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ABSTRACT A kinetic formalism, quite generally valid for
free energy transducing, steady-state, macromolecular systems
in biology, is applied here to multienzyme complexes, oxidative
phosphorylation, and interacting enzymes. Systems of this type,
comprising several interacting subunits, each with its own dis-
crete set o states, present no new features in principle. Hence,
they may be handled by the earlier kinetic formalism without
modification. However, the kinetic diagram can become quite
complicated because the state of each subunit (enzyme) must
be specified in order to specify any one state of the system
(complex) as a whole. Cycles, forces, fluxes, free energy levels,
and state probabilities are considered.

In recent papers (1-7) and a book (8), a kinetic formalism for
steady-state systems (9-11) has been applied and extended in
several ways to various kinds of ensembles of independent and
equivalent macromolecular units. Ref. 7 and chapter 7 of ref.
8 deal with multienzyme complexes, oxidative phosphorylation,
and interacting enzymes in some detail. The present paper is
a preliminary and very much abbreviated version of these two
works.
We use previous notation, definitions (1-6, 9-11), etc. Our

object is to examine a few selected cases in which each unit (or
system) consists of two or more distinct enzyme molecules or
subunits (or subsystems). Each subunit has its own discrete set
of states, but the subunits (within a unit) interact with each other
because of proximity: the kinetic properties of any one subunit
depend on the states of the other subunits.

Units or systems of this type do not differ in principle from
those already studied (1-6, 9-11)-the same methods and
theorems are applicable. But they do differ in the degree of
complexity of the kinetic diagram. This complexity arises be-
cause the state of a unit depends on the state of each of the
subunits.

Multienzyme complexes (12-14) are a special case of systems
with interacting subunits. In its simplest form, the interaction
in such cases might be confined to interlocking transitions in
which two enzymes of the complex necessarily undergo si-
multaneous transitions because a ligand, substrate, electron
pair, molecular fragment, etc. is transferred directly from one
enzyme (plus prosthetic group, usually) to the other. We shall
use the term "multienzyme complex" here, in a rather narrow
sense, to refer to a system that makes use of interlocking tran-
sitions (for whatever reason) between neighboring pairs of
enzymes of the complex. Besides well-known biochemical cases
(12-14), it seems likely that many free energy transducing
complexes in membranes are also multienzyme complexes in
this sense [e.g., Na,K-ATPase (15), mitochondrial respiratory
chain, etc. ].

Two-enzyme complex
We begin the discussion with Fig. la, which does not represent
a multienzyme complex. Here a unit comprises two two-state
subunits (a and (3) that interact with each other. Each subunit

undergoes its own cyclic steady-state activity (reduced to two
states for simplicity), and has its own flux, but in general the rate
constants in one subunit depend on the state of the other sub-
unit. The basic free energy drop (2, 4-6) around each cycle is
equal to the corresponding thermodynamic force, Xay or XB.
These forces are determined only by bath concentrations of
ligands, substrates, etc., and are therefore independent of the
state of the opposite subunit.
The state of a unit must be specified by two indices ij: i =

state of subunit a; j = state of subunit (3; and lj = 1,2. Fig. lb
shows the kinetic diagram for this system. Because some cycles
in Fig. lb contain both forces (10, 11) there will in general be
some degree of thermodynamic coupling and free energy
transduction between the a and # cyclic processes.
Now instead of the quite general interaction between sub-

units a and #-that can be accommodated by Fig. 1, suppose a
and (3 form a two-enzyme complex, as indicated in Fig. 2a. Here
the "interior" (Fig. la) transitions 1 Ft 2 in both enzymes can
only occur simultaneously (Fig. 2a). Ligands, substrates, etc.
may enter or leave the scheme in Fig. 2a at any transition (2,
4), including 11 Ft 22, but this feature need not be made more
explicit for present purposes. The new diagram is shown in Fig.
2b, which is somewhat simpler than Fig. lb.

Because of the interlocking reaction 11 t 22 in Fig. 2a,
completion of a and ( cycles must now go hand in hand: there
is complete coupling between these two fluxes. At the same
time, there can be only a single net or effective thermodynamic
force X driving the system. If X is in fact a composite of two or
more thermodynamic forces (i.e., there are two or more over-all
chemical or physical processes occurring in the bath or baths),
free energy transduction is possible-just as in a single cycle
system with two or more forces (10, 11). In the well-known
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FIG. 1. (a) One unit = two two-state enzymes or subunits (a and
(3) that interact with each other. Arrows indicate dominant direction.
(b) Diagram for the system.
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FIG. 2. (a) Two-enzyme complex constructed from enzymes in
Fig. 1, with simultaneous transition (heavy bar) in the two enzymes.
(b) Diagram for the system.

biochemical examples (12-14), this transduction takes the form
of one chemical reaction driving another.

Let us now pursue further the model in Fig. 2. Fig. 3a in-
troduces the rate constant notation used for the transitions.
There are two cycles, a and b (Fig. 3b). The large (combined)
cycle has zero force and can be ignored. The same force acts
in both cycles:

Ha+ bieXlkT, [l]
Hfa-

m
rb-

where IIa+ is the product of rate constants around cycle a in
the + (arrow) direction, etc. This leads to a required relation
between a and rate constants:

1322a212/#2jat2n = a12#t,2/a21/3t21. [2]

The physical significance of this relation can be seen from the
basic free energy levels (2, 4) in Fig. 4: the basic free energy
difference between states 11 and 22 must be independent of
the path. That is, Eq. 2 is equivalent to

AA', + AAatat = AA' + AA/)t [3]

a12
(a)

012 1 n21 I112t

(b)

FIG. 3. (a) Rate constant notation for Fig. 2. (b) Significant cycles
for the model. The combined (square) cycle has no force, no net flux,
and accomplishes nothing.
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FIG. 4. Basic free energy levels for Fig. 3.

where AA',3= A'1I - A'12, etc., and
#12/#21 = exp (AA' /kT), at12/at2l = exp (AA'at/kT),

k21/k12 = exp (AA'k/kT), [4]
etc. It should be recalled (2, 4) that it is not necessary for all of
the basic free energy steps to be downhill (as shown in the fig-
ure).
The fact that we are using two pairs of a rate constants (a and

at) and two pairs of 13 rate constants implies that there are two
kinds of interaction between enzymes a and 13 in this model:
(a) there are interlocking transitions 11 > 22; and (b) in the
other transitions the state of one enzyme influences the kinetics
of the other. Explicitly, when a is in state 1,1 has rate constants
/12 and 321, but when a is in state 2, 1 has rate constants M1l2
and 1t21; etc.

If interaction (b) is not present, as could quite plausibly be
the case, then

a12 = at12, a'21 = at21, 1312 = 132. 1321 = M%21

AA'0= AAat, AA' AA'dt
AA',, + A',3 + AA'* = X [5]

Ha+ = Hb+ = 12al9k2l Ha -=n = fl2ja-,jk12
In this event, the basic free energy differences AA'a and AA'A
can be attributed to the individual subunits. But in general, with
interaction (b) present, all basic free energy differences refer
to entire a13 units or complexes and they cannot be decomposed
into a and 13 contributions.
From the two flux diagrams (10, 11) for each cycle, we find

for the cycle fluxes, in an ensemble of N units,

Ja = N(Ha+ - Ha-)(a2i +9t12)/2
Jb= N(H,+ - nbH)(at12 +02n)/2- [6]

where Z = sum of directional diagrams (10, 11). Despite Eq.
1, these cycle fluxes need not be equal. The total steady-state
flux is, of course, J = Ja + Jb.
The total rate of free energy dissipation is JX. If, say, X = XI

+ X2, where some overall reaction or transport process 1 (XI
> 0) drives a second reaction or process 2 (X2 < 0; X1 >-X2)
uphill, by means of this model (Fig. 2), then the efficiency of
free energy transduction is 77 = -X2/X1. This is seemingly
unrelated to the kinetics but, in fact, X2,X1, and some of the rate
constants would all be functions of bath concentrations.

It is easy but tedious to find z and the four steady-state
probabilities pij either from the four flux diagrams (10, 11) or
from the 4 X 8, 32 directional diagrams (10, 11).

Three-enzyme complex
One of the best known multienzyme complexes is the three-
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FIG. 5. Reaction scheme, in abstract notation, for the three-
enzyme pyruvate dehydrogenase complex.

enzyme pyruvate dehydrogenase complex (12-14, 16). The
reaction scheme, in abstract notation, is shown in Fig. 5. En-
zymes a and : have two states each; enzyme y has three states.
The complex has 2 X 3 X 2 = 12 states. The arrows in Fig. 5
indicate the dominant directions for transitions. The inter-
locking reactions are 1aly >. 2,2 and12 1 ± 3y2,.

Because of the interlocking transitions, this system, as well
as Fig. 2a, behaves in some respects like a single-cycle system
with a single net effective thermodynamic force X. The same
would be true if Fig. 5 were extended linearly to include 4, 5,
... interlocking reaction loops (enzymes), and irrespective of
the number of states per loop (2, 3, -.

Respiratory chain enzymes
The respiratory chain enzyme complex of the mitochondrial
inner membrane plays a crucial role in oxidative phosphoryl-
ation. This complex is represented in Fig. 6 in a very simplified
manner as a linear array of M two-state enzymes with indices,
from the left, r = 1(I), 2(11), - * *, M. M is probably of order 10
or more (16). Each enzyme can be in an oxidized (0) or reduced
(R) state. The complex has 2M states. Enzymes r = 1 and r =
M are coupled with external half-reactions, reducing on the left
and oxidizing on the right. In the transition IRIIO - IOIIR, two
electrons are transferred from enzyme r = 1 to r = 2, and
similarly for the other interlocking transitions within the
complex (excluding the end reactions). The overall chemical
reaction is

NADH+ 02 + H+ NAD+ + H20.22

Actually, this is only part of the story (16-18): proton transport
and possibly ATP synthesis are also involved in some of the
"interior" two-state cycles of the linear chain in Fig. 6.
Many reviews of oxidative phosphorylation are available (16,

19, 20).
One-Way Reactions. In this subsection we summarize results

found (7) in the very much simplified case of one-way reactions
with all rate constants taken equal to k (Fig. 7b shows theM =
3 kinetic scheme). We have calculated (7) exact steady-state
results for M = 1 to 7; from these, general formulas for arbitrary
M can be surmised.

Fig. 7 contains properties for M = 3, as an example. The
diagram, states, and state probabilities are shown in Fig. 7a,
while Fig. 7b gives values of Po (r) and PR (r) (r = 1,2,3), where
PO (r) is the probability that enzyme r is in state 0, etc. It is easy
to see that the flux JM is equal to NkPo() or to NkPR(r)

NADH

NAD+

FIG. 6. Linear respiratory chain complex of M two-state enzymes.
o = oxidized; R = reduced. The heavy bars indicate "interlocking"
reactions.

2/14 1/14 5/14 1/2 9/14
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3/14 2/14

9/14 1/2 5/14

ROO 000 (b)
3/14 1/14

(a)
J3/N = 5k/14

FIG. 7. (a) Steady-state probabilities of the states of an M = 3
complex, when all rate constants (one-way) are equal to k. Arrows
show the directions of horizontal, vertical, and diagonal transitions.
(b) Steady-state probabilities of the states of individual subunits,
found by combining probabilities in (a).

Table 1 contains Po (r) and JM values implicitly, in the form
(compare Fig. 7b)

P.,Jr) = WrM/JM, JM/Nk = W1M/EM. [71
The products in parentheses are differences. Note that the
factors comprising the products are the same numbers that
appear in the EM and W1,M columns.
The general formula for EM in Table 1 is apparently

EM = 2(2M + 1)!/M!(M + 2)!

and for W, M,

way= IM-1= 2(2M - 1)!/(M - 1)!(M + 1)!.

[8]

[91
Therefore, the flux is

JM/Nk = PO(1) = zM- 1/LM = (M + 2)/2(2M + 1). [101
This approaches the finite value 1/4 for M ma). JM is simply
proportional to k for any M.

It is clear from Table 1 and Eq. 7 that the extent of oxidation
pO (r) increases along the enzyme chain from left to right (r =
I to r = M) symmetrically but not linearly. po(l) is given by Eq.
10 and approaches /4 as M -O. Similarly, po(M) = 1-po(l)

as M -a.
Arbitrary entries WrM in Table 1 can be expressed as W1,M

plus the sum of the differences in the Mth row, up to WrM.
Thus,

2(2M + 1)!
Wr,m (M-1)!(M+ 1)!

r-1 (2m -1)! [2(M -im) -1]! [11]
+4 (M- 1)!(m +1)! X (M-m - 1)!(M -m+ 1)!

Two-Way Reactions. In this subsection we generalize the
above problem as follows: every transition and rate constant k,
above, now has, in addition, an inverse transition with rate
constant k'. We denote the ratio k/k' by a. Equilibrium cor-
responds to the choice k = k' or a = 1. From detailed balance
at equilibrium we see that pe = 1/2M for all states. The pre-
ceding subsection deals, in effect, with the case a >> 1. The case
a << 1 is not really different, because of symmetry: the system
runs backwards (the flux is negative). This is indeed possible
experimentally, in oxidative phosphorylation (16).

As might be expected, for arbitrary a the problem is rather
formidable. Near equilibrium we take a = 1 + E, where e is
small, JEj << 1. This is in the domain of linear irreversible
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Table 1. Values of Wr,M and YM

M EM W1,M W2,M W3,M W4,M W5,M W6,M W7,M

1 2 1
2 5 2 (1X1) 3
3 14 5 (1 x 2) 7 (2 x 1) 9
4 42 14 (1 x 5) 19 (2 x 2) 23 (5 x 1) 28
5 132 42 (1 x 14) 56 (2 x 5) 66 (5 x 2) 76 (14 x 1) 90
6 429 132 (1 x42) 174 (2 x 14) 202 (5 x 5) 227 (14 x 2) 225 (42 x 1) 297
7 1430 429 (1 x 132) 561 (2 x 42) 645 (5 x 14) 715 (14 x 5) 785 (42 x 2) 869 (132 x 1) 1001

thermodynamics. Omitting details (7), we find for the flux

___ - (M+1)e = (M+1)(a-1) (a - 1). [12]
NkW 4M 4M

The thermodynamic force per reaction step in this system is
kBTln a while the overall force is

X = (M +1)kBT lna - (M +1)kBTE (a -o1) [13]

where kB = Boltzmann constant. Hence we also have
JM/Nk = X/4MkBT (X - 0). [14]

This is the linear flux-force relationship for the present model.
Also, near equilibrium, there is a linear gradient in Po(r),
specified by the end values

P (1)
O

1 _ (M-1)e
2 8M

[15]
PO(M) =PR(1) =-+ (MMl__.

For arbitrary a, we have deduced (7) the state probabilities,
pO(r), and JM for M = 1,2,3,4. Other cases can be handled
numerically, for example by Monte Carlo methods (3). We give
only the JM results here:

Ji/Nk' = (a - 1)/2
J2/Nk' = 2(3- 1)/(5a2 + 6a + 5)

J3/Nk' = [5(a4 - 1) + 6a(a2 - 1)]/D3 [16]

J4/Nk' = t14[(a'0 - 1) + a2(6- 1) + a3(4- 1)]

+ 20[a(a8 - 1) + a4(a2 - 1)]I/D4
where

13 = 14a3 + 34(X2 + 34a + 14

D4 = 42a9 + 111a8 + 154a7 + 196a6 + 265a5
+ 265a4 + 196a3 + 154a2 + lila + 42. [17]

Incidentally, the exact values of JM (as above) for a > 1 are
bracketed surprisingly well by the asymptotic expressions (Eqs.
10 and 12)

JM/Nk' - (M + 2)a/2(2M+ 1) (a - co) [18]

- (M+ l)(a -1)/4M (a 1). [19]
Monte Carlo methods would, in fact, allow quite arbitrary

choices of rate constants.
Analogy to Multisite Diffusion Models. It is helpful con-

ceptually and mathematically (see below and ref. 21, section
6) to recognize that there is an exact formal analogy between
the above respiratory chain model and the diffusion of a ligand
across a membrane, from one bath to another, by means of
jumping from site to site along a row ofM sites (21). A given
site may be empty or occupied by one ligand molecule. Ligand
adsorption and desorption between each of the baths and sites

1 and M, respectively, are analogous to the two end reactions
in Fig. 6; the jumping of the ligand from site i to site i + 1 is
analogous to the interlocking transition RO - OR between
enzymes i, i + 1; a site occupied by a ligand is equivalent to
state R; and an empty site is equivalent to state 0. In fact, a li-
gand molecule is equivalent to a pair of electrons. As is indeed
self-evident, the respiratory chain model may thus be regarded
as a model for single-file "adsorption, diffusion, and desorption"
of electron pairs from one external electron pool (NADH) to
another (H20; Fig. 6).

Recognition of this analogy does not solve the steady-state
mathematical problem but it makes equilibrium special cases
trivial (even if all rate constants are different). For example,
if, say, the i z i + 1 transitions mentioned above are blocked
by an inhibitor (16, 22), the subsystems 1,2, * *, i and i + 1, i
+ 2, - -, M will separately come to equilibrium at t = o (each
with its own external pool). All enzymes (sites) are independent
at equilibrium, each is in equilibrium with its external pool, and
each will have a "Langmuir adsorption isotherm" of the form
(23)

pR(r) = Xr/(1 + Xr), pOr) = 1/(1 + Xr) (r = L2, ...,AM)
where it is easy to relate Xr to rate constant ratios via detailed
balance.

It should be added that the treatment given in Sections 6C
and 6F of ref. 21 is approximate, not exact (7).
Two interacting enzymes
We return here to Fig. 1 and make a few additional comments.
We consider two enzymes or macromolecules a and /3, in con-

(a)
11 ( d 21

1 a P~t(QC)Pt.

12 b 22

(bt

(b)

( Q ) S
FIG. 8. (a) Diagram (with rate constant notation, back reactions

omitted) based on Fig. 1. Cycles a, b, c, d are indicated. (b) Cycles e
and f for this system.
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FIG. 9. Listing of cycles that contribute to each transition flux
in Fig. 8a.

tact, that influence each other's kinetics-though there are no

interlocking reactions as in our definition of an "enzyme
complex." The thermodynamic forces are X, and X, and the
fluxes, J.] and Jo. In deriving kinetic properties, we again as-

sume one-way reactions for simplicity.
The diagram is shown in Fig. 8a. Note that the transitions

with an asterisk (2 -- 1) replace the k transition (22 - 11) in

Fig. 3 (back reactions omitted). That is, each enzyme can now

separately undergo the transition 2 1, thus completing a

cycle. The asterisk transitions are not inverses of the other
transitions shown (rather, 021 is inverse to A =12, etc.).

This system has six cycles with non-zero force (if back reac-

tions are included, there are 16 such cycles). These are labeled
a,b, * - *, f in Fig. 8a and b. The force in cycles a and c is X,, in
b and d it is X,\, and in e and f it is X, + Xg. The mere fact that
there is at least one cycle that contains both forces guarantees
that there will, in general, be coupling between the fluxes and,
therefore, free energy transduction (10, 11). But this coupling
will not be complete, as it is in the linear multienzyme com-

plexes we have been considering above. The coupling will, of
course, disappear if the two enzymes do not interact with each
other at all, that is, if the symbol t can be dropped from Fig.
8a (1 = At, a* = at *, etc.). If back reactions are included, four
of the 16 non-zero-force cycles contain both forces.

Each of the cycles a through d has three flux diagrams, while
cycles e and f have only one each. Hence (10, 11)

Ja = Nfl*(a*ft* + ftat* + a*at*)/2,
= Natat*(a*# + Of + T

c= NflfOf *(a#* + at'l + aaxt)/2,
Jd = Naa*(at*#* + atflt* + fl*flt*)/2

Je = Nflat13t*a*/*,
Jf = Na'ta't*#3*1/,

where we omit the complicated expression for E.
Fig. 9 shows the composition of each transition flux in terms

of cycles. The separate a and steady-state fluxes are then

Jet Jb + Jd + Je+ Jf [21]

J= Ja + Jc + Je + Jf.

As a special case (an extreme form of interaction), suppose
enzyme d can operate only if enzyme a as in state 1. That is, 13t
=0 and Ot * =0 in Fig. 8a. The diagram now has only the three
cycles a, b, and d. No thermodynamic coupling or free energy
transduction is possible between a and a because no cycle
contains both Xa and X0. The fluxes are

Ja = Jb + Jd = Nat*a*(at# + al*)/V',
J = Ja= N,8,f*a*at*/2; [22]

where I' is the appropriately simplified version of I. Although
the enzymes influence each other, as seen in these equations,
one cannot "drive" the other. For example (with back reactions
included), if Xa = 0, a force X,3 $ 0 cannot induce a flux Ja $
0.

Note Added in Proof. Some properties of the above model of the res-
piratory chain have already been discussed by Holmes (24), especially
the accuracy forM = 2 andM = 3, of the approximation used in ref.
21 (see above).

I am indebted to Dr. Britton Chance for very stimulating com-
ments.
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