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Abstract

Importance—As APOE locus variants contribute to both risk of late-onset Alzheimer disease 

and differences in age-at-onset, it is important to know if other established late-onset Alzheimer 

disease risk loci also affect age-at-onset in cases.

Objectives—To investigate the effects of known Alzheimer disease risk loci in modifying age-

at-onset, and to estimate their cumulative effect on age-at-onset variation, using data from 

genome-wide association studies in the Alzheimer’s Disease Genetics Consortium (ADGC).

Design, Setting and Participants—The ADGC comprises 14 case-control, prospective, and 

family-based datasets with data on 9,162 Caucasian participants with Alzheimer’s occurring after 

age 60 who also had complete age-at-onset information, gathered between 1989 and 2011 at 

multiple sites by participating studies. Data on genotyped or imputed single nucleotide 

polymorphisms (SNPs) most significantly associated with risk at ten confirmed LOAD loci were 

examined in linear modeling of AAO, and individual dataset results were combined using a 

random effects, inverse variance-weighted meta-analysis approach to determine if they contribute 

to variation in age-at-onset. Aggregate effects of all risk loci on AAO were examined in a burden 

analysis using genotype scores weighted by risk effect sizes.

Main Outcomes and Measures—Age at disease onset abstracted from medical records 

among participants with late-onset Alzheimer disease diagnosed per standard criteria.

Results—Analysis confirmed association of APOE with age-at-onset (rs6857, P=3.30×10−96), 

with associations in CR1 (rs6701713, P=7.17×10−4), BIN1 (rs7561528, P=4.78×10−4), and 

PICALM (rs561655, P=2.23×10−3) reaching statistical significance (P<0.005). Risk alleles 

individually reduced age-at-onset by 3-6 months. Burden analyses demonstrated that APOE 

contributes to 3.9% of variation in age-at-onset (R2=0.220) over baseline (R2=0.189) whereas the 

other nine loci together contribute to 1.1% of variation (R2=0.198).

Conclusions and Relevance—We confirmed association of APOE variants with age-at-onset 

among late-onset Alzheimer disease cases and observed novel associations with age-at-onset in 

CR1, BIN1, and PICALM. In contrast to earlier hypothetical modeling, we show that the combined 

effects of Alzheimer disease risk variants on age-at-onset are on the scale of, but do not exceed, 

the APOE effect. While the aggregate effects of risk loci on age-at-onset may be significant, 

additional genetic contributions to age-at-onset are individually likely to be small.
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INTRODUCTION

Alzheimer Disease (AD) [MIM 104300] affects more than 13% of individuals aged 65 years 

and older, and its prevalence increases with age, occurring in fewer than 1% of those age 65 

years and younger and in as much as 40% of the population after age 90.1-4 While genetic 

studies of late-onset Alzheimer Disease (LOAD) confirmed at least ten loci contributing to 

risk of disease, including APOE, PICALM, CLU, CR1, BIN1, CD2AP, EPHA1, MS4A4A, 

CD33, and ABCA7,5,6 genes modifying age-at-onset (AAO) of LOAD have not been widely 

studied. Earlier linkage and candidate gene studies identified only a few loci possibly 

underlying variation of AAO (e.g., GSTO1),7 but only variation in the APOE region has 

been consistently confirmed.8-12

A multitude of studies have attempted to identify susceptibility genes for AAO in AD. The 

first study to identify a genetic association with AAO showed a lower mean AAO among 

cases for each additional copy of the ε4 allele at the APOE locus on chromosome 19q (0 

copies: 84.3 years; 1 copy: 75.5; 2 copies: 68.4),13 a finding which has since been 

replicated.14 Subsequent genome-wide linkage scans examining AAO in AD patients and 

unaffected family members (using age at study entry) found suggestive evidence of linkage 

on chromosome 19 to APOE (LOD = 3.28),15 which was confirmed in later studies.16 

Multiple studies identified other suggestive linkage signals on chromosomes 4q, 8q,16 1q, 

6p,17 7q, 15, and 19p18 in Caucasian families, and chromosomes 5q, 7q, 14q, and 17q19 in 

Caribbean Hispanics, though the specific loci driving these linkage signals remain unknown. 

More recently, an AAO GWAS in 2,222 Caucasian AD cases confirmed association at 

APOE, and also found strong evidence of association (P=4.95×10−7) on chromosome 4q31.3 

in the gene DCHS2.20

The lack of overlap in the regions identified across these studies may have resulted from 

differences in the approaches applied, such as varied strategies for censoring unaffected 

pedigree members and differences in covariates adjusted for in analyses. Reduced statistical 

power from the limited availability of extended families for analysis may also have 

contributed to the differences in findings between these early linkage and association 

studies. The high variability in approaches and findings highlights the need for a more 

comprehensive approach to identify genetic risk factors which may influence LOAD AAO 

as well as LOAD risk directly. Notably, variants in the ten confirmed LOAD risk loci have 

not been examined for their possible influence on AAO among LOAD cases.

Using data from 9,162 LOAD cases from a recent genome-wide association study (GWAS) 

of LOAD by the Alzheimer’s Disease Genetics Consortium,6 we examined whether variants 

most significantly associated with LOAD risk in 10 LOAD loci are also associated with 

differences in AAO among LOAD cases. Furthermore, we used a genetic burden analysis 
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approach to determine the proportion of variation in AAO accounted for by variants in these 

established LOAD risk genes.

MATERIALS AND METHODS

Ascertainment and Collection of Genotypic and Phenotypic Data

A detailed description of ascertainment and the collection of genotype and phenotype data in 

the individual datasets of the ADGC is available elsewhere.6 Briefly, subjects in each dataset 

(eTable 1) were genotyped using either Illumina or Affymetrix commercially-available 

GWAS high-density SNP genotyping microarrays. All LOAD subjects met NINCDS/

ADRDA criteria for definite, probable or possible LOAD,21 and age-at-onset (AAO) of 

LOAD, which was abstracted from medical records for most subjects, was defined as the 

age when LOAD-related symptoms manifested, as reported by the subject or an informant. 

Age-at-ascertainment (WU, ADNI) was substituted for datasets lacking AAO information 

(eTable 1). Unaffected subjects and LOAD cases lacking AAO information, cases with an 

age-at-onset or age-at-death less than 60 years, and non-Caucasians of European ancestry 

were excluded from the association analyses. Post hoc analyses revealed no significant 

differences in association findings between subjects with age-at-onset and those with age-at-

ascertainment information (data not shown).

Quality Control

Subjects were excluded if Affymetrix chip genotypes were called for fewer than 95% of 

SNPs or if Illumina chip genotypes were called for fewer than 98% for SNPs. Additionally, 

samples were excluded if reported gender differed from genetic gender by X-chromosome 

analysis (PLINK software).22 Samples were dropped from family datasets if reported 

relationships differed from estimated relatedness from IBD using the program PREST.23 If 

samples were duplicated in different datasets, only one sample per duplicate pair was kept in 

analysis. After exclusions, data on 9,162 cases remained for subsequent analyses.

After sample quality control, genotyped SNPs were excluded from analysis if their minor 

allele frequencies (MAF) were less than 0.02 for Affymetrix chips or less than 0.01 for 

Illumina chips, or if the SNPs were observed to be out of Hardy-Weinberg equilibrium with 

P<10−6. Imputed SNPs were excluded if the quality score (“Info” from IMPUTE2)24 was 

less than 0.50. Genome-wide genotype imputation was performed in each cohort using 

IMPUTE2 software24 with 1000 Genomes (December 2010 release) CEPH Utah pedigree 

(CEU) reference haplotypes. Imputation quality was assessed using the ‘Info’ statistic, and 

only SNPs imputed with Info ≥0.50 were included in analysis. The ten SNPs examined here 

were among the common set of SNPs produced in imputation.

Statistical Analysis

We performed association analysis on individual datasets assuming an additive model on 

log-transformed age-at-onset with covariate adjustment for population substructure. For 

cases from case-control datasets, linear regression was performed in PLINK,22 while for 

analysis of cases from family datasets (used only in the primary analysis of risk variants), 

generalized estimating equations (GEE) with a linear model as implemented in the R 
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statistical package25 were used. To account for the effects of population substructure, we 

performed a principal components (PC) analysis on cases within each dataset using 

EIGENSTRAT26 on a subset of 21,109 SNPs common to all genotyping platforms. The first 

three PCs from analysis were incorporated in our minimal model for covariate adjustment. 

We also performed analyses conditioning on the major AAO-modifying effects of APOE 

through an extended model of covariate adjustment which included sex and number of 

APOE ε4 alleles (0, 1, or 2). Results from individual datasets were combined in the meta-

analysis using inverse-variance weighting as implemented in METAL,27 applying a 

genomic control to each dataset. With this set of 9,162 cases, we expected to have 80% 

power to detect loci with as little effect as 9 months difference in AAO per allelic copy for 

very common variants (MAF>0.34), with power to detect 1 year difference in AAO per 

allelic copy for variants of even modest frequency (MAF>0.14).28

We performed a discovery genome-wide association meta-analysis among 6,143 cases in 10 

ADGC case-control datasets to determine whether SNPs with more modest LOAD risk 

associations may contribute to differences in AAO, and to assess genetic burden attributable 

to these variants. Methods, results, and a brief summary are provided in the eAppendix.

In addition to association meta-analysis, we performed genetic burden analyses to determine 

the percent contribution of LOAD susceptibility SNPs in ten LOAD candidate genes to 

variation in AAO. Risk-weighted genetic burden analyses of AAO linearly modeled locus-

specific effects as the product of the meta-analysis-estimated effect size (across-study 

change in AAO for each copy of the minor allele) and the dosage of the minor allele (scale 

0-2; estimated from genotype-specific imputation probabilities), and were implemented in 

analyses of risk variants. Additional covariate adjustment in the burden model included 

covariates for population substructure from principal components analysis and dataset-

specific effects.

RESULTS

ADGC Data Characteristics

Descriptive characteristics of the individual ADGC datasets are shown in eTable 1. There 

were more female cases (N = 5,480; 60%) than males. The mean age-at-onset of was 74.3 

years (y) (standard deviation = 7.64 y) for the entire group. Several datasets had later ages at 

onset; two of these were population-based cohorts of aging and memory loss, ROSMAP 

[mean AAO (SD) = 85.6 y (6.26 y)] and ACT [mean AAO (SD) = 83.9 y (4.76 y)], and one 

case-control dataset, OHSU, which intentionally ascertained individuals with later age-at-

onset [mean AAO (SD) = 86.1 y (5.53 y)]. While data from these studies did not largely 

change the patterns of association observed (data not shown) in association testing, we 

performed several sub-analysis to assess their effect on the genetic burden analyses as 

described below.

LOAD Susceptibility Variant Associations with AAO

We confirmed the association of the APOE ε4 allele with lower AAO, with each additional 

copy of the ε4 allele reducing AAO by 2.45 years (β=−2.45; P=3.30×10−96). Examining the 

Naj et al. Page 4

JAMA Neurol. Author manuscript; available in PMC 2015 February 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



variants most strongly associated with LOAD in nine genomic regions with genome-wide 

statistically significant associations in our GWAS of LOAD risk (Table 1),6 we observed 

that several LOAD risk loci also demonstrated statistically significant associations 

(P<0.005) with AAO, including rs6701713 in CR1 (P=7.17×10−4), rs7561528 in BIN1 

(P=4.78×10−4), rs561655 in PICALM (P=0.00223). Both rs6701713 in CR1 and rs7561528 

in BIN1 demonstrated a reduced age-at-onset for each copy of the risk variant with each 

copy of the risk allele A at rs6701713 (MAF=0.24) advancing AAO by approximately five 

months [β (95% CI): −0.41 (−0.65, −0.17)], and each copy of the risk allele A at rs7561528 

(MAF=0.37) advancing AAO by slightly less than four months [β (95% CI): −0.31 (−0.52, 

−0.09)]. In contrast, each copy of the more common risk allele (A; frequency=0.62) at 

rs561655 in the PICALM gene corresponded with earlier onset by approximately four 

months [β (95% CI): −0.33 (−0.55, 0.12)]. These patterns of association remained largely 

unchanged after adjustment for APOE ε4 allele dose and sex for the CR1 and BIN1 variants 

[rs6701713: −0.41 (−0.69, −0.12), P=0.00488; rs7561528: −0.32 (−0.57, −0.08), 

P=0.00985]. While the size and direction of the association remained the same as in the 

minimally adjusted model, the association of the PICALM variant demonstrated only 

marginal significance after this additional adjustment [rs561655: 0.32 (0.07, 0.57), 

P=0.0112]. Investigation of AAO associations in the vicinity of these AD risk variants 

revealed no substantially different associations among nearby variants. Directions of variant 

effects were concordant between AD risk and AAO; all variants that increase risk also lower 

AAO.

Genetic Burden Analysis of AAO with LOAD Risk Variants

We examined the genetic burden of APOE and the LOAD risk variants in the nine genomic 

regions on variation in AAO (Table 2) in the 14 ADGC datasets with complete AAO data. 

In our baseline model, 19% of the variation in AAO (R2=0.189) was accounted for by 

population substructure and study-specific effects. The independent contributions of dosage 

of the APOE ε4 allele to genetic burden was roughly 3.1% of AAO variation (R2=0.220) 

while the cumulative effect of the nine LOAD risk variants was 0.93% (R2=0.198), together 

accounting for approximately 4.1% of genetic variation in AAO (R2=0.229). Excluding 

study-specific effects, APOE accounts for 3.9% of the remaining variation, the nine LOAD 

risk variants account for another 1.1%, for a combined contribution of 5% of the variation of 

AAO. Variant effects in burden modeling were consistent with the association results for 

individual variants described above.

To determine whether ascertainment differences may have influenced the amount of 

variation in AAO attributable to LOAD risk variants, we examined the effects of the three 

datasets with much later average AAO (ACT, OHSU, and ROSMAP) and the two-family 

based datasets (NIA-LOAD and MIRAGE) on genetic burden analyses. In analyses 

excluding the datasets with later average AAO (eTable 2), we found that these datasets 

account for much of the dataset-specific AAO variation, reducing the effect of dataset on 

AAO variation from nearly 19% to 1.7% (R2=0.0165). In these analyses, after excluding 

dataset-specific effects, the percent variation attributable to APOE was slightly lower at 

3.6% (R2=0.0523), the effect attributable to the nine LOAD risk variants was similar to 

before at 1.1% (R2=0.0270), and the combined contribution of both was observed to be 4.7% 
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(R2=0.0631). Removal of the family datasets (eTable 3) did not appreciably change the 

variation attributable to study-specific effects (R2=0.221), nor did it substantially change the 

relative effects of APOE and the 9 LOAD risk variants on AAO variation.

DISCUSSION

Our analysis of more than 9,000 LOAD cases with age-at-onset information is the largest 

genetic study of LOAD AAO to date. Examining AAO associations at LOAD risk loci, we 

confirmed the association of APOE region variation with AAO and found additional strong 

associations with AAO among variants at three of the other nine established risk loci (CR1, 

BIN1, and PICALM). Burden analysis demonstrated that the cumulative variation explained 

by SNPs at nine LOAD risk loci was about a third as much as the percent variation in AAO 

from APOE, The smaller effect of APOE ε4 on differences in AAO here (3-4%) than in 

previous studies (7-9%)29 may be due to differences in study design; for instance, all 

previous estimates were made in multiplex pedigrees, whereas most cases examined here 

were unrelated (2,302 of 9,162 [25.1%] of cases were from family datasets). However, in 

addition to confirming the predominance of the effect of APOE on AAO, we showed that 

the cumulative effects of risk loci associated with AAO may have an effect of similar scale 

on AAO. In our secondary analysis of genome-wide association, cumulative effects on 

genetic burden of SNPs associated with AAO but with little or no effect on LOAD risk 

accounted for more variation in AAO compared to the non-APOE risk variants (2.2% vs. 

1.1%), but were still dwarfed by the effects of APOE on variation in AAO (~4%).

Several previous studies have suggested potential associations of risk variants at these loci 

with AAO. A recent study using a small subset of the cases used in this study (ADC1-3; 

n=2,569) identified an association with a PICALM risk variant (rs3851179, 

P=0.008.6×10−3).10 A study of the expression of the 10 LOAD risk genes in parietal lobe 

neurons from an autopsy series of AD brains demonstrated nominally significant evidence 

of an association between reduced BIN1 expression levels and earlier AAO (P=0.041),30 as 

well as an association with a longer duration of disease. A study by Jones et al. (2013)31 

among persons with Down Syndrome, which is typically associated with elevated AD risk at 

an earlier AAO, showed risk variants in APOE (P=0.014) and PICALM (P=0.011) to be 

correlated with lower AAO in AD patients with Down syndrome.

Daw et al analyzed families with a high burden of AD and later age of onset in a multiplex 

family data set29 and found evidence for at least four additional genes with major effects on 

variation in AAO as large as those of APOE. The lack of major AAO-modifying effects 

outside of APOE in our study is not consistent with the Daw et al study and may reflect 

genetic heterogeneity of age-at-onset genetics within late-onset AD or, more likely, indicate 

the existence of large effect modifiers enriched in families with multiple affected members. 

APOE-related survival effects may have further complicated the identification of AAO-

modifying genes. Furthermore, other genetic mechanisms including the effects of rare 

variants, epigenetic modification, and gene-environment interactions, which have been 

reported to influence dementia risk and cognitive decline,32-37 may also contribute to 

variation in age at onset of AD. Identification of other genetic modifiers of age-at-onset 

through studies of larger samples of LOAD cases and studies using next-generation 
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sequencing approaches which can more thoroughly interrogate the genome may yet yield 

additional genetic risk factors that influence age-at-onset and provide new insights into 

LOAD pathogenesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Boxplots for age-at-onset (AAO) by ADGC dataset

Naj et al. Page 18

JAMA Neurol. Author manuscript; available in PMC 2015 February 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Naj et al. Page 19

T
ab

le
 1

A
ss

oc
ia

ti
on

 w
it

h 
ag

e-
at

-o
ns

et
 (

A
A

O
) 

of
 S

N
P

s 
m

os
t 

si
gn

if
ic

an
tl

y 
as

so
ci

at
ed

 w
it

h 
L

O
A

D
 in

 n
in

e 
ge

no
m

ic
 r

eg
io

ns
 a

nd
 A

P
O

E

SN
Ps

 p
re

se
nt

ed
 d

em
on

st
ra

te
d 

st
ro

ng
es

t a
ss

oc
ia

tio
ns

 w
ith

in
 e

ac
h 

of
 te

n 
ge

no
m

ic
 r

eg
io

ns
 w

ith
 a

ss
oc

ia
tio

ns
 o

f 
ge

no
m

e-
w

id
e 

st
at

is
tic

al
 s

ig
ni

fi
ca

nc
e 

(P
 

≤5
.0

×
10

−
8 )

 w
ith

 L
O

A
D

 r
is

k.
 P

-v
al

ue
s 

fo
r 

A
A

O
 a

ss
oc

ia
tio

ns
 e

xc
ee

di
ng

 th
e 

m
ul

tip
le

 h
yp

ot
he

si
s 

te
st

in
g 

th
re

sh
ol

d 
(P

<
0.

00
5)

 a
re

 s
ho

w
n 

in
 b

ol
d

SN
P

C
H

:M
B

N
ea

re
st

G
en

e
M

A
M

A
F

A
A

O
 (

M
in

im
al

 A
dj

us
tm

en
t 

M
od

el
)

A
A

O
 (

E
xt

en
de

d 
A

dj
us

tm
en

t 
M

od
el

)
L

O
A

D
 R

is
k 

(f
ro

m
 N

aj
 e

t 
al

.)

β 
(9

5%
 C

I)
P

H
et

 P
β 

(9
5%

 C
I)

P
H

et
 P

O
R

 (
95

%
 C

I)
P

rs
67

01
71

3
1:

20
7.

8
C

R
1

A
0.

24
−

0.
41

 (
−

0.
65

, −
0.

17
)

7.
17

×1
0−4

0.
40

5
−

0.
41

 (
−

0.
69

, −
0.

12
)

4.
88

×
10

−
3

0.
42

2
1.

16
 (

1.
11

, 1
.2

2)
4.

6×
10

−
10

rs
75

61
52

8
2:

12
7.

9
B

IN
1

A
0.

37
−

0.
31

 (
−

0.
52

, −
0.

09
)

4.
78

×1
0−4

0.
85

5
−

0.
32

 (
−

0.
57

, −
0.

08
)

9.
85

×
10

−
3

0.
68

4
1.

17
 (

1.
13

, 1
.2

2)
4.

2×
10

−
14

rs
93

49
40

7
6:

47
.5

C
D

2A
P

C
0.

32
−

0.
03

 (
−

0.
25

, 0
.1

9)
0.

76
5

0.
26

6
−

0.
14

 (
−

0.
40

, 0
.1

1)
0.

27
3

0.
86

0
1.

12
 (

1.
07

, 1
.1

8)
1.

0×
10

−
6

rs
11

76
75

57
7:

14
3.

1
E

P
H

A
1

C
0.

18
0.

03
 (

−
0.

26
, 0

.3
2)

0.
83

0
0.

86
1

0.
07

 (
−

0.
24

, 0
.3

9)
0.

65
9

0.
65

7
0.

87
 (

0.
83

, 0
.9

2)
2.

4×
10

8−
7

rs
15

32
27

8
8:

27
.5

C
L

U
T

0.
37

0.
05

 (
−

0.
18

, 0
.2

8)
0.

66
1

0.
13

7
0.

00
38

 (
−

0.
26

, 0
.2

7)
0.

97
7

0.
10

8
0.

89
 (

0.
85

, 0
.9

3)
8.

3×
10

−
8

rs
49

38
93

3
11

:6
0.

0
M

S4
A

4A
C

0.
36

0.
09

 (
−

0.
14

, 0
.3

1)
0.

44
8

0.
45

4
0.

01
8 

(−
0.

23
, 0

.2
7)

0.
88

74
0.

58
4

0.
88

 (
0.

85
, 0

.9
2)

1.
7×

10
−

9

rs
56

16
55

11
:8

5.
8

P
IC

A
L

M
G

0.
38

0.
33

 (
−

0.
12

, 0
.5

5)
2.

23
×1

0−3
0.

91
5

0.
32

 (
0.

07
, 0

.5
7)

0.
01

12
0.

95
7

0.
87

 (
0.

84
, 0

.9
1)

7.
0×

10
−

11

rs
37

52
24

6
19

:1
.1

A
B

C
A

7
G

0.
34

−
0.

27
 (

−
0.

55
, 0

.0
2)

0.
06

40
0.

70
0

−
0.

19
 (

−
0.

51
, 0

.1
3)

0.
24

2
0.

74
8

1.
15

 (
1.

09
, 1

.2
1)

5.
8×

10
−

7

H
ap

lo
ty

pe
(r

s7
41

2/
rs

42
93

58
)

19
:4

5.
4

A
PO

E
ε4

0.
35

−
2.

45
 (

−
2.

68
, −

2.
21

)
3.

30
×1

0−9
6

0.
09

41
−

0.
24

 (
−

0.
75

, 0
.2

7)
0.

36
0

0.
87

4
3.

02
 (

2.
86

, 3
.2

0)
2.

18
×

10
−

32
0

rs
38

65
44

4
19

:5
1.

7
C

D
33

A
0.

20
0.

10
 (

−
0.

13
, 0

.3
3)

0.
37

7
0.

59
6

0.
13

 (
−

0.
13

, 0
.3

8)
0.

33
8

0.
87

2
0.

89
 (

0.
86

, 0
.9

3)
1.

1×
10

−
7

C
H

:M
B

, c
hr

om
os

om
e:

po
si

tio
n 

(i
n 

m
eg

a 
ba

se
 p

ai
rs

, b
ui

ld
 1

9)
; M

A
, m

in
or

 a
lle

le
; M

A
F,

 m
in

or
 a

lle
le

 f
re

qu
en

cy
; β

, B
et

a 
co

ef
fi

ci
en

t f
or

 A
A

O
 f

ro
m

 m
et

a-
an

al
ys

is
 (

# 
ye

ar
s 

di
ff

er
en

ce
 in

 A
A

O
 p

er
 c

op
y 

of
 th

e 
m

in
or

 a
lle

le
);

 O
R

, o
dd

s 
ra

tio
; 9

5%
 C

I,
 9

5%
 C

on
fi

de
nc

e 
In

te
rv

al
; P

, P
-v

al
ue

; H
et

 P
, P

-v
al

ue
 f

or
 h

et
er

og
en

ei
ty

 a
cr

os
s 

st
ud

ie
s.

JAMA Neurol. Author manuscript; available in PMC 2015 February 03.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Naj et al. Page 20

T
ab

le
 2

R
is

k-
w

ei
gh

te
d 

bu
rd

en
 a

na
ly

si
s 

re
su

lt
s 

fo
r 

A
P

O
E

 a
nd

 9
 L

O
A

D
 C

an
di

da
te

 G
en

es

B
et

a 
co

ef
fi

ci
en

ts
 (

β)
, 9

5%
 C

on
fi

de
nc

e 
In

te
rv

al
s,

 a
nd

 P
-v

al
ue

s 
ar

e 
fr

om
 f

ou
r 

lo
gi

st
ic

 r
eg

re
ss

io
n 

m
od

el
s 

ex
am

in
in

g 
w

ei
gh

te
d 

sc
or

es
 f

or
 th

e 
pe

ak
 S

N
P 

as
so

ci
at

io
ns

 in
 A

P
O

E
 a

nd
 9

 L
O

A
D

 c
an

di
da

te
 g

en
es

. S
co

re
s 

ar
e 

th
e 

pr
od

uc
t o

f 
th

e 
lo

g-
tr

an
sf

or
m

ed
 o

dd
s 

ra
tio

 f
or

 e
ac

h 
SN

P 
as

so
ci

at
io

n 
m

ul
tip

lie
d 

by
 

m
in

or
 a

lle
le

 d
os

ag
e 

fr
om

 im
pu

te
d 

ge
no

ty
pe

 p
ro

ba
bi

lit
ie

s.

M
od

el
 1

: 
A

dj
us

tm
en

t 
fo

r
P

C
s 

&
 S

it
e

M
od

el
 2

: 
A

dj
us

tm
en

t 
fo

r
M

od
el

 1
 +

 A
P

O
E

M
od

el
 3

: 
A

dj
us

tm
en

t 
fo

r
M

od
el

 1
 +

 9
 L

O
A

D
 G

en
es

M
od

el
 4

: 
A

dj
us

tm
en

t 
fo

r
M

od
el

 1
 +

 A
P

O
E

 +
 9

 L
O

A
D

 G
en

es

β 
(9

5%
 C

I)
P

β 
(9

5%
 C

I)
P

β 
(9

5%
 C

I)
P

β 
(9

5%
 C

I)
P

(I
nt

er
ce

pt
)

74
.2

 (
73

.5
, 7

5.
0)

<
10

-3
2

70
.6

 (
69

.8
, 7

1.
4)

<
10

−
32

72
.9

 (
71

.6
, 7

4.
1)

<
10

−
32

69
.1

 (
67

.9
, 7

0.
4)

<
10

−
32

C
R

1 
Sc

or
e

--
--

--
--

1.
01

 (
0.

59
, 1

.4
3)

2.
66

×
10

−
6

1.
01

 (
0.

60
, 1

.4
3)

1.
51

×
10

−
6

B
IN

1 
Sc

or
e

--
--

--
--

−
0.

97
 (

−
1.

45
, −

0.
50

)
5.

27
×

10
−

5
−

1.
04

 (
−

1.
51

, −
0.

58
)

9.
99

×
10

−
6

C
D

2A
P

 S
co

re
--

--
--

--
−

0.
51

 (
−

1.
00

, −
0.

03
)

0.
03

81
−

0.
43

 (
−

0.
90

, 0
.0

5)
0.

07
64

E
P

H
A

1 
Sc

or
e

--
--

--
--

−
0.

73
 (

−
1.

49
, 0

.0
3)

0.
05

86
−

0.
67

 (
−

1.
41

, 0
.0

7)
0.

07
78

C
L

U
 S

co
re

--
--

--
--

0.
83

 (
0.

36
, 1

.2
9)

4.
63

×
10

−
4

0.
89

 (
0.

44
, 1

.3
5)

1.
11

×
10

−
4

M
S4

A
4A

 S
co

re
--

--
--

--
0.

87
 (

0.
34

, 1
.4

0)
0.

00
12

0
0.

91
 (

0.
39

, 1
.4

3)
5.

58
×

10
−

4

P
IC

A
L

M
 S

co
re

--
--

--
--

1.
11

 (
0.

63
, 1

.5
9)

6.
78

x1
0−

6
1.

03
 (

0.
56

, 1
.5

1)
1.

83
×

10
−

5

A
B

C
A

7 
Sc

or
e

--
--

--
--

0.
92

 (
0.

35
, 1

.5
0)

0.
00

16
4

0.
97

 (
0.

41
, 1

.5
3)

7.
35

×
10

−
4

C
D

33
 S

co
re

--
--

--
--

−
0.

84
 (

−
1.

41
, −

0.
28

)
0.

00
31

5
−

0.
81

 (
−

1.
36

, −
0.

26
)

0.
00

40
5

A
P

O
E

 S
co

re
--

--
−

0.
77

 (
−

0.
85

, −
0.

70
)

1.
03

×
10

−
79

--
--

-0
.7

8 
(−

0.
86

, −
0.

70
)

5.
48

×
10

−
81

A
C

T
9.

67
 (

8.
62

, 1
0.

7)
3.

31
×

10
−

72
10

.3
 (

9.
30

, 1
1.

4)
1.

10
×

10
−

84
11

.1
5 

(9
.6

4,
 1

2.
66

)
8.

89
×

10
−

47
11

.9
 (

10
.4

2,
 1

3.
39

)
6.

69
×

10
−

55

A
D

C
1

−
1.

76
 (

−
2.

60
, −

0.
93

)
3.

66
x1

0−
5

0.
54

 (
−

0.
32

, 1
.3

9)
0.

21
9

−
1.

74
 (

−
2.

81
, −

0.
67

)
0.

00
13

9
0.

62
 (

−
0.

45
, 1

.7
0)

0.
25

6

A
D

C
2

−
i.0

3 
(−

1.
96

, −
0.

10
)

0.
02

94
−

1.
47

 (
−

2.
38

, −
0.

56
)

0.
00

15
7

0.
33

 (
−

1.
20

, 1
.8

7)
0.

67
1

−
0.

09
 (

−
1.

59
, 1

.4
2)

0.
90

9

A
D

C
3

0.
19

 (
−

0.
74

, 1
.1

3)
0.

68
4

0.
40

 (
−

0.
52

, 1
.3

2)
0.

39
3

1.
17

 (
−

0.
68

, 3
.0

2)
0.

21
5

1.
31

 (
−

0.
50

, 3
.1

3)
0.

15
5

A
D

N
I

−
1.

20
 (

−
2.

57
, 0

.1
8)

0.
08

82
−

0.
91

 (
−

2.
26

, 0
.4

4)
0.

18
7

−
0.

26
 (

−
1.

90
, 1

.3
9)

0.
75

8
0.

22
 (

−
1.

39
, 1

.8
4)

0.
78

7

G
en

A
D

A
0.

36
 (

−
0.

57
, 1

.2
8)

0.
44

9
−

1.
42

 (
−

2.
34

, −
0.

50
)

0.
00

25
8

2.
46

 (
1.

19
, 3

.7
2)

1.
39

×
10

−
4

0.
79

 (
−

0.
46

, 2
.0

4)
0.

21
6

L
O

A
D

−
0.

67
 (

−
1.

49
, 0

.1
5)

0.
11

1
0.

42
 (

−
0.

40
, 1

.2
3)

0.
31

6
−

0.
37

 (
−

1.
55

, 0
.8

0)
0.

53
3

0.
77

 (
−

0.
38

, 1
.9

3)
0.

19
0

M
IR

A
G

E
−

3.
08

 (
−

4.
04

, −
2.

11
)

4.
66

×
10

−
10

0.
37

 (
−

0.
64

, 1
.3

8)
0.

47
2

−
2.

17
 (

−
3.

51
, −

0.
83

)
0.

00
14

6
1.

36
 (

0,
 2

.7
2)

0.
05

04

O
H

SU
11

.9
 (

10
.5

, 1
3.

3)
2.

06
×

10
−

59
12

.5
 (

11
.1

, 1
3.

9)
5.

29
×

10
−

68
13

.5
5 

(1
1.

72
, 1

5.
39

)
5.

32
×

10
−

47
14

.4
 (

12
.6

, 1
6.

2)
1.

16
×

10
−

54

R
O

SM
A

P
11

.4
 (

10
.3

, 1
2.

5)
6.

52
×

10
−

90
9.

21
 (

8.
11

, 1
0.

3)
4.

63
×

10
−

60
13

.2
6 

(1
1.

57
, 1

4.
95

)
1.

34
×

10
−

52
11

.2
2 

(9
.5

5,
 1

2.
9)

3.
11

×
10

−
39

T
G

E
N

2
0.

55
 (

−
1.

03
, 2

.1
3)

0.
49

4
0.

69
 (

−
0.

86
, 2

.2
4)

0.
38

5
1.

47
 (

−
3.

09
, 6

.0
3)

0.
52

8
1.

55
 (

−
2.

92
, 6

.0
3)

0.
49

7

U
M

/V
U

/M
SS

M
−

0.
33

 (
−

1.
20

, 0
.5

3)
0.

44
9

−
0.

6 
(−

1.
45

, 0
.2

5)
0.

16
5

1.
18

 (
−

0.
10

, 2
.4

6)
0.

07
04

0.
92

 (
−

0.
33

, 2
.1

8)
0.

14
9

JAMA Neurol. Author manuscript; available in PMC 2015 February 03.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Naj et al. Page 21

M
od

el
 1

: 
A

dj
us

tm
en

t 
fo

r
P

C
s 

&
 S

it
e

M
od

el
 2

: 
A

dj
us

tm
en

t 
fo

r
M

od
el

 1
 +

 A
P

O
E

M
od

el
 3

: 
A

dj
us

tm
en

t 
fo

r
M

od
el

 1
 +

 9
 L

O
A

D
 G

en
es

M
od

el
 4

: 
A

dj
us

tm
en

t 
fo

r
M

od
el

 1
 +

 A
P

O
E

 +
 9

 L
O

A
D

 G
en

es

β 
(9

5%
 C

I)
P

β 
(9

5%
 C

I)
P

β 
(9

5%
 C

I)
P

β 
(9

5%
 C

I)
P

U
PI

T
T

−
1.

33
 (

−
2.

18
, −

0.
47

)
0.

02
33

−
0.

61
 (

−
1.

45
, 0

.2
3)

0.
15

5
0.

7 
(−

0.
54

, 1
.9

4)
0.

26
7

1.
38

 (
0.

16
, 2

.5
9)

0.
02

61

PC
1

6.
76

 (
3.

09
, 1

0.
4)

3.
10

×
10

−
4

6.
16

 (
2.

56
, 9

.7
6)

8.
01

×
10

−
4

7.
04

 (
3.

38
, 1

0.
7)

1.
61

×
10

−
4

6.
44

 (
2.

85
, 1

0.
02

)
4.

32
×

10
−

4

PC
2

1.
12

 (
−

2.
60

, 4
.8

4)
0.

55
4

1.
99

 (
−

1.
66

, 5
.6

4)
0.

28
5

0.
81

 (
−

2.
90

, 4
.5

1)
0.

67
0

1.
65

 (
−

1.
98

, 5
.2

8)
0.

37
2

PC
3

−
0.

89
 (

−
4.

54
, 2

.7
7)

0.
63

4
−

0.
34

 (
−

3.
93

, 3
.2

4)
0.

85
2

−
1.

07
 (

−
4.

71
, 2

.5
7)

0.
56

4
−

0.
5 

(−
4.

07
, 3

.0
6)

0.
78

2

F
 (

df
1,

 d
f 2

)
16

4.
2 

(1
3,

 9
11

4)
18

4.
8 

(1
4,

 9
11

3)
10

3.
3 

(2
2,

 9
10

5)
11

9.
1 

(2
3,

 9
10

4)

P
<

10
−

10
0

<
10

−
10

0
<

10
−

10
0

<
10

−
10

0

M
ul

tip
le

 R
2

0.
18

98
0.

22
11

0.
19

98
0.

23
13

A
dj

us
te

d 
R

2
0.

18
86

0.
21

99
0.

19
79

0.
22

94

JAMA Neurol. Author manuscript; available in PMC 2015 February 03.


