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Abstract

In biomedical studies, covariates with measurement error may occur in survival data. Existing 

approaches mostly require certain replications on the error-contaminated covariates, which may 

not be available in the data. In this paper, we develop a simple nonparametric correction approach 

for estimation of the regression parameters in the proportional hazards model using a subset of the 

sample where instrumental variables are observed. The instrumental variables are related to the 

covariates through a general nonparametric model, and no distributional assumptions are placed 

on the error and the underlying true covariates. We further propose a novel generalized methods of 

moments nonparametric correction estimator to improve the efficiency over the simple correction 

approach. The efficiency gain can be substantial when the calibration subsample is small 

compared to the whole sample. The estimators are shown to be consistent and asymptotically 

normal. Performance of the estimators is evaluated via simulation studies and by an application to 

data from an HIV clinical trial. Estimation of the baseline hazard function is not addressed.
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1. INTRODUCTION

Survival data often arise in biomedical studies where the outcome of interest is time to an 

event of interest (failure). The proportional hazards model is the most widely used survival 

model to characterize the relationship between survival time and covariates. However, some 

covariates, say X, could be measured with error in practice. For example, important 

covariates such as CD4 counts in HIV studies are subjected to substantial measurement error 

due to both imperfect instruments and biological fluctuation.

It is well-known that the naive approach that ignores measurement error can lead to biased 

estimation and erroneous inference (e.g. Prentice, 1982). Various approaches have been 

proposed to deal with measurement error. The regression calibration (Prentice, 1982; Wang 

et al. 1997; Dafni and Tsiatis, 1998; Liao et al., 2011) approximates the hazard function 
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conditional on the observed covariates. It can reduce estimation bias but is still inconsistent. 

Likelihood based approaches are usually computationally intensive (e.g. Wulfson and 

Tsiatis, 1997; Hu, Tsiatis and Davidian, 1998, Song et al., 2002a; Wang, 2008). Consistent 

estimation based on corrected scores (parametric correction) was first proposed by 

Nakamura (1992) which required no distributional assumption on the underlying true 

covariates, but the standard deviation was assumed known. Huang and Wang (2000) 

developed a nonparametric correction approach that further relaxed the distributional 

assumption on the measurement error, but required repeated measurements. The correction 

approaches were extended to more general measurement error models (Hu and Lin, 2002; 

Wang, 2006; Tapsoba et al., 2011) and more general error assessment sets (Huang and 

Wang, 2006). A related approach is the conditional score (Tsiatis and Davidian, 2001; Song 

et al., 2002b), which is asymptotic equivalent to the corrected score. The conditional score 

approach has better finite sample performance (Song and Huang, 2005), but still depends on 

the normality assumption of the error. Motivated by the difference in the corrected score and 

conditional score estimating functions, Song and Huang (2005) proposed refined parametric 

correction and nonparametric correction approaches. The refined parametric correction 

estimator has comparable finite sample performance as the conditional score estimator. 

While the literature of proportional hazards regression with covariate measurement error is 

rich, to our knowledge, existing approaches require either knowledge of the measurement 

error standard deviation, repeated error-prone measurements, longitudinal error-prone 

measurements, or a validation set. Such information may not be available in practice.

Instead, instrumental variables may be observed in a subset of the sample. Instrumental 

variables are variables correlated with X, independent of the measurement error, and 

independent of the outcome given the covariates (Carroll et al., 2006, chapter 6; Stock and 

Watson, 2010, chapter 12). They are widely used in econometrics when the covariates are 

correlated with disturbance due to omitted variables, errors-in-variables, or simultaneous 

causality (Stock and Watson, 2010, chapter 12). Standard approaches that ignore the 

correlation between the covariates and disturbance usually lead to inconsistent estimators. 

Instrumental variables are used to obtain consistent estimators of the regression coefficients 

under this situation. Here we consider the case when the instrumental variables are observed 

in a subset of the sample. An example is AIDS clinical Trials Group (ACTG) 175, a 

randomized trial to compare zidovudine alone, ziduvudine plus didanosine, zidovudine plus 

zalcitabine, or didanosine alone in HIV-infected subjects on the basis of time to progression 

to AIDS or death (Hammer et al., 1996). It is of interested to assess the effect of treatments 

on survival time adjusted for baseline CD4 counts X. The closest CD4 measurement within 

one week before randomization was taken as the baseline CD4 measurements. It is well 

known that observed CD4 counts are contaminated by substantial measurement error. 

Among the 2174 randomized patients with at least one baseline CD4 measurements, there 

were no replicated baseline CD4 measurements on the same day. However, 989 patients had 

at least one CD4 measurement between one to three weeks prior to randomization. Since the 

underlying true CD4 counts might change over time, these CD4 measurements were not 

simple replication of baseline CD4 counts. But they may be used as instrumental variables. 

Figure 1 shows the scatter plot and a Loess smooth of log CD4 counts within one to three 

weeks versus one week before randomization. The logarithmic transformation was applied 
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to CD4 counts to achieve approximate constant variance. The Loess curve indicates a 

possible nonlinear relationship between log CD4 counts during these two time periods.

Instrumental variables have been used in literature to deal with measurement error when 

there are no replicates or validation datasets (Carroll et al., 2006, chapter 6), mostly based on 

a parametric model between the instrumental variables and the covariates. But it may not be 

easy to identify the relationship between the instrumental variables and the covariates when 

the covariates are measured with error. Carroll et al. (2004) relaxed the parametric model 

assumption and adopted a varying coefficient model that is linear in X. The linearity 

assumption may still be too restricted as indicated in Figure 1. In this paper, we adopt a 

more general nonparametric model for the instrumental variables. The instrumental variables 

may be observed only in a subsample as in the ACTG 175 study. As in Huang and Wang 

(2001, 2006), we assume a functional measurement error model with no specification on the 

error distribution. We develop novel nonparametric correction methods under this general 

framework. The methods will have broader applications than those described by Huang and 

Wang (2006) due to the flexibility of the instrumental variable model.

The paper is organized as follows. In Section 2, we give the model definition. We develop a 

simple nonparametric correction estimator in Section 3 and propose an improved 

generalized methods of moments nonparametric correction estimator in Section 4. The 

asymptotic properties are derived with the proofs given in the Appendix. The performance 

of the estimators is assessed by simulations in Section 5 and illustrated by an application in 

Section 6. The paper concludes with a discussion in Section 7.

2. MODEL DEFINITION

Let T denote the survival time and C the censoring time. The observed survival data are V = 

min(T, C) and Δ = I(T ≤ C), where I(·) is the indicator function. Let X denote a vector of p 

covariates that can be measured with error and Z denote a vector of q accurately measured 

covariates. The hazard of failure depends on covariates X and Z through the proportional 

hazard model

where λ0(t) is an unspecified baseline hazard function, and (β0, γ0) are the regression 

parameters. We assume that the survival time T is independent of the censoring time C given 

(X, Z).

Suppose that the true value of X is not observable. Only an error contaminated measurement 

W is available, which satisfies the classical measurement error model
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where e denotes the additive measurement error with E(e) = 0, and X and e are independent. 

In addition, measurements are available on an instrumental variable R in a subset of subjects 

such that

(1)

where g(·) is an unknown function, and ε is a set of unspecified random variables that are 

independent of (T, C) given (X, Z) and independent of e. This includes as special cases the 

replicates R = X + ε, linear instrument R = a0 + a1X + ε, varying coefficient instrument R = 

a0(Z)+a1(Z)+ ε (Carroll et al., 2004), and nonparametric instrument R = g*(X, Z) + ε, where 

g*(X, Z) is an unspecified function of (X, Z). The instrumental variable R may depend on 

both X and Z. It may also depend on other variables as included in ε, but R and (T, C) are 

independent given (X, Z). The dimension s of R should satisfy s ≥ p to ensure identifiability. 

For simplicity, we assume s = p. An extension to s > p is discussed in Section 7. Assume 

that the errors e and ε are independent of (T, C, X, Z) and each other. Note that no other 

assumptions are placed on X, e, ε and the function g(·). Let η = I(R is observed) be the 

indicator of whether the instrument variable is observed. Assume η is independent of {T, C, 

X, Z, e, ε}.

Suppose {Ti, Ci, Vi, Δi, Xi, Wi, Zi, ei, εi, ηi} are independent and identically distributed 

samples of {T, C, V, Δ, X, W, Z, e, ε, η} and the observed data set is {(Vi, Δi, ηi, Wi, ηiRi, 

Zi) : i = 1, …, n}. For brevity of notations, we may drop the subscript i throughout the paper 

when there is no confusion. We focus on estimating the regression parameters 

.

3. SIMPLE NONPARAMETRIC CORRECTION

Huang and Wang (2000, 2006) proposed nonparametric correction estimation based on (V, 

Δ, W). The essential idea is to correct the naive estimating function such that the bias is 

removed. However, their approach requires replicated measurements on W or a linear 

instrument variable, and thus cannot be used directly in our case. Alternatively, using the 

instrumental variable R, we may develop a nonparametric correction estimator in the same 

spirit.

Let θ = (βT, γT)T, Ni(t) = I(Vi ≤ t, Δi = 1) be the counting process of failures, and Yi(t) = I(Vi 

≥ t) the at risk process. For any scalar, vector or matrix Hi, let Fi(t, θ; H, X) = Yi(t)Hi 

exp(βTXi + γTZi). Here Hi can be either fixed or random. Note that Fi also depends on (Zi, Vi, 

Δi), which are dropped in the notation for simplicity. Let 

 and G(t, θ; H, X) = E{Fi(t, θ; H, X)}. Note that G(t, 

θ; H, X) is a fixed function of t and θ.

The naive estimating function replaces the true covariates X by W in the partial likelihood 

function and can be written as
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at a given time L. This estimating function is biased (Prentice, 1982), which is essentially 

due to the “bias” of the ratio term Ĝ(t, θ; (WT, ZT)T, W)/Ĝ(t, θ; 1, W) from Ĝ(t, θ; (XT, ZT)T, 

X)/Ĝ(t, θ; 1, X) when replacing X by W. When the measurement error is normal with known 

variance, Nakamura (1992) proposed a corrected score approach which added a correction 

term to compensate the bias. In the same spirit, Huang and Wang (2000) took an 

nonparametric correction when replications of Wi were available. The key idea of Huang 

and Wang (2000) was to substitute different replicates for W in the ratio term. Due to the 

independence of the errors in the replicates, the bias of the ratio term is corrected. The 

estimating function can be represented by ÛNR(θ; ( , ZT)T, W) with 

W* being another replicate of W and averaging over all possible combinations of replicates. 

We do not have a replicated W*, but we may consider replacing W* by R in ÛNR(θ; 

( , ZT)T, W).

As R is only observed on a subset of the subjects, we consider

(2)

Note that ÛC(θ) converges to

(3)

When R = X, U0(θ) is the limit of the standard partial likelihood estimating function. Let 

(t) = {Ni(u), Yi(u), Xi, Wi, Ri, Zi : u ≤ t}. By lemma 1 and the independence of η from (V, Δ, 

W, R, Z), with iterated expectations,

In addition, we have , G(t, θ; η, W) = 

E(η)E{exp(βTe)}G(t, θ; 1, X),and
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Hence it can be easily seen that U0(θ) = 0. Therefore ÛC(θ; (RT, ZT)T, W) is asymptotically 

unbiased and (2) is a simple nonparametric correction equation.

Let

(4)

We derive the asymptotic properties of the simple nonparametric correction estimator using 

empirical process theory.

Theorem 1

Under conditions A–E given in the Appendix, a solution θ̃ = (β̃T, γ̃T)T of (2) exists and 

converges to θ0 almost surely. Further, n1/2(θ̃ − θ0) is asymptotically normal with mean zero 

and variance , where

and

A consistent estimator of the variance can be obtained by substituting θ̃ for θ0 and the 

empirical means for the population means in the variance formula.

Remark

Condition E requires Γ(θ0) to be nonsingular. It can be easily shown that Γ(θ0) = 0 when R is 

independent of X. Thus R and X should be dependent. But R and X may have a nonlinear 

association, for example, R = X2 + ε with X having a distribution symmetric around zero and 

ε independent of X, although the linear correlation is zero. This is due to the nonlinearity of 

the model, which is different from the linear instrumental model in econometrics (Stock and 

Watson, 2010, chapter 12).

To better understand what factors affect the variance of θ̃, we expand VC in Theorem 1 

although it is not needed for estimation of VC. With some algebra, it can be shown that Γ(θ0) 

= Γ*(θ0), where Γ*(θ0) is Γ(θ0) with W replaced by X, that is,
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Further,

(5)

where

with

It can be easily seen that VI is the variance of θ̃ when var(e) = 0, and VA is a nonnegative 

definite matrix. Expression (5) indicates that the efficiency of θ̃ improves with the increase 

of Pr(η = 1) = E(η) or the decrease of E{exp(2βe)}/E2{exp(βTe)}. When the error e is 

normal, E{exp(2βTe)}/E2{exp(βTe)} = exp{3βTvar(e)β/2} is an increasing function of 

var(e). In the special case that R = g*(X, Z) + ε with ε independent with (V, Δ, X, Z, e), it can 

be shown that Vc increases with the increase of var(ε). Although the variance VC may 

depend on the variance of e and other unknown quantities, estimation of VC does not require 

estimating these quantities.

A drawback of the simple nonparametric approach is that it only uses the calibration 

subsample ΩC = {(Vi, Δi, Zi, Wi, Ri) : ηi = 1} where both the error contaminated variable Wi 

and the instrumental variable Ri are observed. The information in the non-calibration 

subsample ΩC̄ = {(Vi, Δi, Zi, Wi) : ηi = 0} with missing Ri is not used. When the calibration 

subsample is small compared to the sample size, it can be very inefficient. It is expected that 

the efficiency can be improved if we could use the whole sample Ω = ΩC ∩ΩC̄. This 

motivates us to develop an improved estimator.

4. GMM NONPARAMETRIC CORRECTION

Note that the nonparametric correction based on Wi only uses the whole sample (Song and 

Huang, 2005; Huang and Wang, 2006). The corresponding estimating equation can be 

written as
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(6)

where

However, to estimate θ based on (6), the correction term c(θ) needs to be estimated by 

replicated measurements on Wi, which is not available in our case. Note that, if θ is known, 

we may estimate c0 = c(θ0) based on the first p-equations of (6). As we have already 

obtained an estimate θ̃ based on (2), we may plug it in (6) and obtain an estimator of c0 

based on the calibration subsample ΩC,

where Ê is the operator for empirical mean such that .

To utilize the information on the whole sample, we propose an improved nonparametric 

correction estimator θ̂(A) by minimizing the quadratic form

where A is a (2p + q) × (2p + q) nonzero semi-positive definite matrix and

The (2p + q) dimensional vector Û(θ; ĉ) contains the estimating functions in (2) and (6), 

which include the information on the whole sample Ω. Since the number of estimating 

functions in Û(θ; ĉ) is larger than the number of parameters (p + q), there is generally no 

estimate for Û(θ; ĉ) = 0. To derive an estimator, the quadratic form Q(θ; ĉ, A) is minimized 

instead. The derivation of the improved estimator has adopted similar techniques for the 

generalized methods of moments (GMM) (Hansen, 1982), and thus we call it the GMM 

nonparametric correction estimator. The GMM is a general methodology in econometrics 

literature (e.g. Cragg, 1983; Newey 1988; Newey and McFadden, 1994; Stock and Wright, 

2000). It combines economic data with population moment conditions to produce estimators 
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of parameters in statistical models. It is an extension of the method of moments to allow 

more moment conditions than the parameters to estimate. The GMM estimator is obtained 

by minimizing a quadratic form in the sample moments conditions.

The matrix A plays a role similar to weights for the estimating functions. The estimator will 

be different with a different choice of the matrix A. Our goal is to find an optimal matrix 

Aopt such that the estimator θ̂(Aopt) is most efficient among such estimators.

For this purpose, we first derive the asymptotic properties of θ̂(A). Let Is denote an s-

dimensional identity matrix.

Theorem 2

Under conditions A–H, θ̂(A) is a consistent estimator of θ0. Further, n1/2(θ̂(A) − θ0) is 

asymptotically normal with mean zero and variance

where

A consistent estimator of the variance can be obtained by substituting θ̂(A) for θ0 and the 

empirical means for the population means in the variance formula.

To find the optimal matrix Aopt, we minimize the variance V(A) of the estimator θ̂(A). This 

can be achieved by simple matrix algebra by analogy to the generalized methods of 

moments (Newey and McFadden, 1994) and the result is given in the following theorem.

Theorem 3

Under conditions A–H, the most efficient estimator of θ̂(A) is achieved at Aopt = B−1(θ0) 

with the variance V(Aopt) = {DT(θ0)B−1D(θ0)}−1.

Song and Wang Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The GMM estimator θ̂(Aopt) is generally more efficient than the simple estimator θ̃ This can 

be easily seen when there is no Z is the model. Specifically, without Z, noting that 

, the simple nonparametric correction estimator 

minimizes Q(θ, ĉ, Ac) with Ac = diag(Ip, 0q×q), where 0q×q is a q × q zero matrix. In 

practice, Aopt can be approximated by Âopt = B̃−1 with B̃ = n−1 Σ{φ̂
i(θ̃) − Êφ̂(θ̃)}⊗2, where 

φ̂
i(θ̃) is obtained by substituting the unknown quantities in φi(θ̃) by their empirical estimates. 

The variance of θ̂(Âopt) can be estimated by {D̂TÂopt D̂}−1 D̂T Âopt B̂ ÂoptD̂{D̂T Âopt D̂}−1, 

where D̂ = −∂Û(θ̂(Âopt))/∂θT, and B̂ = Σ{φ̂
i(θ̂(Aopt)) − Êφ̂(θ̂(Aopt))}⊗2.

Remark

There could be a few variations of the above estimator by varying the data set used in 

estimating the correction term c0 and the data set in the objective function Q(·) 

corresponding to the covariates W. Let Θc denote the former and ΘQ the latter. Both data 

sets could be elements of {Ω, ΩC, ΩC̄} as long as Θc ≠ ΘQ. Our numerical studies indicate 

that the performance of the GMM estimator seems similar for various choices of Θc and ΘQ 

except in some extreme cases, such as a very small sample calibration subsample or non-

calibration subsample. We use Θc = ΘC and ΘQ = Ω in our illustration.

5. SIMULATION STUDIES

Simulation studies were conducted to evaluate the performance of the estimators. First, we 

considered the case of a single covariate X, which was generated from a standard normal 

distribution. The instrumental variable was set as R = 0.5X2 + 2X +1+0.5ε1 +Xε1 +ε2, where 

ε1 was generated from a standard normal distribution correlated with X with correlation −0.3 

which may denote a variable that was not in the proportional hazard model, and ε2 from a 

normal distribution independent of X with mean 0 and variance 0.4 which may denote 

independent noise. The error e was generated from a normal or a skewed bimodal mixture of 

two normals as described in Davidian and Gallant (1993, mixing proportion p = 0.3 and 

distance between the means equal to sep = 2 times standard deviation) with mean 0 and 

variance σ2 = 0.1 or 0.2. The true Cox model coefficient was taken to be β0 = −1. The 

baseline hazard λ0(t) = exp{−2}t−0.5. The censoring time was generated from a uniform 

distribution on [0,40], leading to a censoring rate of about 37%. The proportion of 

calibration subsample Pr(η = 1) was set to 0.3, 0.5 or 0.7.

We carried out simulations for n = 500 and 2000. In each scenario, 1000 Monte Carlo data 

sets were simulated. For each data set, we fitted the model using (i) the “ideal” approach, in 

which the true values of X were used; (ii) the naive approach, in which W substituted for X 

in the partial likelihood estimating equation; (iii) the simple nonparametric correction 

estimator θ̃; (iv) the GMM nonparametric correction estimator θ̂ (Âopt). For each estimator, 

the 95% Wald confidence interval was constructed.

The results are shown in tables 1 and 2 respectively for the normal and the mixture normal 

error models. The naive estimator is biased with a coverage probability well below the 

nominal level. The performance gets worse with the sample size growing or the error 

variance increasing. The nonparametric correction estimators have negligible bias close to 
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the unachievable “ideal” estimator and the coverage probabilities are close to the nominal 

level. Their performance improves when the sample size increases or the error variance 

decreases. The GMM estimator is more efficient than the simple estimator, especially when 

Pr(η = 1) is small. For either correction approach, the standard deviations are close to the 

standard errors, and the efficiency improves with the increase of the proportion of 

calibration subsample or the decrease of the magnitude of measurement error.

Next we added a covariate Z = ε1 to the proportional hazards model with γ0 = −1. The 

censoring rate was 38%. The results for the normal error model with σ2 = 0.1 and var(ε2) = 

0.4 are shown in Table 3. We observe similar results for estimation of β0 as above. The 

estimation of γ0 shows similar pattern. Note that the naive estimator of γ0 also shows some 

bias and the coverage probability is only 83% for n = 500 and 52% for n = 2000. This 

indicates that estimation of the coefficient of the error free covariate Z can be affected by the 

measurement error on X as well.

The relationship between R and X may impact the performance of the estimators as well. We 

conducted simulations in the case of one covariate with normal error as described above 

with different instrumental variables. We considered two cases when R and X were non-

linearly associated with zero linear correlation, R = X2 + ε and R = X4 + ε, and compared 

them to the case when R = X + ε, where ε was normal and independent of X with mean 0 and 

variance 0.2. The results for σ2 = 0.1, Pr(η = 1) = 0.5 and n = 2000 are shown in Table 4. 

The nonparametric corrections estimators still work when R = X2 + ε or X4 + ε, but the 

standard errors are larger than when W = X + ε. The performance is better when R = X2 + ε 

than when R = X4 + ε.

We also conducted simulations to assess the sensitivity of nonparametric correction 

approaches to the assumption that R is independent of (T, C) given X and Z. In the single 

covariate model described above, the proportional hazards model can be rewritten as log(T) 

= a + 2X + 2ε*, where a is a constant and ε* is an extreme-value-distributed random variable 

with variance π2/6 and independent of X. We replaced v the instrumental variable by 

 so that R and T are correlated given X if b ≠ 0. We show the results for 

b = 0, 0.5, 1, 2 with normal error, σ2 = 0.1, Pr(η = 1) = 0.5 and n = 500 and 1000 in Table 5. 

The nonparametric correction estimators are not consistent in this case. Their performance 

tends to get worse with increasing b, which represents an increasing association between R 

and T given X. The bias may be large if violation of conditional independence is not small.

6. APPLICATION

We applied the approaches to the AIDS Clinical Trial Group (ACTG) 175 study. Our aim 

was to evaluate the effect of treatments for the time to AIDS or death adjusted for baseline 

CD4 counts. The primary analysis found ziduvudine alone to be inferior to the other three 

therapies; thus, further investigations focused on two treatment groups, zidovudine alone 

and the combination of the other three.

This dataset has been analyzed previously. By definition, baseline CD4 counts should be 

true CD4 counts at randomization. However, CD4 counts were only measured for less than 
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50% of the patients on randomization day. Huang and Wang (2000) assumed the CD4 

measurements within three weeks of randomization were replicates of the underlying 

baseline CD4 counts. As the underlying CD4 counts may change over time during the three 

weeks period, these CD4 measurements may not be simple replicates of the baseline CD4 

counts. We took an alternative strategy here. Assuming the CD4 counts is relatively stable 

within a short period, say one week, the closest measurement W within one week before 

randomization was taken as the baseline CD4 measurement. The closest measurement R 

between one to three weeks before randomization was used as an instrumental variable. 

Among the 2174 subjects with baseline CD4 measurement, the instrumental variable was 

observed among 989 patients. The median follow up time was 33 months. A total of 275 

events was observed.

A proportional hazards model was adopted with two covariates, the true baseline X = 

log(CD4) and the treatment indicator Z = I(treatment ≠ ziduvudine). The logarithm 

transformation was applied to the CD4 counts to achieve approximate constant variance. 

The same transformation was applied on the observed CD4 counts W and R. We first 

examine whether R is an appropriate instrumental variable. It is reasonable to assume that R 

is independent of the measurement error at baseline. Under this assumption, Figure 1 

indicates that R is correlated with X. To be an instrumental variable, R needs to be 

independent of the time to AIDS or death given X and Z. This assumption seems to be 

appropriate based on our understanding of CD4 counts and AIDS risk, but cannot be tested 

from the data (Stock and Watson, 2010, chapter 12). Note that the assumption that R is a 

instrumental variable is weaker than R and W are replicates.

We estimated the regression coefficients using the naive, simple and GMM non-parametric 

correction approaches. The results are shown in Table 4. Both baseline CD4 and treatment 

are significant. The nonparametric correction estimates show stronger effects than the naive 

estimates, and the GMM estimates have smaller estimated standard errors than the simple 

estimates.

7. DISCUSSION

We have proposed nonparametric correction estimators for the proportional hazards model 

with error-contaminated covariates. The estimators are useful when no replicated 

observations are available on the error-prong covariates while observations available on 

instrumental variables.

For simplicity, we only consider the case when the dimension of the instrumental variables s 

equals the dimension p of the error-prone covariates. In the case of s > p, θ̃ may be obtained 

by minimizing the quadratic form  and the optimal AC can be obtained by analogy 

to Aopt. The GMM estimator θ̂; can then be derived similarly as in section 4.

The function g(·) and the variables ε are unspecified in (1), this allows great flexibility in 

adopting instrumental variables. However, the format of g(·) may affect the efficiency of the 

simple and the GMM nonparametric correction estimators. The instrumental variables need 

not be linearly correlated with X, but cannot be independent of X. The proposed methods 
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may break down if the instrumental variables are only weakly related with the underlying 

true covariates.

Our simulation studies reveal that the performance of the approaches depends on the 

magnitude of the measurement error, the sample size and the relationship between the error 

contaminated variables and the instrumental variables. When the measurement error is large, 

the methods might not work properly for small sample sizes with the possibility of 

nonconvergence and outlier estimates. This is a common issue for parametric/nonparametric 

correction approaches (Song and Huang, 2005). A possible improvement for the finite 

sample performance is to use the refined non-parametric correction technique (Song and 

Huang, 2005). The bootstrap confidence interval may work better when the measurement 

error is large (Huang and Wang, 2001).
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APPENDIX A: PROOFS

Regularity Conditions

We assume the following mild regularity conditions.

A. λ0(u) is continuous in [0, L].

B. Pr(V ≥ L) > 0.

C. E(XTX) < ∞, E{RTR < ∞, E(ZTZ) < ∞, E(eTe) < ∞.
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For a compact neighborhood (θ0) of θ0,

E [  XTX exp {2(βTX + γTZ)}]< ∞,

E [  ZTZ exp {2(βTX + γTZ)}]< ∞,

E [  RTR exp {2(βTX + γTZ)}]< ∞,

E [  exp {2(βT e)}]< ∞.

D. E(η) > 0.

E. The matrix Γ(θ0) defined in (4) is nonsingular.

F. Pr(T < C, T < L) > 0.

G. The matrix A is positive definite.

Lemma 1

Suppose Hi is a predictable random vector with respect to the filtration (t) = {Ni(u), Yi(u), 

Xi, Wi, Ri, Zi: u ≤ t}. If , then

Proof—Note that  is a martingale with 

respect to the filtration (t) as Ni(u) is independent of (Wi, Ri) given (Xi, Zi). By iterated 

expectations and the predictability of Hi,

Substituting Mi by  in the left side of the above 

equation, we have

Taking derivative with respect to t, under conditions A and C together with , 

we obtain

This completes the proof.

Proof for Theorem 1: First consider the consistency. Conditions B–D ensure G(t, θ; η) and 

G(t, θ; 1) are bounded away from zero in (θ0). Note that ÛC(θ) can be rewritten as
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(7)

Follow the extended strong law of large numbers as given in Appendix III of Andersen and 

Gill (1982), under condition C, the four empirical processes in (7) converge almost surely 

(a.s.) to their limits uniformly for t ∈ (0, L) and θ ∈ (θ0). By the chain law, ÛC(θ) 

converges uniformly a.s. for θ ∈ (θ0) to

By Lemma 1 and the independence of η from (V, Δ, X, Z), we have

It follows that UC(θ0) = 0. Similarly it can be shown that ∂ÛC(θ)/∂θ converges uniformly a.s. 

to Γη(θ) = E(η)Γ(θ) for θ ∈ (θ0). Under Condition E, θ0 is the unique zero crossing for 

UC(θ) in a neighborhood of θ0. The consistency of θ̃ then follows.

Next, we show the asymptotic normality. By a Taylor expansion of ÛC(θ̃) at θ0,

where θ*̃ lies between θ0 and θ̃ Thus

With a functional Taylor expansion and straight algebra,

(8)

This, together with the uniform convergence of ∂ÛC(θ; (RT, ZT)T)/∂θT, establishes the 

asymptotic normality. One can then show the consistency of the variance estimator with 

similar arguments.
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Proof of Theorem 2: First, we consider the asymptotic properties of the estimator ĉ. Under 

condition F, . By similar arguments as for the consistency in Theorem 1, 

we have

(9)

With some simple algebra, it can be shown that

By Lemma 1, we have dE {ηN(t)} = λ0(t)E(η)G(t, θ0; 1,X) and dE {ηWN(t)} = dE [ηXN(t)] 

= λ0(t)E(η)G(t, θ0;X,X). Thus the right side of (9) equals c0. With a functional Taylor 

expansion and some algebra, it can be shown that

(10)

Applying a Taylor expansion at θ0, together with (8), we have

(11)

A combination of (10) and (11) gives

(12)

Now we consider the asymptotic properties of θ̂ (A). By the consistency of ĉ and empirical 

process theory, Û (θ; ĉ) converges uniformly a.s. to

Note that U(θ0) = 0. Under condition C, θ0 is the unique solution to U(p+1;p+2q)(θ) = 0, 

where U(p+1;p+2q)(θ) denote the p+1 to p+2q elements of U(θ) (Huang and Wang, 2000). 

Thus θ0 is the unique solution to U(θ) = 0 and hence the unique minimum of UTAU. The 

consistency of θ̂(A) then follows.

Next we consider the asymptotic normality. Note that Û (θ; c) is linear in c, and
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(13)

where ,

and 0p×p is a p × p zero matrix. It can be shown by a functional Taylor expansion that

Substituting this and (12) into (13), we have

Since θ̂ (A) is the minimum of Q(θ; ĉ, A),

By a Taylor expansion on ÛT(θ̂(A); ĉ) at θ0, we have

where θ*̂(A) lies between θ̂(A) and θ0. Thus

It can be shown that −∂Û (θ; ĉ)/∂αT converges uniformly a.s. to D(θ). Therefore,
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where DT(θ0)AD(θ0) is positive definite under conditions D, E and G. The asymptotic 

normality follows from the central limit theorem and the Slutsky Theorem.
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Figure 1. 
Scatter plot of log(CD4) within one to three weeks versus one week before randomization. 

The curve was obtained by Loess smooth.
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Table 6

Results for ACTG 175 data.

logCD4 (β) Treatment (γ)

Est SE Est SE

Naive −1.465 0.162 −0.474 0.129

SNC −2.359 0.398 −0.618 0.193

INC −2.562 0.358 −0.581 0.133

SNC, simple nonparametric correction; INC, GMM nonparametric correction.
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