approximating the 

overall methylation profile for each individual is based on approximation of each 

individual’s CDF. Similar to before, we will estimate the empirical CDF (ECDF) and then 

fit a B-spline to the ECDF. The spline coefficients will again be used to summarize the 

profile and will be analyzed in the testing stage. The advantage of this approach is twofold: 

first, binning to create a histogram is no longer necessary and second, sensitivity of results to 

knot placement is mitigated.

For the ith sample in the study, i = 1, … , n, we assume that the true CDF is Fi(·), and 

estimate the ECDF as:

where {tk, k = 1, … , B} form an equally spaced grid of B points in [0, 1]. In constructing a 

basis for the CDF, we again use a grid of 35 knots between 0 and 1 due to the nature of 

methylation data, but in contrast to modeling the density function, we space the knots evenly 

since the difference in curvature is no longer as apparent. Because the CDF is smoother than 

the histogram, we also considered a less dense knot placement scheme in which 15 or 25 

knots were used to construct a basis for the CDF.

We again assume a B-Spline basis representation for the true CDF with order 4 basis 

functions and write

where ϕ1(·), … , ϕR(·) are the B-spline basis functions. As with the estimation for the density 

functions, the unknown coefficients for the ith subject can be estimated using penalized least 

squares with  as the responses, and the smoothing parameter λ can be 

estimated using generalized cross-validation criterion.

Variance Component Testing for Differences in Approximated Distributions

After applying B-splines to approximate either the density or the CDF for each sample in the 

study, we allow the B-spline coefficients to index the entire distribution. Consequently, to 

test for global changes in methylation, we need only test whether the spline coefficients are 

associated with the outcome. To do this while accommodating potential confounding 

variables and the (typically) high correlation between B-spline coefficients, we propose to 
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use the variance component test used within the SKAT framework for genotype analysis 

[Kwee et al., 2008; Wu et al., 2010, 2011].

Here and in the sequel we let Ci = [ci1, ci2, … , cip]’ denote the vector of B-spline 

coefficients for the ith individual in the study and Zi be a vector of covariates for which we 

would like to control. We further let yi denote the outcome of interest. For simplicity, we 

focus on univariate continuous or dichotomous outcomes, but our framework generalizes 

naturally to other outcomes such as survival times or multivariate measurements. The 

objective is to test for association between Ci and yi while adjusting for Zi.

Natural models for relating the variables of interest to the outcome are the linear model

(1)

for continuous outcomes and the logistic model

(2)

for dichotomous outcomes, where we define α0 to be an intercept, α and βj to be the 

regression coefficients corresponding to additional covariates X and each B-spline 

coefficient, and εi to be a random error with mean 0 and variance σ2. To test for an 

association between C and y corresponds to testing:

(3)

In principle, this can be done using a p degree of freedom test, but the C tend to be highly 

correlated and p can be large such that power is low. An alternative approach is to assume 

that the βj follow some arbitrary distribution G(·) with mean 0 and variance τ. Then τ 

indexes the significance of the entire group of B-spline coefficients and then testing (3) is 

equivalent to testing

(4)

which can be done using a variance component score test. In particular, for continuous 

outcomes we can construct the score statistic

where , and  are estimated under (4). Similarly, for dichotomous outcomes we can 

construct the score statistic
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where  and both  and  are again estimated under the null, (4).

Under the null hypothesis, Q asymptotically follows a mixture of chi-squares distributions. 

In particular,  where λl are the eigenvalues of  and P0 = I − 

X(X’X)−1X’ for continuous outcomes and P0 = D − DX(X’DX)−1X’D for dichotomous 

outcomes with . This distribution can be approximated use moment 

matching methods [Liu et al., 2007, 2009] or exact approaches [Davies, 1973, 1980; 

Duchesne and Lafaye De Micheaux, 2010] allowing for easy P-value computation.

A key advantage of using the variance component testing framework is that the degrees of 

freedom of the test adjust naturally to the correlation among the B-spline coefficients. In 

fact, if the coefficients are perfectly correlated, then the test reduces to a single degree of 

freedom test since the number of nonzero eigenvalues of CC’ is only one.

Simulations

Simulations were conducted to evaluate the type I error and power of the proposed global 

methylation profile analysis approach, in comparison to other traditional approaches for 

detecting distributional differences or mean shift between two distributions. Two simulation 

scenarios were considered: (1) global methylation profile is associated with the outcome, 

without any additional covariates, (2) additional covariates are associated with both the 

methylation profile and the outcome. Results are presented for the simulations with a 

dichotomous outcome, such as case-control status. Notice that in the second simulation 

scenario, the additional covariates qualify as confounders.

Simulations Without Additional Covariates—We first conducted simulations under 

simple situation when the case-control status depends only on the methylation profile but no 

additional covariates. We simulated methylation profiles for N = 40, 60, 100, and 500 

individuals with half as cases and half as controls. Although the score test used in the 

proposed global methylation profile analysis allows for rapid analytical P-value calculation, 

approximating the methylation density or CDF using B-splines is still relatively time-

consuming when the number of CpGs is large. This makes simulations difficult under 

scenarios in which we require large numbers of simualtions, e.g., in assessing type I error. 

Specifically, it takes approximately two days to simulate and conduct the analysis for 5,000 

data sets with N = 500 and 485,000 CpGs (any single dataset would take less than a minute 

to run). Therefore, we conducted simulations using only 10,000 CpG markers for each 

individual.

To mimic real methylation data, we employed the inverse logit transformation of a 

multivariate normal distribution. Specifically, for the control group, the methylation values 

for all CpG markers were simulated as M0 = logit−1(t0) where logit−1 is the inverse logit 

function logit−1(t0) = exp(t0)/(1 + exp(t0)). t0 ~ N(0, 3) where the standard deviation 3 is to 

ensure that the methylation profiles have enriched “0”(unmethylated) and “1”(methylated) 

values as in real data. Methylation for cases were simulated as a mixture of two 

distributions: a proportion of 1 − P of the CpG markers come from the same distribution M0 
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as in the control group and the remaining P proportion of CpG markers have methylation 

values from a different distribution. We considered two different case scenarios:

• Case scenario 1: M1 = logit−1(t1), t1 ~ (1 − P) * N(0, 3) + P * N(0.3, 3)

• Case scenario 2: M2 = logit−1(t2), t2 ~ (1 − P) * N(0, 3) + P * N(0, 3.15)

We focus on these two case scenarios because in the first scenario the methylation profiles 

from the cases and the controls have different means while in the second scenario the global 

methylation in the two groups have similar means but different variance. When P = 0, the 

methylation profiles from the cases are the same as from the controls and thus type I error 

can be evaluated. By changing the values of P, we can evaluate the power under different 

association strength.

For each of the two simulation scenarios, we applied both the density and CDF-based global 

analysis approaches to evaluate the association between case-control status and methylation 

profiles. Specifically, we used B-splines to approximate the density or the CDF of each 

individual’s methylation distribution. For the density estimation, we constructed histograms 

using 200 evenly spaced bins between 0 and 1. The knots for the B-spline were spaced at 

intervals of 0.02 between 0 and 0.3 and between 0.7 and 1. Since the region in the center is 

less variable, knots were placed at intervals of 0.1 in length. This generated totally 35 knots 

between 0 and 1 for density estimation. For the CDF estimation, we estimated the ECDF at 

1,000 evenly spaced points between 0 and 1. 35 knots for B-spline estimation were spaced 

between 0 and 1 evenly. Because the CDF is smoother than the density function, we also 

considered using fewer knots (15 and 25) for the B-spline estimation. After estimating the 

spline coefficients for approximating the density and the CDF, we applied the variance 

component score test to evaluate the association between the spline coefficients and the 

outcome variable. For each sample size, 2,000 simulations were conducted for type I error 

that the mixture proportion P = 0 and 500 simulations were conducted for power evaluation 

with P = 0.125, 0.25, 0.375, and 0.5.

We compared the power of the two proposed global analyses to traditional approaches for 

overall methylation differences: t-test that captures the mean shift in two distributions and 

Wilcoxon rank sum test that tests whether two distributions have the same mean ranks. The 

Kolmogorov–Smirnov (K–S) test is another commonly used test that quantifies 

distributional differences. However, the Kolmogorov–Smirnov test considers each CpG 

marker as a sampling unit and its naive application is not valid [Goeman and Bühlmann, 

2007]. In particular, the sample size for the K–S test would be 485,000 rather than the 

number of samples. This implies that an inference would generalize to the population of 

CpGs rather than the population of samples or individuals.

Simulation With Additional Covariates—Additional simulations were conducted to 

evaluate the performance of our proposed tests in situations when there are additional 

covariates, especially confounders. Specifically, we simulated two groups of methylation 

values and the dichotomous outcome was constructed based on the methylation group label 

and additional covariates. Again, 10,000 CpG markers were considered for each individual. 

In the first group of methylation profile, each CpG methylation value was simulated the 

Zhao et al. Page 9

Genet Epidemiol. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



same way as in the control group in section: e.g., M0 = logit−1(t0), t0 ~ N(0, 3). The 

methylation values from the second group was simulated as a mixture of two distributions 

with half of the markers simulated the same way as M0 and half the markers simulated as 

logit−1 transformation of another distribution N(0.3, 3). Additional covariate X was 

simulated as N(0, 0.5) for the first methylation group and N(0.5, 0.5) for the second 

methylation group. Notice that the distribution of X is related to the methylation group label, 

and thus X would be a potential confounder if it is also associated with the simulated 

dichotomous outcome.

• M0 = logit−1(t0), t0 ~ N(0, 3); X ~ N(0, 0.5)

• M1 = logit−1(t1), t1 ~ 0.5N(0, 3) + 0.5N(0.3, 3); X ~ N(0.5, 0.5)

The dichotomous outcome, i.e., the case/control status, was simulated according to success 

probability π that is based on both the methylation group label and additional covariate X: π 

= logit−1[b * I(M ∈ M1) + X]. Type I error can be evaluated when b = 0 that the methylation 

profile is unrelated to the outcome. Power of the proposed tests can be evaluated by 

changing the values of b = 1, 2, 3, 4, and 5 with different sample sizes N = 40, 60, 100, and 

500.

Data Applications

We illustrate our proposed methods for GAMP via application to two real datasets. We 

applied the proposed density and CDF-based approaches to evaluate the global methylation 

differences across the entire epigenome. To facilitate interpretation, we also considered 

restricting our analysis to analyze the CpGs falling within relevant genomic features, such as 

the CpG islands (CGI), CGI shores, CGI shelfs, non-CGI, and gene bodies. Additionally, we 

also carried out a restricted analysis of the CpG sites that were located within repeated 

LINE1 elements, which have been examined in many population studies and are presumed 

to reflect global methylation levels. With an estimated 500,000 copies per genome, the 

LINE1 elements make up about 17% of the human genome [Rodić and Burns, 2013]. 

Although the percentage of active LINE1 elements is unclear, LINE1 elements are believed 

to be responsible for most reverse transcription in the genome, including retrotransposition 

of Alu elements [Okada et al., 1997] and the creation of processed pseudogenes [Wei et al., 

2001]. Thus, LINE1 elements are very important for genomic stability.

Methylation Study on Rheumatoid Arthritis and Healthy Controls—Methylation 

changes are believed to play a key role in rheumatoid arthritis and contribute to underlying 

inflammation and joint damage [Nakano et al., 2013]. Recently, a study [Liu et al., 2013] 

examined methylation differences between arthritis patients and healthy controls. The 

Illumina Human-Methylation450 array was used to measure methylation levels at 

approximately 485,000 CpGs genome wide in blood from 354 arthritis patients and 335 

healthy controls. We obtained the data from the Gene Expression Omnibus (GEO) [Edgar et 

al., 2002] (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE42861. Both the 

density and CDF-based approaches were applied to test for associations between 

methylation profiles and disease status. For our analysis, we restricted attention to the 

approximately 470,000 autosomal CpGs, of which approximately 75,000 CpGs are mapped 

to LINE1 elements.
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We first applied both the density and CDF-based analysis procedures to the dataset to test 

for global differential methylation between rheumatoid arthritis and controls over all 

autosomal CpGs with adjustment for sample-specific cell mixture proportions, which were 

estimated via Houseman’s algorithm [Houseman et al., 2012] using reference information on 

cell-specific methylation signatures for the major cell types in blood. For the density- based 

approach, we computed the relative histogram using 200 evenly spaced breaks between 0 

and 1, and then we approximated the density using B-splines with knots placed at intervals 

of 0.02 between 0 and 0.3 and between 0.7 and 1.0. Between 0.3 and 0.7, knots were evenly 

spaced at intervals of 0.10. For the CDF-based approach, we computed the ECDF for each 

sample at a grid of 1,000 values between 0 and 1 and then approximated the CDF using B-

splines with knots placed at 35 evenly spaced intervals between 0 and 1. For both 

approaches, GCV was used to estimate the B-spline smoothing parameter λ. The 

approximate densities and CDFs are shown in Figure 5. We then used the variance 

component test under a logistic model to regress a binary indicator for whether each subject 

was an arthritis patient on the B-spline coefficients from the approximate density or from the 

approximate CDF. The same approaches were used to test for differential methylation 

profiles between the rheumatoid arthritis and healthy controls for CpG markers that are 

mapped to repeat LINE1 elements and different genomic features, such as CGI, CGI shore, 

CGI shelf, non-CGI, and gene body. Additionally, we also restricted our analysis to the 

1,498 CpG markers that are in the rheumatoid arthritis pathway (KEGG 05323).

Epigenetic Changes of Alcohol Abuse and Hepatitis Infection During Human 
Hepatocarcinogenesis—Hepatocellular carcinoma (HCC) constitutes ~80% of liver 

cancers and is the second most common cause of cancer deaths worldwide. A recent study 

[Hlady et al., 2014] used the Illumina HumanMethylation450 array to measure the DNA 

methylation level in HCC samples and healthy controls under exposure to environmental 

(broadly defined) agents and and lifestyle variables, including alcohol abuse and human 

hepatitis C virus (HCV) infection. To illustrate our approaches, we downloaded the data 

from GEO (accession number GSE60753) and restricted subsequent analyses to surgically 

resected normal and HCC human samples, excluding samples from metastatic tumors, 

cultured cells, cell lines or noncancer cirrhotic samples. We then applied our proposed 

methods to explore possible global methylation differences between the 34 healthy liver 

samples and 32 surgically resected HCC samples. We examined global methylation 

differences among the HCC tissue samples arising from HCV infection (12 of 32 samples) 

and alcohol abuse (15 of 32 samples).

Both the density and CDF-based approaches were applied to detect global methylation 

differences between HCC patients and healthy controls and between the HCC patients in the 

setting of alcohol abuse and the HCC patients with HCV infections over all autosomal 

CpGs. There was no significant difference between the different HCC groups with respect to 

gender and TNM stage (Table 1 in Hlady et al. [2014]) and therefore, these features were 

not controlled for in our association test. The density and CDF estimations were conducted 

the same way as in the analysis of the rheumatoid arthritis data (section). GCV was used to 

estimate the B-spline coefficients. As in the previous application, we also applied our tests 

Zhao et al. Page 11

Genet Epidemiol. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



to CpG markers that are within the LINE1 elements, and different genomic context such as 

CGI, CGI shore, CGI shelf, or gene body.

Results

Type I Error Simulation

The type I error for all simulations are presented in Table 1. When there is no additional 

covariates (section), all methods, including our proposed density and CDF-based analysis 

approaches, the t-test and the Wilcoxon rank sum test can correctly control type I error at α 

= 0.05, even when the sample size is modest. However, when there is an additional covariate 

(section), the t-test and rank sum test had seriously inflated type I error because they failed 

to adjust for the potential confounding effect from X. The proposed global methylation 

profile analyses still have valid type I error.

Power Simulation

The power result for the simulations when there is no additional covariate is presented in 

Figure 3. We considered two simulation scenarios where in the first scenario the cases and 

controls have different mean methylation values and in the second simulation scenario, 

despite the distributional differences between the cases and controls, there is very limited 

change in the average methylation levels.

In the first simulation scenario (Fig. 3: left panel), the proposed CDF- based analysis 

approach had similar power as the t-test and the Wilcoxon rank sum test and reported higher 

power than the density-based approach. The t-test and Wilcoxon rank sum test had high 

power because the major difference between cases and controls in this simulation scenario 

lies in the mean shift. The CDF-based approach tended to yield higher power than the 

density-based approach in this scenario, partly because the CDF counts the proportion of 

markers with methylation values below each threshold and can capture the mean shift better 

than the density. The CDF approach with 15 or 25 knots had almost identical power as using 

35 knots, supporting the observation that CDF is smoother than the density and can be 

summarized using fewer knots. In the second simulation scenario (Fig. 3: right panel) where 

the major difference between cases and controls lies in the variance , the density-based test 

was the most powerful; the CDF-based approach had lower but still adequate power. The t-

test and rank sum test, which are designed to capture the central tendency of two 

distributions, reported power only at the type I error level. Density-based approach is better 

in capturing the distributional differences without mean/median shifts.

Figure 4 summarized the power result for simulations when there are additional covariates. 

Only the results from the proposed tests were included in this figure as the t-test and the 

Wilcoxon rank sum test failed to control type I error. Consistent with the previous 

simulations with no additional covariates, the CDF-based approach reported higher power 

than the density-based approach because of its greater ability to detect mean shifts in 

methylation profiles.
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Data Analysis Results

In illustrating our methods on the rheumatoid arthritis dataset, we applied the proposed 

density and CDF-based global methylation profile tests to evaluate whether the methylation 

profile is associated with arthritis after adjusting for estimated cell proportions. Across the 

whole autosome, both the density and CDF-based approaches yielded highly significant 

results with P-values 3.495 × 10−14 and 1.208 × 10−11 , respectively. The significance 

remained when we restricted our analysis to the CpGs in the KEGG pathway KO05323 

(Rheumatoid arthritis) with P-values from the density- based method computed as 7.44 × 

10−14 and from CDF-based approach as 9.03 × 10−11. Similarly significant results were 

obtained when the analysis was restricted to markers that are within the LINE1 elements or 

within different genomic features, such as CGIs, CGI shore, CGI shelf, non-CGI regions, 

and gene bodies (all P-values < 10−7). This result suggests consistent methylation profile 

differences between rheumatoid arthritis and healthy controls across the whole epigenome.

We further illustrated our approach by assessing the global methylation difference between 

HCC patients and healthy controls in liver tissues. The methylation profile of the autosomal 

CpGs is significantly associated with the HCC disease status using both the density-based 

approach (P-value = 0.040) and CDF-based approach (P-value = 0.0088). The significance 

was mainly due to the significant difference between the methylation profiles in the non-

CGI regions (P-values = 0.0001 and 0.0002 for the density and CDF-based approaches) and 

the CGI shelf regions (P-values = 0.0026 and 0.0030 for the density and CDF-based 

approaches) of the HCC patients and healthy controls. The methylation profiles at the CGI 

and CGI shore regions were not significantly different. When we limited the analysis to the 

markers that are in the repeated LINE1 elements, the results remained significant (P-values 

= 5.04 × 10−5 and 0.0001 for density and CDF-based approaches, respectively). 

Additionally, we evaluated methylation profile differences between the alcohol abusive 

HCC patients and HCV infected HCC patients: there was no significant difference between 

the methylation profiles, either genome wide or limited to any of the tested genomic regions. 

Our results suggest that although large-scale differences in the overall methylation 

distribution exist between HCC patients and healthy controls, the global methylation profiles 

were similar among the HCC patients with different disease etiologies.

Discussion

In this article, we propose two new strategies for GAMP that are based on approximation of 

either the density or the CDF of the methylation values for each individual. Specifically, by 

indexing each individual’s methylation distribution using B-spline basis coefficients, we 

summarize the methylation profile for each individual so that we can test for association 

between the overall methylation distribution and an outcome variable, while adjusting for 

additional covariates, by simply testing the spline coefficients. This functional 

approximation can comprehensively capture the distributional differences that are difficult 

to represent using a single or few statistics, such as mean or variance. For example, in 

contrast to t-test or Wilcoxon rank sum test, by using the B-spline coefficients, we can detect 

functional differences in methylation distributions, with or without mean changes. Although 

the proposed method tests the global null hypothesis, a key advantage of the proposed 
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method is that we are essentially applying smoothing when we approximate the density or 

the CDF using B-splines. Therefore, this reduces the influence of single (or a few) probes 

strongly associated with the outcome.

Overall, of the two proposed methods, the CDF-based approach tends to have higher power 

when the methylation levels have different global means while the density-based approach 

tends to have higher power when the methylation profiles have functional differences other 

than a mean shift, such as in situations when we have different variances or when the 

methylation distribution comes from a mixture of several distributions. In the real data 

analysis that compares the global epigenetic changes between newborn babies and 

nonagenarians, the result that the CDF-based approach obtained significant result while the 

density-based approach failed to be significant is consistent with the previous observation 

that the cord blood from newborns tend to have higher global methylation level than the 

peripheral blood mononuclear from nonagenarians.

For hypothesis testing, we focus on testing the spline coefficients using a variance 

component test in which the outcome is regressed on the spline coefficients. This allows for 

natural accommodation of the high correlation among the spline coefficients since the 

degrees of freedom of the test adapt to the correlation while adjusting for covariates. 

However, alternative testing procedures are also possible. For example, one could also treat 

global methylation as the outcome and use a Hotelling’s T2 test or MANOVA to assess 

significance. While our variance component testing approach and other tests could all 

protect type I error, alternative methods may yield improved power if the underlying models 

better reflects the true state of nature.

Our proposed methodology opens doors to new areas of research. First, we proposed ways 

to evaluate the global methylation profiling using data obtained through high throughput 

array or sequencing-based technology. Compared with analytical chemistry-based or repeat 

element-based approaches, the new technology provides data with individual CpG resolution 

and more thorough coverage. In this paper, we consider data obtained from Illumina 

HumanMethylation450 platform; however, the same strategy can be used in sequencing-

based methylation profiling studies. Second, although we focus on testing global 

methylation across all CpGs, the approach can be restricted to specific subsets of CpGs such 

as CpGs falling within specific epigenetically relevant features (e.g., CpG islands, 

promoters, repeats, etc.) or the CpGs within a particular gene pathway thereby enabling a set 

or pathway-based analysis that tests the global null hypothesis but is more geared toward a 

true pathway effect. However, caution needs to be taken as our approach is designed to 

detect global distributional differences and the density or CDF approximation may not be 

adequate when the number of CpGs is not large enough, e.g., when there are only 5 or 10 

CpGs in the set of your interest. The method requires at least 50 CpGs.

Further, while we have explored the relationship between global methylation and a single 

dichotomous or continuous outcome, alternative outcome types are possible and warrant 

further exploration. Finally, while our work focuses on testing the overall methylation 

distributions, the idea of using a functional regression approach to summarize the overall 

distribution can also allow for understanding the relationship between outcome variables and 
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other covariates while in the presence of global methylation differences, i.e., adjusting for 

the effect of methylation. This is important since methylation can serve as a potential 

confounder in biological models and failure to adjust for its effect may lead to biased or 

false conclusion. Such explorations remain for future research.
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Figure 1. 
Example histograms for two samples and their corresponding B-spline approximated 

densities.
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Figure 2. 
Example ECDFs for two samples and the approximated B-spline approximations.
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Figure 3. 
Simulated type I error and power for the proposed methylation profile test in situations 

without additional covariate in comparison with t-test and Wilcoxon rank sum test. Left 

panel: simulation scenario that the overall average methylation levels differ in cases and 

controls. Right panel: simulation scenario that the overall methylation in the cases and 

controls have different variances but similar means. Sample size N = 100.
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Figure 4. 
Simulated type I error and power for the proposed methylation profile test in situations with 

additional covariate in comparison with t-test and Wilcoxson rank sum test. Sample size N = 

100.
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Figure 5. 
Approximate densities and CDFs from the rheumatoid arthritis study. Red curves are the 

methylation profiles from the rheumatoid arthritis patients and black curves are the 

methylation profiles from healthy controls.
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Table 1

Empirical type I error at α = 0.05 level under different simulation scenarios

No covariate

n Density CDF CDF25 CDF15 t-test Rank sum

40 0.054 0.057 0.055 0.054 0.050 0.050

60 0.054 0.051 0.052 0.051 0.046 0.044

100 0.050 0.056 0.056 0.054 0.051 0.051

500 0.050 0.053 0.053 0.051 0.056 0.053

With covariate

n Density CDF CDF25 CDF15 t-test Rank sum

40 0.048 0.056 0.057 0.055 0.265 0.223

60 0.051 0.057 0.057 0.055 0.360 0.318

100 0.044 0.052 0.052 0.054 0.556 0.501

500 0.043 0.043 0.043 0.044 0.997 0.995
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