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Abstract

Osteoporotic hip fractures in the elderly are associated with a high mortality in the first year 

following fracture and a high incidence of disability among survivors. We study first and second 

fractures of elderly women using data from the Study of Osteoporotic Fractures (SOF). We 

present a new conceptual framework, stochastic model and statistical methodology for time to 

fracture. Our approach gives additional insights into the patterns for first and second fractures and 

the concomitant risk factors. Our modeling perspective involves a novel time-to-event 

methodology called threshold regression which is based on the plausible idea that many events 

occur when an underlying process describing the health or condition of a person or system 

encounters a critical boundary or threshold for the first time. In the parlance of stochastic 

processes, this time to event is a first hitting time of the threshold. The underlying process in our 

model is a composite of a chronic degradation process for skeletal health combined with a random 

stream of shocks from external traumas, which taken together trigger fracture events.
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1. Introduction

Osteoporotic hip fractures in the elderly are associated with a high mortality in the first year 

following fracture and a high incidence of disability among survivors. A first hip fracture is 

often followed by a second hip fracture, with most of the second fractures occurring on the 

opposite hip to the first. Chapurlat et al. [1] used data from the Study of Osteoporotic 
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Fractures (SOF) to investigate second fractures. Their statistical modeling and analysis made 

use of a stratified proportional hazards methodology to identify relevant risk factors for 

second fractures. We have revisited the same data set with a different conceptual framework 

and a new statistical model and analysis in order to gain additional insights into the patterns 

for first and second fractures and the concomitant risk factors. Our modeling perspective 

involves a novel time-to-event methodology called threshold regression which we describe 

in Section 3.

2. The Study of Osteoporotic Fractures

The Study of Osteoporotic Fractures (SOF) is an ongoing longitudinal study that recruited 

9,704 white women, who were at least 65 years old, from community-based listings by 

mailings between September 1986 and October 1988 to four metropolitan clinic centers in 

the United States (Baltimore, Maryland; Portland, Oregon; Minneapolis, Minnesota; and the 

Monongahela Valley, Pennsylvania) [2]. Standardized interviews and clinical examinations 

were conducted approximately every two years to prospectively collect risk factors for 

osteoporosis. The data include anthropometric measurements, bone mineral density (BMD) 

measurements, cognitive and physical functions, falls, vision, lifestyle characteristics, family 

and medical histories, and other risk factors for osteoporotic fractures. Additionally, 

between 1997 and 1998, 662 African American women were recruited to this original 

cohort. Follow-up rates of participants exceeded 98% as efforts were made every quarter to 

ascertain fractures, falls or change in address by postcard or telephone. The events of 

interest were incident and second hip fractures. Hip fractures were confirmed by review of 

radiographs [2, 3].

Our analyses excluded 662 African-Americans recruited at year 10 of the SOF study 

because their risk of fracture is low (2.5 times lower than white women [4]) and a shorter 

follow-up due to late recruitment may result in a smaller number of women with incident hip 

fractures. Other exclusion criteria include women who were unable to walk without 

assistance, women with bilateral hip replacements, and women who reported hip fractures 

prior to enrollment.

First hip fractures

Risk factors for first hip fractures are well-characterized [5–14]. These include age, body 

mass index (BMI), weight change since 25 years old, parental history of fracture, previous 

fracture at age less than 50 years, total hip and femoral neck BMD, fall and faint histories, 

co-morbidities like rheumatoid arthritis, Parkinson’s disease, diabetes, stroke and 

hyperthyroidism, use of medications like hormone replacement therapy, long-acting 

benzodiazepine (sleep medication) and glucocorticoids (steroids), use of supplements such 

as vitamin D and calcium, and lifestyle factors such as walk for exercise, consumption of 

alcohol, caffeine and tobacco smoking.

Second hip fractures

Although risk factors for first hip fractures are well characterized, epidemiologic knowledge 

of risk factors for the prevention of a second hip fracture is lacking. Studies that have 
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examined risks for a second hip fracture have identified old age, low bone mass, dementia, 

dizziness, impaired depth perception, impaired mobility, previous falls and poor self-rated 

health as important factors [1, 15–25].

3. The Conceptual Setting

The conceptual setting for our analysis can be sketched as follows. Each subject has a 

stochastic process Y (t) that describes his or her skeletal strength Y as a function of time t. 

Process Y (t) is an overlay and interplay of (1) a chronic degradation process D(t) 

representing slow and largely irreversible physiological deterioration of the skeleton and (2) 

a medication process M(t) representing intermittent medical treatment with diets, therapies, 

medications, and even lifestyle interventions. We assume that the skeletal health process is a 

linear combination of components D(t) and M(t), as follows:

(1)

Value Y (0) = y0 is taken as the subject’s baseline skeletal strength at time t = 0. The 

deterioration and medication processes are assumed to start at zero at baseline (time 0), that 

is, D(0) = M(0) = 0. In addition to process Y (t), we postulate that the subject is exposed to 

an independent external stochastic process V (t) that represents a stream of random external 

shocks to the skeleton, of varying force, caused by accidental falls and other physical 

traumas experienced by the subject over time.

Figure 1 illustrates the imagined sample path for a typical subject. The adjective ‘imagined’ 

is used because the full process is unobservable, although parts of it can be intermittently 

inferred from data, such as the SOF data set. The sample path in this figure shows the 

overlay of the skeletal strength process Y (t) and the shock process V (t). The subject 

experiences a fracture on the first occasion after baseline when the sample path passes 

through the zero level. This event is marked by a dot in the figure and occurs at the first 

moment that a shock exceeds the patient’s skeletal strength and therefore triggers the 

fracture event. The figure shows why time-to-fracture, denoted later by S, involves the 

notion of a first hitting time (FHT) and, hence, the need for threshold regression (TR) 

methods. Threshold regression is based on the plausible idea that many events occur when 

an underlying process describing the health or condition of a person or system encounters a 

critical boundary or threshold for the first time. In the parlance of stochastic processes, this 

time to event is a first hitting time of the threshold. TR methods can take account of 

covariates, such as age, co-morbidities, medications, and the like, that may strongly 

influence the time course of the individual sample path. In TR regression, regression 

structures can be given to any or all parameters of the model, including the initial or starting 

level of the process, the stochastic process itself, the threshold or boundary, and even the 

time scale of the process. See Lee and Whitmore [26, 27] and Lee et al. [28] for an overview 

of threshold regression methodology, some applications, and a study of its connection to 

proportional hazards regression.
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4. The Model

Figure 2 shows a simplified version of the full conceptual model that we will apply in this 

setting. In this simplified version, the intrinsic skeletal strength of an elderly subject declines 

steadily from its initial level Y (0). The subject then experiences a stationary random stream 

of shocks V (t). The first shock that arrives and exceeds the intrinsic skeletal strength 

produces a fracture. Statistical theory that we present shortly shows that the time to this 

fracture can be modeled by an exponential-like distribution that we call the TR degradation-

shock model. The fracture event, of course, alters the time course of health for the subject. It 

may precipitate complications that cause death or, if not death, may produce a completely 

new health context because of medications, limited functionality, medical treatment, life 

style changes, etc. In this post-fracture state, the skeletal health process proceeds in an 

altered state. Again, the superposition of chronic degradation, medication, and shock 

processes produce an altered sample path for the subject. A subsequent shock may produce a 

second fracture. The context is dynamic and complex but a simple formulation imagines that 

the arrival time of the next fracture, if it is to occur, will again have this same TR 

degradation-shock distribution but with new parameter values.

For our application here, we represent chronic degradation of the skeleton by a deterministic 

exponential decay path. Specifically, we assume that skeletal strength has an initial level y0 

at the outset of the study and then experiences chronic degradation over time according to an 

exponential trend at a constant rate λ. The mathematical function for the degradation path is

(2)

Skeletal strength declines if λ < 0, in which case skeletal strength y(t) approaches the zero 

level asymptotically. In this situation, chronic skeletal strength weakens steadily over time 

and approaches the fracture point but never reaches it because y(t) remains positive. A shock 

is required to drive skeletal strength to zero and trigger a fracture. A downward exponential 

degradation trend is depicted in Figure 2. The figure illustrates how a shock finally produces 

a fracture when the combined degradation and shock process first hits zero strength. We 

now outline our model.

The shock stream is taken as a stochastic process {V (t)} that consists of a dense sequence of 

independent draws from a common probability distribution. Specifically, the probability that 

all shocks in process {V (t)} which occur in time interval (t, t + dt) will be of size υ or 

smaller is given by G(υ)dt. Here G(υ) denotes the cumulative distribution function for the 

maximum shock size experienced during any unit of time and dt is an infinitesimal positive 

increment. In formal notation, P[maxu∈(t,t+dt] V (u) ≤ υ] = G(υ)dt. A hip fracture is avoided 

in any time interval (0, s] if no shock occurs that exceeds skeletal strength during the 

interval; in other words, if maxu∈(t,t+dt] V (u) ≤ y(t) for all t ∈ (0, s]. Employing the 

assumption of independent outcomes over all differential time increments in (0, s] and 

recalling that the log-probability of a joint outcome of independent events is the sum of the 

respective log-probabilities of the constituent events, it follows that the log-probability that 

no fracture will occur in interval (0, s] is given by:
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(3)

This function is the log-survival time for the fracture event.

A realistic and tractable result for (3) is obtained if ln G(υ) has the following reciprocal 

power form:

(4)

This distribution is the Fréchet extreme-value distribution, which has the general behavior 

that we are seeking for a shock model [29]. Figure 3 shows the probability density function 

g(υ) and cumulative distribution function G(υ) for a demonstration case of the shock 

distribution in (4).

We now present the log-survival function (3) for an exponential degradation trend, which 

has a simple closed mathematical form. Substituting y(t) = y0 exp(λt) into (3) and reducing 

the expression gives:

(5)

Figure 4 shows a plot of the survival function for a demonstration case of the fracture model.

If the degradation path is rising away from the threshold at zero with λ > 0 then there is a 

positive probability that the subject will never have a fracture. This probability is given by

(6)

In the special case where λ = 0, there is no progressive degradation, and the time to fracture 

has an exponential survival function F̅(s) = exp(−ζs) with hazard rate ζ = − ln G(y0) = 

(α/y0)β.

Finally, it is helpful to consider the form of the log-hazard function for our model. Letting 

h(s) denote the hazard function, we have

(7)

The log-hazard is seen to be rising, constant, or falling with s according to whether λ is 

negative, zero, or positive.

5. Application to First and Second Fractures in the SOF Study

Model estimation

Our time-to-fracture data are conventional right-censored time-to-event data. We employ the 

maximum likelihood method to estimate our model using the formulas for the log-survival 
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function in (5) and the log-hazard function in (7). The optimization required in our 

estimation employs the gradient maximum likelihood subroutine ml in Stata 12.0 (Stata 

Corporation, College Station, TX, USA). This routine also produces estimated asymptotic 

standard errors for parameters based on an estimated Hessian matrix for the likelihood 

function.

The censored time-to-fracture data only allow us to estimate two of the four parameters of 

our TR degradation-shock model. To connect the parameters to covariates, we choose a 

logarithmic link function ln(y0) for the initial skeletal strength and an identity link function 

for the degradation rate parameter λ. The covariates are enumerated in the next subsection. 

Parameters α and β of the shock process are each set to 1, without loss of generality. To see 

why all four parameters cannot be estimated, refer to the mathematical form of the log-

survival function (5). When initial skeletal health y0 is given a logarithmic link function and 

rate parameter λ is given an identity link function, we see from the mathematical form that 

changing the value for α would only change the intercept of the regression function for 

ln(y0). Likewise, changing the value for β would only change the regression coefficients of 

ln(y0) and λ by a fixed multiple.

Covariates

Given risk factors for hip fractures identified in the literature, we chose to examine the 

following potential predictors: age; total hip and femoral neck BMD; fall and faint histories; 

depth perception; body mass index (BMI); co-morbidities associated with impaired mobility, 

namely, hyperthyroidism, stroke, Parkinson’s disease, rheumatoid arthritis, and diabetes; use 

of vitamin D and calcium supplements; estrogen therapy; weight change; smoking; and 

exercise. The specific covariates selected from the SOF Study to cover these risk factors 

appear in Table 1. A number of potential covariates could not be considered because they 

had large numbers of missing values.

First fractures

We have applied the TR degradation-shock model in (5) to the SOF data for first fractures. 

As an initial check on fit, we have estimated the model without covariates. Panel (a) of 

Figure 5 shows an overlay of the Kaplan-Meier and fitted survival functions, together with 

95% confidence bands for the Kaplan-Meier function. The fit is so close that the curves are 

almost indistinguishable. Moreover, the TR regression output for the fitted model (without 

covariates) shows that the λ parameter does not differ significantly from zero (P-value= 

0.668) and, hence, a pure exponential survival distribution provides a reasonably good fit to 

the data. Recall that the exponential model is a special case of the TR degradation-shock 

model being proposed here. Shortly, we add covariates to this model and find a revised 

version of the fitted model in which significant differences do appear for subpopulations of 

patients, including some material departures from the pure exponential model.

The TR output for first fractures in the SOF study based on the exponential degradation-

shock model is shown in Table 2. The full regression model started with the covariates in 

Table 1 for each of parameters ln(y0) and λ. Covariates were then subjected to backward 
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elimination by successive culling of the covariate with the largest P-value. Culling 

proceeded until all P-values were smaller than 0.10.

The top section of Table 2 gives the fitted regression model for log-skeletal strength ln(y0). 

The indicators for stroke, Parkinson’s disease, arthritis and diabetes all have significant 

negative effects, although the P-value for Parkinson is weak at 0.037. All of these key 

diseases tend to reduce skeletal strength. The P-value for #fall is not significant at the usual 

0.05 level. Covariate age has the anticipated negative association with skeletal strength. The 

two BMD measures, hipBMD and fnBMD, are both statistically significant with regression 

coefficients that are large and positive. These two variables are highly correlated (r = 0.86), 

which is not surprising, but it is apparent that their signals are sufficiently strong and 

separate that they overcome this collinearity. Both variables are subject to measurement 

error but each conveys independent information about skeletal strength and, hence, both 

contribute significantly to the TR regression model. Using a sample size analogy, the two 

BMD readings are the equivalent of having two sample measurements rather than one. The 

finding suggests that clinicians should consider both BMD readings in judging current 

skeletal strength. It is consistent with the recommendation of assessing BMD at the femoral 

neck, total hip and lumbar spine for diagnosis of osteoporosis (T-score at any site of −2.5 or 

below) as this is a treatment threshold based on the 2013 U.S. National Osteoporosis 

Foundation (NOF) Clinician’s Guide to Prevention and Treatment of Osteoporosis [30]. 

Moving on to the next covariate, we find that indicator variable vitaminD has a weak P-

value (0.028). Its negative coefficient may be a case of confounding by indication. The 

estrogen indicator has a large positive effect. The indicator for the depth perception 

covariate lndepth has a weak P-value (0.016).

The bottom section of Table 2 gives the fitted regression function for the rate of decline λ. 

The regression coefficient for age (in years) in this latter regression function is significant 

and negative. The negative sign indicates that older subjects tend to experience a higher rate 

of progressive deterioration in skeletal strength, which is a plausible finding. Interestingly, 

whereas current use of estrogen gives a subject better skeletal strength, the significant 

negative coefficient of the estrogen indicator for the rate parameter suggests that this initial 

gain is lost with the passage of time. There are two explanations for this effect, both raised 

by the medical literature [1, 31–32]. The first explanation is that the beneficial effect of 

estrogen therapy declines with continued use. The second explanation, and the more 

plausible in our view, is that some subjects on estrogen at baseline discontinue using it 

because of the recognized risks for cardiovascular disease and breast cancer that are posed 

by its long-term use. Discontinuation of the therapy reduces those risks but exposes subjects 

to elevated risk of fracture with time; hence, the negative coefficient for estrogen in the rate 

parameter regression. The next insight from the bottom section of Table 2 is that larger 

weight change since age 25 (variable wt-change) tends to accelerate the decline of skeletal 

strength. Finally, although the intercept term for parameter λ is positive, the aggregate 

negative influences of the covariates is sufficient to make the estimated rate parameter λ 

negative in 88 percent of cases. The estimates of λ vary from −11.1% to 1.6% per year.
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Second fractures

The TR degradation-shock model in (5) has also been applied to SOF data for second 

fractures. Again, as an initial check on fit, we have estimated the TR degradation-shock 

model without covariates. Panel (b) of Figure 5 shows an overlay of the Kaplan-Meier and 

fitted survival functions. As for first fractures, the model’s fit is so close that the curves are 

almost indistinguishable. Moreover, the TR regression output for the fitted model (without 

covariates) shows that the λ parameter is significantly positive (0.265) and differs 

significantly from zero (P-value< 0.001). The positive estimate of λ yields a survival 

distribution with a large cure rate component, estimated at 91.4%. In other words, it appears 

that only 8.6% of subjects would go on to eventually have a second fracture. Even though 

the fitted models in Figure 5 are estimated without covariates, the fits are strikingly good. 

The inclusion of significant covariates will explain some of the remaining wiggles in the fit. 

The fact that the fit of the TR degradation-shock model to second fractures yields a 

substantial cure rate is an intriguing finding that we return to discuss after fitting the model 

with covariates.

Threshold regression output for second fractures in the SOF study based on the TR 

degradation-shock model in (5) is shown in Table 3. Again, parameters α and β have been 

set to 1 in this application. As with first fractures, the full regression model started with the 

covariates in Table 1 for each of parameters ln(y0) and λ. Covariates were then subjected to 

backward elimination by successive culling of the covariate with the largest P-value. Culling 

proceeded until all P-values were smaller than 0.10. The top section of output gives the 

fitted regression model for log-skeletal strength ln(y0). All of the covariates (bmi, fnd and 

mndepth) remaining in the regression function for ln(y0) have significant and material 

positive effects on skeletal strength. Note that for second fractures, it is only the femoral 

neck BMD that enters the regression function as a significant predictor of baseline skeletal 

strength. The bottom section gives the fitted regression function for the rate of decline λ. 

The regression coefficient for bmi in this latter regression function is −0.0240 and is 

marginally significant (P-value= 0.057). The estimated values of λ are positive for all but the 

15 most obese subjects who have the highest values of bmi. This coefficient indicates that 

obese patients experience progressive deterioration in skeletal strength with respect to a 

second fracture.

Model checking

We have made a number of graphical checks on the goodness of fit and discriminating 

power of our regression models. The analysis makes use of martingale residuals of the form 

ri = fi − ei, where fi is an indicator variable for observed fracture or not (fi = 1 or 0) and ei is 

an unbiased estimate of fi calculated from the model for the given covariates of patient i, i = 

1,.…, n. Our graphical analysis plots the ordered pairs (fi, ei) against a selected covariate of 

interest. Figure 6 shows one plot that illustrates the model’s fit with respect to skeletal 

strength y0 for first fractures. Recall that ln(y0) is a linear combination of several significant 

risk factors for first fracture as shown in the top section of Table 2. The horizontal scale of 

the graph is the rank of the patient when patients are ordered by their fitted values of y0. The 

vertical scale represents cumulative sums. One curve corresponds to the cumulative sum of 

actual fracture events, i.e., the cumulative count of fi. The other curve is the cumulative sum 
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of the estimates ei. The plot reveals both the calibration and predictive power of the fitted 

model. The extent to which the two curves track each other is an indication of the calibration 

of the regression model with respect to the covariate being examined (y0 in this case); in 

other words, the extent to which the estimates are unbiased across different levels of the 

covariate. The distance between the two curves corresponds to the cumulative sum of the 

martingale residuals. In Figure 6 it can be seen that the actual and estimated curves for y0 

track each other so closely that they are almost indistinguishable. Thus, the model is well 

calibrated with respect to skeletal strength. The extent to which the curves bend or arch 

toward the upper left-hand corner of the graph measures the extent to which the ordering 

variable is predictive of first fracture. A sharp bend would indicate strong predictive power; 

a nearly linear plot, little predictive power. Figure 6 shows only a modest bend and, hence, 

tells us that the covariates estimating skeletal strength in our regression model, although 

statistically significant, offer only modest predictive power.

Simulation study

The performance of the proposed maximum likelihood estimators has been assessed through 

a simulation study. The range of parameter values for ln(y0) and λ are roughly those 

encountered in our study for first fractures. Censoring times are taken to be independent and 

uniformly distributed over the interval from 0 to 20 years. Using 1,000 replications, for both 

small and large samples (100 and 1,000, respectively), the results for parameter estimates, 

standard errors and coverage probabilities show very satisfactory performance (data not 

shown). In particular, the estimated bias is uniformly small and the empirical coverage 

probabilities are very close to their 95% nominal value, under various degrees of censoring. 

As expected, the results become better when the sample size increases.

6. Discussion and Concluding Remarks

In our application, we chose to give regression structures to parameters ln(y0) and λ and to 

fix α and β at 1 because only two of the four model parameters can be estimated from 

censored time-to-fracture data. To elaborate on the implications of these choices, we 

mention that parameters of the shock process can be estimated if we are prepared to fix 

parameters of the degradation process. To illustrate with a simple example, if we fix initial 

skeletal strength y0 at 1 and estimate ln(α) using the same covariates as shown for ln(y0) in 

Table 3, the same regression function is obtained except for the regression coefficients of 

ln(α) having the opposite sign of those for ln(y0). This correspondence follows from 

equation (5) where the survival function is seen to depend on α and y0 only through the ratio 

α/y0. In terms of logarithms, the ratio becomes ln(α) − ln(y0). Hence, if one of these 

parameters is fixed at 1 (so its logarithm is zero), the other shows the same variation with 

covariates but with opposite sign. Hence, by fixing initial health level y0 at 1, we shift the 

effects of these covariates to the shock distribution in a mirror-image fashion. In all 

likelihood, pushing the covariate effects from one parameter to another does not describe the 

actual causal forces at work – reality is somewhere in the middle. For instance, among the 

covariates bmi, fnBMD and mndpth in the top section of Table 3, higher femoral neck BMD 

likely strengthens the skeleton directly while better mid-near depth perception tends to lower 

the incidence of shocks because vision is better. Higher body mass index has a mixed effect 
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because it may be associated with greater skeletal strength but also is seen to accelerate 

degradation of strength through the rate parameter λ.

Second fractures present the interesting result that a large proportion of patients (over 90 

percent) seem immune to experiencing a second fracture. Because the parameters of the 

shock process (α and β) have been arbitrarily fixed, the immune proportion (a so-called cure 

rate) is produced by a degradation rate parameter λ that is positive, implying that skeletal 

strength improves with time. On the surface, this result seems implausible. But it must be 

kept in mind that our skeletal strength measure is a latent construct. Because initial strength 

y0 and its rate of change λ are free parameters that are estimated, while the shock parameters 

α and β are fixed to 1 in advance, the unit of measure of the skeletal strength scale is 

essentially calibrated by the shock process. It is reasonable to assume that most patients who 

experience a first fracture will take remedial steps to avoid a second fracture. These steps 

might include such actions as taking prescribed medications, receiving physical therapy and 

changing diet to improve bone strength or at least to slow its degradation. The list of actions 

might also include life style changes such as being more cautious in ambulation, using 

walking aids, correcting eye sight, and generally avoiding exposures to large shocks or 

traumas. Of course, the array of remedial actions chosen by patients and the effectiveness of 

these actions in providing greater protection will vary from one patient to another so their 

propensity for fractures will vary.

The TR degradation-shock model is a new and promising model for understanding skeletal 

fractures in elderly women. It is novel and sensible in the way it forms a composite of two 

distinct forces that are at play in this phenomenon, namely, chronic progressive degradation 

of the skeleton with aging and exposure of the body to shocks and traumas of varying timing 

and magnitude. Our current TR degradation-shock model treats the degradation component 

as deterministic whereas in reality it may be a stochastic process like the shock process. 

Further advances are needed in both modeling and data gathering for a real statistical 

understanding of osteoporosis, which remains a debilitating disease that many people will 

still experience in old age.
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Figure 1. 
A conceptual stochastic process model for skeletal strength, an external shock process and 

time to fracture.
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Figure 2. 
Pictorial representation of the time to skeletal fracture as a first hitting time for a composite 

stochastic process consisting of a stream of random shocks superimposed on a progressive 

degradation process for skeletal strength.
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Figure 3. 
Plots of the probability density and cumulative distribution functions for the shock 

distribution with α = 1 and β = 1: (a) g(υ) = (1/υ2) exp(−1/υ), (b) G(υ) = exp(−1/υ).
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Figure 4. 
Plot of the survival function F̅(s) = exp[(1 − e0.035s)/1.225], corresponding to parameter 

values α = 1 and β = 1 for the shock distribution and a degradation curve starting at initial 

strength y0 = 35 with rate parameter λ = −0.035.
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Figure 5. 
Plots of the Kaplan-Meier and fitted survival functions, as well as the 95% confidence bands 

for the Kaplan-Meier function for (a) first and (b) second fracture times based on the TR 

degradation-shock model without covariates. The fitted model for second fractures has a 

large proportion of subjects who will not experience a second fracture (a large cure rate).
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Figure 6. 
A plot showing the calibration and predictive power of the model for first fracture. The 

curves compare the cumulative sum of actual and expected fractures, based on martingale 

residuals, when patients are ranked by their estimated skeletal strength y0.
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Table 1

Covariates from the SOF Study used for the investigation of first and second fractures.

Variable in regression Variable label

thyroid Doctor ever told you have high thyroid?

stroke Doctor ever told you have had a stroke?

Parkinson Doctor ever told you have Parkinson’s disease?

arthritis Doctor ever told you have arthritis?

diabetes Doctor ever told you have diabetes?

#faint Number of times fainted in last 12 months

#fall Number of falls in last 12 months

bmi Body mass index (kg/m2)

age Age at visit 2 (baseline visit)

hipBMD Total hip BMD (g/cm2)

fnBMD Femoral neck BMD (g/cm2)

vitamin D Currently taking Vitamin D once per week

Tums Currently taking Tums once per week

estrogen Currently taking estrogen pills

mndepth Mid near depth perception

lndepth Low near depth perception

wt-change Weight change since 25 years old (kgs)

smoke Smoking status (never, past, current)

exercise Take walks for exercise?
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Table 2

Threshold regression output for first fractures in the SOF study based on the degradation-shock model in (5).

1st fracture Coefficient estimate SE P-value

Regression for baseline log-skeletal strength ln(y0):

  stroke −0.317 0.104 0.002

  Parkinson −0.457 0.220 0.037

  arthritis −0.126 0.038 0.001

  diabetes −0.349 0.073 < 0.001

  #fall −0.013 0.007 0.063

  age −0.016 0.006 0.010

  hipBMD 2.029 0.286 < 0.001

  fnBMD 1.632 0.339 < 0.001

  vitaminD −0.081 0.037 0.028

  estrogen 0.375 0.099 < 0.001

  lndepth −0.119 0.050 0.016

  Intercept 2.005 0.500 < 0.001

Regression for degradation rate λ:

  age −0.003 0.001 0.001

  estrogen −0.037 0.010 < 0.001

  wt-change −0.001 < 0.001 0.001

  Intercept 0.179 0.060 0.003

Note: The top section of output gives the fitted regression model for baseline log-skeletal strength ln(y0). The bottom section gives the fitted 

regression function for degradation rate λ. The sample size is 6,948.
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Table 3

Threshold regression output for second fractures in the Study of Osteoporotic Fractures based on the 

degradation-shock model in (5).

2nd fracture Coefficient estimate SE P-value

Regression for baseline log-skeletal strength ln(y0):

  bmi 0.139 0.070 0.049

  fnBMD 5.562 2.146 0.010

  mndepth 0.881 0.326 0.007

  Intercept −3.035 1.728 0.079

Regression for degradation rate λ:

  bmi −0.024 0.013 0.057

  Intercept 0.829 0.319 0.009

Note: The top section of output gives the fitted regression model for baseline log-skeletal strength ln(y0). The bottom section gives the fitted 

regression function for degradation rate λ. The sample size is 519.
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