
A Multi-echo Length and Offset VARied Saturation (MeLOVARS) 
Method for Improved CEST Imaging

Xiaolei Song1,2, Jiadi Xu1,2, Shuli Xia3, Nirbhay N. Yadav1,2, Bachchu Lal3, John Laterra3, 
Jeff W.M. Bulte1,2, Peter C.M. van Zijl1,2, and Michael T. McMahon1,2,*

1Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological 
Science

2Johns Hopkins University, F.M. Kirby Research Center for Functional Brain Imaging, Kennedy 
Krieger Institute, Baltimore, MD, United States

3Dept. of Neuro-Oncology, Kennedy Krieger Institute, Baltimore, MD, United States

Abstract

Purpose—To develop a technique for rapid collection of CEST images with the saturation varied 

to modulate signal loss transfer and enhance contrast.

Theory and Methods—MeLOVARS divides the saturation pulse of length Tsat into N = 3-8 

submodules, each consisting of a saturation pulse with length of Tsat/N (~0.3-1 s), one or more 

low flip-angle gradient-echo readout(s) and a flip back pulse. This results in N readouts with 

increasing saturation time from Tsat/N to Tsat without extra scan time.

Results—For phantoms, 8 images with Tsat incremented every 0.5s from 0.5-4 s were collected 

simultaneously using MeLOVARS, which allows rapid determination of exchange rates for agent 

protons. For live mice bearing glioblastomas, the Z-spectra for 5 different Tsat values from 0.5-2.5 

s were acquired in a time normally used for one Tsat. With the additional Tsat-dependence 

information, LOVARS phase maps were produced with a more clearly defined tumor boundary 

and an estimated 4.3-fold enhanced CNR. We also show that enhancing CNR is achievable by 

simply averaging the collected images or transforming them using the Principal Component 

Analysis (PCA).

Conclusion—MeLOVARS enables collection of multiple saturation-time-weighted images 

without extra time, producing a LOVARS phase map with increased CNR.

Introduction

Chemical Exchange Saturation Transfer (CEST) imaging is an emerging technology based 

on the following unique characteristics: 1) the ability to detect signals from low 

concentration diamagnetic compounds based on selective saturation of rapidly exchanging 

spins, and 2) the capability of detecting changes in environmental parameters in vivo, 

including: pH, temperature and metal ion concentration (1-5). There have been a number of 

preclinical (3,6-13) and clinical applications (12,14) involving the detection of either 
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administered CEST agents or endogenous molecules and metabolites. Upon injection of 

glucose, glutamate, CT agents and nanocarriers (15-18), CEST imaging has been applied for 

characterizing tumor vasculature, metabolism, extracellular pH, and nanocarrier uptake.

Tumors also display contrast without administering agents, an effect that has been attributed 

predominantly to the amide protons of extra soluble peptides/proteins found in brain tumors 

which resonate ~3.5 ppm from water, known as amide proton transfer (APT) imaging 

(8,13,14,19). The APT signal has been shown to correlate with the histopathological grade 

for brain tumors in patients on clinical 3T scanners (14,20,21), and to be a marker for 

differentiating tumor recurrence from radiation necrosis (8). Other applications include lung 

(22), breast (23,24) and prostate cancer (25) imaging. Furthermore, APT contrast has been 

exploited to determine tumor response to various therapeutic methods such as chemotherapy 

(23,26), radiation (8) and HIFU (27).

Despite the potential for tumor imaging, there are obstacles towards widespread application 

of CEST, including the low effective contrast (a few percent of the water signal), sensitivity 

to B0 field inhomogeneities, and susceptibility to interference from other sources of contrast 

(28). A typical scheme for a CEST pulse sequence is shown in Fig. 1a. Before the water 

signal readout, a long frequency-selective continuous wave (CW) pulse or pulse train is 

applied at the resonance frequency of the agent to prepare the magnetization. The saturation 

preparation is usually on the order of seconds to obtain sufficient amplification of the solute 

signal.

The most common method to detect and quantify CEST contrast is by calculating the 

asymmetry in the magnetization transfer ratio (MTRasym) at the frequency of the 

exchangeable protons (Δω): MTRasym=[S(−Δω)–S(+Δω)]/S0 which is the subtraction of the 

two water signal intensities with saturation pulses at +Δω and −Δω with respect to water, 

S(+Δω) and S(−Δω), normalized by the signal without saturation (S0). However, for most in 

vivo data, the MTRasym value is not purely CEST contrast, but also includes interference 

from other sources of water signal loss generated by the saturation pulse, including 

conventional magnetization transfer contrast (MTC), direct saturation (DS) and relayed 

nuclear Overhauser enhancement (NOE) transfer (29,30). In addition, most endogenous 

CEST agents resonate very close to water (1-4 ppm) (29), resulting in low contrast-to-noise 

ratio (CNR) and specificity.

Because of these challenges, new CEST methods are needed for improving CNR and 

specificity or reducing image acquisition times. We previously proposed a strategy based on 

acquiring multiple saturation transfer weighted (STw) images with different saturation 

lengths (Tsat), termed Length and Offset VARied Saturation (LOVARS) (31). We propose 

here a new Multi-echo LOVARS (MeLOVARS) method, which demonstrates the feasibility 

of collecting all of the saturation length images within one TR through placement of 

multiple water signal readouts during the saturation preparation instead of at the end as in 

conventional CEST imaging. This scheme is based on the idea of Look-Locker fast T1 

mapping (32,33), with the concept demonstrated using CW saturation, but also readily 

applicable to the pulse-train saturation modules typically used on clinical scanners by 
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employing the same readout strategy. In addition, we show this multi-echo strategy can be 

used in vitro to speed up measurements of the exchange properties of CEST compounds.

Methods

MeLOVARS Design

Instead of employing a single long saturation module of length tsat before readout (Fig. 1a), 
the MeLOVARS method divides the saturation preparation into N = 3-8 sub-modules, each 

with a length of tsat/N (~0.3 s - 1 s) and interleaves a low flip-angle (FA = θ) fast gradient 

echo read-out sequence followed by a flip back pulse (FA = −θ) for retaining longitudinal 

magnetization (Fig. 1b). Thus, multiple (N) readouts are achieved during the preparation, 

each with an increased effective saturation time. For gradient echo sequences, after the 

excitation pulse the longitudinal and transverse magnetizations for the nth module become:

[1]

where  is the FID signal for reconstructing the nth image. After the readout module, the 

transverse magnetization decays to . Upon application of a flip-back pulse (FA 

= −θ), the longitudinal magnetization is:

[2]

Simulations

To determine initial estimates on the imaging parameters, we numerically solved the 2-pool 

Bloch equations for N iterations of the MeLOVARS module (Fig. 1b). A decay factor (DF) 

for the signal was calculated by subtracting MTRasym for MeLOVARS from MTRasym using 

a single readout with the same Tsat, and normalizing by MTRasym for single readout. The 

parameters for the water pool were: T1w = 3.55 s, T2*w = 1.11 s, concentration = 111.2 M; 

for the solute pool: T1S = 1.41 s, T2*S= 0.025 s, ksw = 660 s−1, Δω = 9.3 ppm, concentration 

= 25 mM. These parameters were also used to perform the QUEST fits for the phantoms.

To simulate the CEST contrast produced by MeLOVARS on mice bearing glioblastomas 

and to optimize θ and N, we numerically solved the 4-pool Bloch equations including a 

semi-solid pool (ss), amide pool (am), aliphatic pool (al) and water pool with Δω = 0 ppm, 

3.5 ppm, −3.7 ppm and 0 ppm, respectively (28,34). Each module of MeLOVARS was 

simulated as the pulse-sequence described in Fig. 1b, including a Sat. pulse, an excitation 

pulse with flip angle = θ, a decay factor (DF) during readout, and a flip-back pulse of angle 

= −θ. The initial guess of parameters were set as reported previously (28,34-36) e.g. T1w 

between 1.8 s to 2.5 s and T1 for the remaining 3 pools set to be = T1w, and T2*w between 

20 ms to 50 ms, T2*am and T2*al between 1 ms to 10 ms, and T2*ss between 1 μs and 10 μs 
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with taking account of in vivo line-broadening. The simulations used the Levenberg-

Marquardt algorithm to fit the experimental MeLOVARS Z-spectra for ROI’s enclosing 

tumor and contralateral white matter (WM), with the assumption that only the concentration 

changes for these pools between tumor and WM. Noted that for consistency, we use T2* 

instead of T2 for the Bloch simulations, without including the B0-inhomogeneity and 

susceptibility effects. With these fit parameters, we then simulated how the 5 MTRasym 

values change as a function of N and θ for both tumor and contralateral tissue to maximize 

the difference for in vivo experiments. All simulations were performed using python scripts 

written in-house.

In vitro Phantom Experiments

To evaluate the MeLOVARS sequence, a phantom was prepared consisting of four 5mm 

NMR tubes, with one filled with 0.01 M phosphate-buffered saline (PBS) as the negative 

control, and the other three each filled with a CEST agent at a concentration of 25 mM in 

PBS. The three agents were: 1) D-Glucose (Δω = 0.9-1.5 ppm, pH 7.4) (16), 2) Salicylic 

Acid (Δω = 9.3 ppm, pH 7.1) (37), 3) 5-Chloro-2-(methyl-sulfonamido) benzoic acid (Δω = 

7.2 ppm, pH 7.1) (38), with all agents titrated using NaOH and HCl. All in vitro MR scans 

were acquired on a Bruker vertical 750MHz scanner at a temperature of 310K.

A 2-shot EPI readout scheme was used with TR/TE = 8 s / 5.25 ms, EPI module time = 

7.5ms and Matrix Size = 32×32. Z-spectra were acquired using a CW saturation pulse with 

B1 = 2.4, 3.6, and 4.8 μT and the saturation offset incremented 0.3 ppm for −9.9 ppm −> 

−6.9 ppm, −2.7 ppm −> 2.7 ppm, and 6.9 ppm −> 9.9 ppm and 0.6 ppm increment for −6.9 

−> −2.7 ppm and 2.7 ppm −> 6.9 ppm.

In vivo Animal Studies

SCID/NCR mice (n=5) were xenografted intracranially with 100,000 human glioblastoma 

stem-like neurosphere cells derived from patients (HSR-GBM1A) (39,40) with MR imaging 

performed 6 weeks post-injection. Immediately following the final MRI, mice were perfused 

with 4% paraformaldehyde (PFA). Their brains were removed, cryosectioned (25 μm thick) 

and stained using hematoxylin and eosin (H&E). MR images were acquired on a Bruker 

Biospec 11.7T scanner, using a 72mm body coil for transmission and a 4-channel phase-

array surface coil for reception. The MeLOVARS parameters were: N=5 for 3 mice with 

each saturation pulse length of 0.5 s (1/5Tsat) and 6 segment EPI (6.4 ms per segment). The 

other parameters were: θ = 25°, TR/TE = 4s/4.3ms, FOV = 16.5x15.8x1mm, matrix size = 

96×64, saturation offsets = [±4.8, ±4.2, ±3.9, ±3.6, ±3.3, ±3, ±2.4, ±1.5, ±0.6, ±0.3, 0] ppm 

and B1 was set to 1.2 μT, 1.9 μT and 3 μT. For comparison, conventional CEST images were 

also acquired using the same EPI readout as MeLOVARS with Tsat = 2.4 s. For 

MeLOVARS, the Z-spectra acquisition time is 8 min 48 sec, plus an additional 80 sec for 

the WASSR image-set for B0 mapping and corrections, resulting in ~ 10 min of scanning. 

Apart from CEST, diffusion-weighted images of the same slice were acquired with three b 

values of 500, 1000, 1500 for generating apparent diffusion coefficient (ADC) map. Multi-

slice STw images (-6ppm) with a matrix size of 128×96 and half slice thickness of 0.5mm 

were also collected, for checking the partial volume effects of CEST images.

Song et al. Page 4

Magn Reson Med. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Post-processing

All data were processed using custom-written MATLAB scripts. For both phantom and in 

vivo studies, a voxel-by-voxel Z-spectra B0 correction was performed through interpolating 

the original data to every 0.1ppm using a piecewise polynomial fitting, with B0 values from 

WASSR. CEST contrast was quantified using MTRasym for module n in MeLOVARS, 

, with  being the image with same FA 

readout without saturation pulse. For in vitro measurements of glucose with ksw > 1,000 s−1 

and three different proton types, we calculated an average MTRasym over three frequencies 

[0.9ppm, 1.2ppm, 1.5ppm], similar to previous studies (15,16). For other agents with a 

single type, MTRasym is calculated at the peak frequency of the CEST contrast. For in vivo 

measurements, the contrast maps for amide (-NH, APT weighted) were obtained by 

averaging MTRasym from 3.3 to 3.9ppm.

The LOVARS phase map was generated using 2 LOVARS units (4 min 48 s), based on 

averaging the Module 1 and Module 2 images to produce the Tsat,1 images, and averaging 

the Module 4 and Module 5 images to produce the Tsat,2 images, for both +Δω and −Δω. All 

other processing was as described previously (31).

The Principal Component Analysis (PC1) map was generated from the 5 MTRasym images 

with different Tsat using the Matlab function “pca”. The resulting PC1 map preserved the 

most significant contrast, and was displayed with a scale factor of ½.

RESULTS

To elucidate how the MeLOVARS signal using multiple readouts compares to the CEST 

signal with the same Tsat and a single readout, we plotted a contour surface displaying a 

decay factor (DF) of 10% (Fig. 2a), based on 2-pool Bloch simulations. This can be used to 

select the appropriate θ and n based on T2* for the volume of interest and the TE’s 

attainable on the scanner. Fig. 2b shows the DF and  as a 

function of TE/T2* and θ, with N = 8, 5 and 3, which we used in the in vitro and in vivo 

experiments. As seen, to ensure a DF < 10% with θ ~35°, TE/T2* < 0.07 is required for N = 

8, TE/T2* < 0.125 for N = 5, TE/T2* < 0.295 for N = 3.

Phantom experiments

We performed a phantom study to determine whether the MeLOVARS acquisition scheme 

enables more rapid quantification of exchange rates (ksw) using the QUEST method, and 

how the data compares with a single module. Z-spectra were collected with number of 

modules (N) = 8 (from 0.5s to 4s with every 0.5s increment) and fit allowing 8X 

acceleration over the conventional 8 single readouts. Fig. 3a shows the build-up of 

MTRasym for three representative diaCEST agents: glucose, 5-Chloro-2-(methyl-

sulfonamido) benzoic acid, and salicylic acid (SA) which are spaced over the range of ?ω 

values currently accessible for diaCEST agents. A negative control (PBS) is also shown. We 

further compared the conventional method (θ = 20°) build-up curves with MeLOVARS 

using θ = 10° to 50°. For SA and 5-Chloro-2-(methyl-sulfonamido) benzoic acid, when θ < 
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30° the QUEST curves are comparable to using a single readout (Fig. 3b&c). For glucose, 

even for θ = 10 ° and 20°, the MeLOVARS curve deviates substantially from the 

conventional method for N > 4 (Fig. 3d). This is presumably due to a ~50% reduction of T2 

for glucose (T2 < 200 ms, estimated by the Swift-Connick equation (41)), leading to a DF > 

10% at N = 8, with T2* dropping to ~100 ms for this phantom of multiple quartz tubes at 

17.6 T. There is also a more pronounced spill-over for glucose with its smaller Δω, which 

reduces MTRasym. For the other two contrast agents, at 25 mM the T2 values are similar to 

that of PBS and as a result the T2 decay is not as prominent as glucose. It’s reasonable to 

assume that there is a large error for θ ≥ 40°, as indicated by Fig. 2, keeping DF < 10% 

requires TE/T2* < 0.03, i.e. T2* > 240 ms which is difficult to guarantee due to the ultra-

high B0 field and resulting field inhomogeneity (36).

In vivo Imaging of mice brain

We then acquired MeLOVARS data on mice bearing glioblastomas, with 5 modules each 

0.5 s long (Fig. 4). The saturation pulse perturbs the magnetization of solute protons, semi-

solid protons and water protons in vivo, and as a result the Z-spectra are influenced by 

CEST, conventional MT, and also NOE-relayed transfers from aliphatic protons. We were 

able to fit the 5 Z-spectra collected on both tumor (Fig. 4a) and contralateral WM (Fig. 4b) 

tissue to a 4-pool Bloch equation model. Based on these parameters, we simulated how the 

multiple MTRasym data collected in MeLOVARS changes as a function of flip angle (τ). As 

is shown in Fig. 4c, for the tumor tissue which has a longer water T2, higher concentration 

of exchangeable protons and smaller concentration of semi-solid and aliphatic protons, the 

MTRasym value increases from Module 1 to Module 5 when θ < 35°. However, for WM, the 

MTRasym value is largest for Module 1 and drops for the remaining Modules. Also, for both 

tumor and WM, Module 1 is constant as a function of θ because there is no extra T2* decay.

Fig. 5 further illustrates the performance of MeLOVARS with N=5, and 0.5s long modules. 

The ADC map created using an EPI readout (Fig. 5a) shows the tumor as hyperintense as 

previously reported for GBM (42). For comparison, Fig. 5b displays the 5 MTRasym maps 

acquired using the conventional CEST method, for Tsat = 0.5 s, 1 s, 1.5 s, 2 s and 2.5 s 

respectively. The STw image at +3.6 ppm from the 5th Module readout using MeLOVARS 

is shown in Fig. 5c, with the same B1 as that in Fig. 5b. Fig. 5d displays the 5 MTRasym 

maps from MeLOVARS (n =1,2,3,4,5), which only used 1/5 of acquisition time of the 

conventional method. Note that the tumor rim is highlighted in Module 1 as was seen 

previously for other tumors (31). In addition, the contrast between tumor and contralateral 

tissue increases for MeLOVARS when N > 1 because of the differences in T2* for these 

tissues. As MeLOVARS enables acquisition of 5 MTRasym spectra simultaneously, we 

further display the build-up of the MTRasym for both tumor and contralateral WM and the 

metric ΔMTRasym obtained by taking the subtraction of MTRasym_tumor and MTRasym_WM 

(Fig. 5e&f). As can be seen, in the MTRasym_tumor increases in the region from 3 – 4 ppm 

from Module 1 to Module 5 while MTRasym_WM decreases, resulting in a more significant 

increase in ΔMTRasym for MeLOVARS. Fig. 5f further highlights the MTRasym dependence 

on Tsat at frequencies between 3.3 – 3.9 ppm for n = 3 mice.
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We also quantitatively compared the MTRasym and the CNR values for the CEST images 

collected using conventional or MeLOVARS methods on n = 3 mice (Table 1). The first 3 

rows compare the averaged MTRasym_Tumor, MTRasym_Ctrl and ΔMTRasym of the 3 mice 

and their standard deviations. As is seen, the averaged values of MTRasym for tumor tissue 

are very similar between the two methods for Tsat = 1 s or larger, whereas these values 

determined using MeLOVARS in WM are consistently lower than measured using 

conventional methods. This is presumably due to the shorter T2* of WM and larger decay 

factor. This leads to an increase in contrast from 3.6% for Module 1 to ~6% by Modules 

4&5 for MeLOVARS. The same saturation times show a more constant ΔMTRasym using 

conventional methods. Furthermore, we evaluated how the SNR of the MeLOVARS images 

changes compared to conventional images. There is a slight decrease of SNR for the 

MeLOVARS Module 2 and higher images due to T2* decay from the readouts, however 

because the contrast between tumor and control tissue (ΔMTRasym) increases the resulting 

CNR is nearly the same.

The images from the multiple modules of MeLOVARS can be combined and analyzed in 

different ways for improving image CNR (Fig. 6). Apart from directly generating 5 

MTRasym maps from each module (Fig. 6a, B1 = 3 uT), a LOVARS phase map (Fig.6b) was 

produced from the two repetitions of the MeLOVARS acquisition at +Δω and −Δω, showing 

a more clearly defined tumor boundary and enhanced CNR. Based on Table 1 which shows 

that the images for modules 2-5 have comparable CNR with conventionally acquired 

images, the displayed phase map from 2 LOVARS units with each image averaging 2 

modules achieves a 4.3-fold CNR enhancement (Table 2 in (31)) compared with 

conventionally acquired MTRasym maps with the same readout. Alternatively, a PCA 

contrast map can be generated (Fig. 6c) which retains the same MTRasym contrast scale 

instead of transforming to phase, and displays a higher CNR than the individual images. 

Also, simple averaging of all 5 MTRasym maps can be performed (Fig. 6d), with ~√5 times 

increase in CNR over the single module image. The tumor shape was further confirmed 

through H&E stain (Fig. 6e).

DISCUSSION

We propose an efficient method for acquisition of multiple saturation length images that can 

be readily applied to both in vitro and in vivo CEST imaging. Compared to the conventional 

CW saturation method with a single module, there is an additional dephasing process caused 

by the multiple readouts. We have introduced simple guidelines based on the two pool 

model for choosing the N, θ and TE/T2* for the sequence to limit the T2* decay. For in vivo 

APT imaging, we determined an optimal θ = 25° based on setting DF to ~10% and using a 

4-pool model with the parameters fitted to the experimental data. Several acquisition 

methods have been developed to measure exchange rates or isolate protons with a certain 

rate e.g. CERT (43), Spin-Lock (44), SAFARI (45), Two-frequency (46), VDMP (47)and 

FLEX (48,49). As shown in Fig. 3, our method in phantoms enables fast acquisition of 

QUEST data which can be fit to determine ksw for θ < 30° at high magnetic fields.

Acceleration of CEST data acquisition can also be accomplished using CEST-FISP (50) or 

other steady-state sequences (51-53) or through application of a gradient during the 
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saturation pulses (54,55). One major advantage of MeLOVARS is that it can be readily 

implemented in live animal and patient studies as it is based on a gradient-echo readout (GE 

or GRE) scheme (52,56,57). As proof-of-principle, we applied MeLOVARS for imaging 

endogenous APT contrast in mice bearing glioblastoma at 11.7 T, and demonstrate this 

sequence produces Z-spectra and MTRasym spectra with an additional Tsat dimension. As is 

shown in Fig. 5&6 and also quantitatively in Table 1, each module of MeLOVARS has 

either a higher or comparable ΔMTRasym and CNR than the conventional method using the 

same readout sequence and parameters (i.e. GE-EPI). The N-fold image-increase allows an 

increase of CNR by √N. The N groups of experimental Z-spectra with different Tsat values 

allows a more stable fitting to 4-pool Block equation models because of the additional 

measured points. We demonstrate that the 5 MTRasym images can be combined to create 

LOVARS phase maps, PCA maps or average MTRasym maps as well. There could be other 

methods for analyzing MeLOVARS data, such as the QUESTRA method (58). Also, while 

the T2* is between 7–28 ms for mouse gray matter at 11.7 T allowing acquisition of 5 

modules, T2* ~50 ms for human frontal gray matter at 3 T (59) which might allow 

acquisition of 10 modules if the same θ and TE are used. Although we have only focused on 

the endogeneous APT contrast of brain tumor in the manuscript, this method is applicable to 

many other applications either for detecting endogenous molecules such as glutamate (60), 

creatine, and glycosaminoglycans or exogenous compounds. Although the concept of 

MeLOVARS is demonstrated on a high field small animal scanner, this method can be 

readily translated to clinical scanners, either using a multi-channel parallel transmission coil 

for generating the CW saturation pulse (21), or through substitution of a train of saturation 

pulses for the CW pulse in between the multiple “Look-Locker” readouts (61).

Regarding the gradient-echo readout used in MeLOVARS, there could be practical 

concerns, especially at high magnetic field due to imperfect shimming, air-tissue interfaces 

and the distribution of magnetic susceptibility. Fortunately on lower-field clinical scanners 

(e.g. 1.5 T and 3 T) with longer and more homogeneous T2*, gradient-echo readout 

sequences are used very frequently esp. in brain such as in fast T1w imaging, Dynamic 

Contrast Enhanced (DCE) imaging, perfusion and BOLD functional imaging. Although the 

small θ sacrifices signal, it also allows shorter recovery times which increase efficiency as 

has been discussed previously (62).

CONCLUSION

We developed MeLOVARS as a new CEST acquisition method, which enables rapid 

acquisition of multiple STw images with different effective Tsat values. For phantoms, 

MeLOVARS collects images with 8 Tsat’s from 0.5 s to 4 s simultaneously, enabling the 

measurement of the exchange rates for three CEST agents. For detecting glioblastoma in 

live mice, MeLOVARS enable acquisition of 5 Z-spectra, MTRasym spectra and contrast 

maps in 8.5 min, with 5 Tsat’s from 0.5 s to 2.5 s which can be employed to generate 

LOVARS phase maps and increase the CNR.
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Figure 1. 
Acquisition schemes for a. conventional CW CEST with single readout after the saturation 

preparation and b. MeLOVARS consisting of N saturation modules with readouts
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Figure 2. 
a. Contour surface for the nth MeLOVARS Module readout with a Decay Factor (DF) = 

10% comparing the signal using a single readout of same Tsat, to guide the choice of 

measurement parameters: Flip Angle, Num. of Modules based on TE/T2*. b. Simulations of 

DF and  as a function of TE/T2*, θ with N equal to 3, 5, 

8, which we used in the phantom and in vivo experiments.
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Figure 3. 
Phantom Experiments for 3 CEST agents with different Δω and exchange rates. a. Z-spectra 

acquired only using 1/8 time of that for conventional method. b. QUEST dataset for SA (1) 

with different FA comparing with a single readout. For compound 1, the fits were performed 

assuming a single readout with QUEST determined rates: ksw_single = 620 s−1, ksw_θ=10° = 

630 s−1, ksw_ θ= 20° = 660 s−1, ksw_θ=30° = 520 s−1 (above 15% error). c. QUEST dataset for 

5-Chloro-2-(methyl-sulfonamido) benzoic acid (2) with different FA compared with a single 

readout. For compound 2, QUEST determined rates: ksw_single = 940 s−1, ksw_θ=10° = 980 

s−1, ksw _θ= 20° = 940 s−1, ksw _θ= 30° = 1800 s−1 (above 15% error). d. QUEST dataset for 

glucose (3) with different FA compared with a single readout, showing a pronounced 

contrast decay when n>5, even for FA = 10°.
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Figure 4. 
In vivo experimental Z-spectra (symbols) and 4-pool Bloch equation simulations using 

MeLOVARS (lines) of tumor (a) and contralateral WM (b), with the experimental DF 

reaching ~10 % for θ = 25°, N = 5 compared to the conventional acquisition method with 

the same tsat ; Plot of simulations using the same parameters to determine how MTRasym 

changes as a function of FA (θ) for tumor (c) and contraleral WM (d). The fit parameters 

were: bulk water pool: T1_tumor = 2.35 s, T1_WM = 2.0 s, T2_tumor = 35 ms, T2_WM = 

26 ms; macromolecular pool: T2 = 0.0078 ms, ksw = 159 s−1, conc._tumor = 4598 mM, 

conc._WM = 9800 mM; exchangeable amide pool: T2 = 6 ms, ksw = 20 s−1, conc._tumor = 

629 mM, conc._WM = 290 mM; and aliphatic pool: T2 = 2.7 ms, ksw=10.5 s−1, conc._tumor 

= 1100 mM, conc._WM = 2900 mM. The T1 values for the other 3 pools were set to be the 

same as bulk water.
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Figure 5. 
MeLOVARS performance in a mouse bearing glioblastoma. a. ADC map of the diffusion-

weighted image based on EPI readout; b. the conventional MTRasym maps (B1 = 1.9 uT) 

with Tsat = 0.5s, 1s, 1.5s, 2s and 2.5s respectively, which requires 5×’s the scanner time. c. 

STw image at +Δω from the 5th Module readout in MeLOVARS scheme; d. MeLOVARS 

MTRasym maps (B1 = 1.9 μT) for 5 Modules respectively; Note that in both MeLOVARS 

echo1 in b and Tsat = 0.5s in d) only the rim of the tumor is enhanced, but not in a. e. The 

MTRasym build-up for tumor core and for contralateral control region, ΔMTRasym were 

obtained by taking the subtraction of MTRasym for Tumor core (red ROI in c) and MTRasym 

for the contralateral WM (blue ROI in c). f. MTRasym changes as a function of Module 

Num. for tumor and contralateral tissue is different, based on the data for n = 3 mice.
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Figure 6. 
a. MeLOVARS MTRasym maps with B1 = 3μT for 5 Modules respectively; b. LOVARS 

phase map for defining the tumor territories (2 LOVARS unit, with the average of Module 1 

and Module 2 as Tsat,1 and the average of Module 4 and Module 5 as Tsat,2. ). c. ½ PC1 map 

of the 5 maps in a using PCA; d. the MTRasym map by averaging five images in a; e. H&E 

staining for one frozen slice
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Table 1

MTRasym Contrast and CNR comparison for Conventional and MeLOVARS at 11.7 T

(n=3) Tsat = 0.5s
(Module 1)

Tsat = 1s
(Module 2)

Tsat = 1.5s
(Module 3)

Tsat = 2s
(Module 4)

Tsat = 2.5s
(Module 5)

MTRasym_

Tumor (%)
Conventional
MeLOVARS

−0.9 ± 0.3
−2.4 ± 0.6

−1.8 ± 1.0
−2.2 ± 0.9

−1.4 ± 0.4
−1.4 ± 0.6

−2.0 ± 0.7
−1.8 ± 1.2

−2.1 ± 0.5
−1.6 ± 0.9

MTRasym_

Ctrl. (%)
Conventional
MeLOVARS

−4.9 ± 0.2
−6.0 ± 0.9

−6.0 ± 1.2
−7.4 ± 1.8

−6.0 ± 1.0
−7.2 ± 1.6

−5.9 ± 1.1
−8.1 ± 1.2

−5.8 ± 0.6
−7.4 ± 1.5

ΔMTRasym

(%)
Conventional
MeLOVARS

4.0 ± 0.1
3.6 ±0.8

4.2 ± 0.2
5.2 ± 1.6

4.5 ± 0.6
5.8 ± 1.5

3.9 ± 0.5
6.2 ± 1.2

3.6 ± 0.0
5.9 ± 1.8

a
SNR_S0

Conventional
MeLOVARS

74 ± 2.5
79 ± 1.0

74 ± 2.5
73 ± 7.6

74 ± 2.5
62 ± 8.6

74 ± 2.5
58 ± 10

74 ± 2.5
55 ± 8.4

b
CNR_

ΔMTRasym

Conventional
MeLOVARS

3.6 ± 0.2
3.5 ± 0.7

3.7 ± 0.0
4.7 ± 1.4

4.1 ± 0.4
4.3 ± 0.7

3.5 ± 0.3
4.4 ± 1.0

3.3 ± 0.1
4.0 ± 1.3

a
The SNR for S0 in nth module in MeLOVARS was calculated using , with the noise level σn calculated by  times 

of standard deviation for a control ROI on the subtraction of two consecutively-acquired images.

b
The CNR of the MTRasym maps for the nth module was calculated using 
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