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Summary

We consider estimation of the causal effect of a binary treatment on an outcome, conditionally on 

covariates, from observational studies or natural experiments in which there is a binary instrument 

for treatment. We describe a doubly robust, locally efficient estimator of the parameters indexing a 

model for the local average treatment effect conditionally on covariates V when randomization of 

the instrument is only true conditionally on a high dimensional vector of covariates X, possibly 

bigger than V. We discuss the surprising result that inference is identical to inference for the 

parameters of a model for an additive treatment effect on the treated conditionally on V that 

assumes no treatment–instrument interaction. We illustrate our methods with the estimation of the 

local average effect of participating in 401(k) retirement programs on savings by using data from 

the US Census Bureau's 1991 Survey of Income and Program Participation.
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1. Introduction

Economists and biostatisticians have long been concerned with the problem of how to 

estimate the causal effect of a treatment on an outcome of interest, and how this effect is 

modified by baseline covariates. Estimation of average treatment effects is often facilitated 

by the unconfoundedness assumption that a vector of measured covariates suffices to control 

for all confounding of the treatment–outcome relationship. When this assumption is thought 

implausible, but instrumental variables (IVs) satisfying the monotonicity assumption given 

in Section 2.1 are available, it is possible to estimate the so-called local average treatment 

effect contrasts. These are treatment effect contrasts for the subpopulation of compliers, i.e. 

subjects for whom treatment and instrument agree. Beginning with the seminal paper of 
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Imbens and Angrist (1994), non-parametric and semiparametric IV methods for estimation 

of local average treatment effects have received considerable attention in the literature 

(Angrist and Imbens, 1995; Angrist et al., 1996, 2000; Abadie, 2002, 2003; Abadie et al., 

2002; Froelich, 2007; Tan, 2006a, 2010; Kasy, 2009, Cheng et al., 2009a, b).

In this paper we consider estimation of models for the dependence of local average 

treatment effects on baseline covariates V. We assume that the treatment and instrument are 

binary and that the outcome support is either the real line, the non-negative real line or the 

non-negative integers. Like Abadie (2003), Tan (2006a), Froelich (2007), and Uysal (2011), 

we consider settings in which conditioning on a set of covariates X is necessary for the 

identifying IV assumptions to be valid. These settings are important because in practice the 

instrument may itself be confounded, and conditioning on covariates X may be required to 

make the key condition of instrument randomization plausible (Abadie, 2003). We extend 

this previous work to allow X to be larger than V. This is an important contribution of our 

methodology, providing desirable flexibility in the definition of the target estimand as often 

investigators wish to report the treatment effect at low aggregation levels. Specifically, the 

covariate vector X is the set of variables that must be conditioned on for the instrument–

outcome and instrument–treatment relationships to be unconfounded within levels of 

covariates; however, local average treatment effects conditional on V, a subset of X, may be 

the relevant contrasts to help guide decision makers who, because of limited resources, will 

have access only to information about the subset V of X. For example, consider a study 

conducted in a sophisticated health maintenance organization. Suppose that the instrument is 

the therapy prescribed by the physician, the treatment is the therapy actually followed by the 

patient and X is a vector of measured risk factors for the outcome that were used by the 

health maintenance organization physician to decide on the therapy prescription. The 

covariates X could include the results of expensive tests administered to patients at high risk 

for disease, such as magnetic resonance angiograms, that would not be available to 

community physicians. Thus, community physicians would need to decide what therapy to 

prescribe on the basis of just the subset V of X that encodes the data that are available to 

them. Estimation of effect modification of the local average treatment effects by V is then 

critical to enable community physicians to make informed treatment decisions.

The literature on local average treatment effects has primarily focused on the estimation of 

the local average treatment effect on the additive scale, LATE, defined as the difference in 

means of the two potential outcomes (under treatment and under no treatment) in the 

subpopulation of compliers. Identification of the multiplicative local average treatment 

effect contrast, MLATE, i.e. the ratio of the potential outcome means among compliers, 

follows trivially from results of Abadie (2003) but, to our knowledge, estimators of 

parametric specifications for the dependence of MLATE on covariates has not been 

discussed in the literature. In this paper we consider estimation of models for LATE and 

MLATE as functions of V.

When the dimension of the covariate vector X is large, as will often be required in practice 

for the assumption of a conditionally unconfounded instrument to hold, non-parametric 

estimation of LATE (Froelich, 2007), of MLATE and of parametric specifications for the 

dependence of these contrasts on covariates V is not feasible, owing to the curse of 
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dimensionality. When V is null, Tan (2006a) and Uysal (2011) derived estimators of LATE 

that are consistent provided that either two models for two specific conditional means given 

the instrument and X or a model for the instrument propensity score (the probability that the 

instrument is equal to 1 conditionally on the covariates X) are correctly specified. In this 

paper we derive a new class of doubly robust estimators of parametric specifications for the 

dependence of LATE or MLATE on covariates V which remain consistent and 

asymptotically normal provided that either the propensity score model or a model for 

another conditional mean given the instrument and X is correctly specified. When V is non-

null, the conditional mean models that are required by our doubly robust estimator are 

guaranteed to cohere with a parametric specification for the dependence of the local average 

treatment effect on V. Extensions of the doubly robust methods that were proposed by Tan 

(2006a) and Uysal (2011) to the case V non-null do not have this property.

In Section 2 we introduce the notation, models and assumptions. We also review existing 

non-parametric and semiparametric methods for estimating local average treatment effects 

with instruments confounded by X. In Section 3 we describe the doubly robust estimating 

procedures proposed and discuss efficiency properties and estimation under incorrect 

specifications for the dependence of LATE or MLATE on V. In Section 4 we explain a 

surprising result that was earlier noted in the absence of covariates X by Clarke and 

Windmeijer (2010): inference under our models for the local average treatment effects is 

identical to inference under models proposed by Robins (1994) and Tan (2010) for a very 

different causal effect measure, namely the treatment effect on the treated. In Section 5 we 

reanalyse the data used in Póterba et al. (1995) and Abadie (2003) with the goal of 

estimating the causal effect of participating in 401(k) retirement programmes on savings by 

using eligibility for a 401(k) programme as a binary instrument. Section 6 concludes the 

paper.

2. Background and notation

Suppose that we observe a random sample of size n of the vector O = (Z, D, X, Y), where D 

is a binary variable denoting the presence (D = 1) or the absence (D = 0) of a treatment 

whose effect on the outcome Y we wish to investigate, X is a vector of baseline covariates 

and Z is a binary IV. Define Dz to be the potential treatment status that would be observed if 

Z were externally set to z, and define Ydz to be the potential outcome that would be observed 

if D were externally set to d and Z to z, with d, z = 0, 1. Following Angrist et al. (1996), we 

say a subject is a complier if D1 > D0, an always-taker if D1 = D0 = 1, a never-taker if D1 = 

D0 = 0, and a defier if D1 < D0.

2.1. Assumptions and identification

Following Abadie (2003), Tan (2006a), Froelich (2007), and Uysal (2011), we make the 

following assumptions:

a. conditional unconfoundedness of the instrument, i.e. (Y00, Y01, Y10, Y11, D0, D1) is 

conditionally independent of Z given X;

b. exclusion of the instrument, i.e. P(Y1d = Y0d) = 1 for d ∈ {0, 1};
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c. common support of the instrument, i.e. 0 < P(Z = 1|X) < 1 with probability 1;

d. instrumentation, i.e. P(D1 = 1|V) ≠ P(D0 = 1|V) with probability 1;

e. monotonicity, i.e. P(D1 ⩾ D0) = 1;

f. consistency, i.e. Y = DY1 + (1 − D)Y0 and D = ZD1 + (1 − Z)D0, where Yd ≡ Y1d = 

Y0d by assumption (b).

When assumptions (a)–(d) and (f) hold, Z is said to be an IV for the effect of D on Y. 

Assumption (a) says that, within levels of X, Z is as good as randomly assigned. Assumption 

(b) postulates that the effect of Z on the outcome is entirely mediated by D. It implies that 

Ydz is independent of z, and therefore we write Yd throughout. Assumption (c) requires that 

there is a positive probability of receiving each instrument value within each level of X or, 

equivalently, that the support of X is the same among those with Z = 1 and Z = 0. 

Assumption (e) excludes the existence of defiers. Assumption (f) states that the observed 

outcome is equal to the potential outcome evaluated at the observed treatment value, and 

that the observed treatment is equal to the potential treatment evaluated at the observed 

instrument value. Finally, under assumption (e), assumption (d) is the same as P(D1 = 1|V) > 

P(D0 = 1|V) which, in turn, under (a) and (f) it is the same as P(D = 1|Z = 1, V) > P(D = 1|Z 

= 0, V). So it is tantamount to the assumption of positive correlation between Z and D. 

Abadie (2003) noted that assumptions (a)–(f) are conditional versions of the assumptions 

that were made by Angrist et al. (1996), and Vytlacil (2002) noted that they are equivalent 

to the assumptions imposed by a non-parametric selection model (Heckman, 1976) in which 

treatment is seen as an indicator of whether a latent index, e.g. expected treatment utility, 

has crossed a particular threshold.

Abadie (2003) showed that under assumptions (a)–(f) E(Y1|D1 > D0, V) and E(Y0|D1 > D0, 

V) are identified, and consequently so is

Under the additional assumption

(g) non-null complier mean under control, i.e. E (Y0 | D1 > D0, V) ≠ 0 with 

probability 1, the contrast

is well defined with probability 1 and is identified.

For conciseness, we shall refer to assumptions (a)–(f) if referring to inference about LATE(·) 

or (a)–(g) if referring to inference about MLATE(·) as the IV assumptions.

The curves LATE(v) and MLATE(v) describe how treatment effects in the complier 

subpopulation vary with values v of V, the first quantifying the effects on an additive scale 
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and the second on a multiplicative scale. Theorem 1 of Tan (2006a) implies that under the 

IV assumptions LATE(v) is equal to the conditional version of the IV estimand,

(1)

and MLATE(v) is

(2)

(see also theorem 3.1 of Abadie, (2003)). The M in front of the functional MIV is a reminder 

that this functional identifies a multiplicative treatment effect. The functionals IV(·) and 

MIV(·) are the target of inference when, as we shall assume throughout, the IV assumptions 

are valid and interest is in estimation of LATE(·) and MLATE(·).

2.2. Review of existing estimators

The estimators that we shall propose in Section 3 can accommodate any setting in which V 
is a subset of X. Previous proposals for estimators of LATE have generally cosidered only 

the special cases in which V is null or V is equal to X; to our knowledge the case in which V 
is a strict, non-empty subset of X has not been addressed in the literature.

For the special case in which V is null, Froelich (2007) studied the asymptotic distribution 

theory of estimators of the IV functional that rely on two distinct non-parametric estimation 

methods for the four curves E(Y|Z = z, X = ·) and E(D|Z = z, X = ·), z = 0, 1, namely local 

polynomial regression and non-parametric series regression. His estimators, however, suffer 

from the curse of dimensionality. If the dimension of X is large, as will be so in many 

applications to render the unconfoundedness assumption plausible, the IV functional will not 

in general be estimable in moderately sized samples, essentially because no two units will 

have values of X that are sufficiently close to each other to allow for the borrowing of 

information that is needed for the smoothing implicit in these methods. Again, for the 

special case in which V is null, Tan (2006a) considered estimating the IV functional under 

parametric models for each of the conditional means E(Y|D = d, Z = z, X = ·) and E(D|Z = z, 

X = ·), d, z = 0, 1. The consistency of the estimator of the IV functional then hinges on the 

correct specification of both of these models. See Section 3 for a contrast between these 

models and the models that must be specified to carry out the doubly robust estimation 

approach that is proposed in this paper.

Neither Froelich (2007) nor Tan (2006a) addressed the case when V is a non-empty, strict 

subset of X, but further difficulties arise for each of their strategies in this case. Extending 

Froelich's approach to estimate the functionals IV(V) and MIV(V) non-parametrically not 

only requires smooth estimators of the aforementioned conditional means, but also of the 

conditional means given V of the differences that are involved in the numerators and 

denominators of these functionals. One possible extension of Tan's (2006a) fully parametric 
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approach along the lines proposed there for the case X = V, would also require specifying 

parametric models for the conditional means given V in the numerator and denominator of 

the IV(V) functional. As noted by Abadie (2003), this approach will generally produce 

parametric specifications for the LATE(·) and MLATE(·) curves that are difficult to 

interpret. For example, linear specifications for each of the four conditional-on-V mean 

functions involved in the IV(V) functional do not imply a linear model for LATE(V). An 

alternative strategy that avoids this particular difficulty would be to use the approach of Tan 

(2010); however that approach involves specifying working models that may not cohere 

with the assumed model for LATE(·).

For the special case in which V is null, and with the goal of reducing sensitivity to model 

misspecification, Tan (2006a) and Uysal (2011) described doubly robust estimators of the 

IV functional whose consistency depends on correct parametric specification either of the 

instrument propensity score or, in the case of Uysal, of E(Y|Z = z, X = ·) and E(D|Z = z, X = 

·), z = 0, 1, and, in the case of Tan, of E(Y|D = d, Z = z, X = ·) and E(D|Z = z, X = ·), d, z = 0, 

1.

The special case of V = X was considered by Abadie (2003), Tan (2006a), Hirano et al. 

(2000), and Little and Yau (1998). Tan's (2006a) estimator of LATE(X) again requires 

parametric specifications of the four conditional expectations that are involved in the IV(X) 

functional, which results in a specification of LATE(X) that may be difficult to interpret. 

Hirano et al. (2000) and Little and Yau (1998) specified fully parametric likelihood 

functions for the observed data and unobserved compliance types (complier, defier, always-

taker, never-taker) and used Bayesian methods to estimate the posterior distribution of Y 

conditionally on compliance type, treatment and instrument. Abadie (2003) proposed an 

estimating procedure in which models for E(Yd|D1 > D0, X = ·), d = 0, 1 ensure that the 

resulting model for LATE(X) is easily interpretable. His method hinges on consistent 

estimation of the instrument propensity score P(Z = 1|X = ·). Abadie considered estimation 

of the propensity score under a parametric model as well as by nonparametric power series 

methods. When X is high dimensional and the sample size is moderate, non-parametric 

propensity score estimation yields poorly behaved estimators of parametric specifications of 

E(Yd|D1 > D0, X = ·), d = 0, 1 owing to the curse of dimensionality.

3. New methods

In this section we describe estimation of the parameters indexing the following 

parsimonious models for LATE(V) and MLATE(V):

(3)

and

(4)
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for specified functions mj (·, ·) smooth in β, j = 1, 2. For inference under model (ℱ1 we 

assume that Y has unbounded support and for inference under model (ℱ2 we assume that Y 

has support equal to the non-negative real line or the non-negative integers.

For the special case in which V = X, Abadie (2003) also considered estimation of LATE(X) 

under a parametric specification for the curve. However, his approach estimates LATE(X) 

as the difference of the estimators of the means E(Yd|D1 > D0, X), d = 0, 1, under separate 

parametric models for each of them. We prefer to estimate LATE(X) under a model that 

parameterizes just this contrast rather than under separate models for each of the 

counterfactual means to reduce the opportunities of model misspecification.

For estimation of LATE and MLATE, i.e. when V is null, the doubly robust estimators that 

we describe in this section, like the doubly robust estimators that were proposed by Tan 

(2006a) and Uysal (2011), are consistent under a correct parametric specification of the 

propensity score curve P(Z = 1|X = ·). Like the estimators of Tan and Uysal, our estimators 

remain consistent even under incorrect specification of the propensity score curve provided 

another set of curves is correctly parameterized. Tan's approach requires modeling E(Y|Z = ·, 

D = ·, X = ·,) and E(D|Z = ·, X = ·), and Uysal's approach requires modeling E(Y|Z = ·, X = ·) 

and E(D|Z = ·, X = ·). Our approach, by contrast, requires modeling the conditional mean 

E{φ(X)|V = ·} of a user-specified function φ (X) (if V ≠ X) and the conditional expectation 

E(Hj|Z = ·, X= ·) (j = 1 if inference is about LATE and j = 2 if is about MLATE), where

and

The issue of which curves must be modeled in the doubly robust procedure, i.e. those in Tan 

(2007), Uysal (2011) or our proposal, is inconsequential when V is null. However, it is an 

important issue if V is non-empty. As shown in the supplementary Web appendix, when Y 

has unbounded support, E{φ(X)|V = ·}, E(H1|Z = ·, X = ·) and P(Z = 1|X = ·) are variation 

independent with IV(·) and, when Y has support equal to [0, ∞) or the non-negative integers, 

E{φ(X)|V = ·}, E(H2|Z = ·, X = ·) and P(Z = 1|X = ·) are variation independent with MIV(·). 

Therefore, our doubly robust procedure offers two genuine independent opportunities to 

produce consistent estimators of parametric specifications for LATE(·) or MLATE(·), as 

neither the models for E{φ(X)|V = ·} and E(H1|Z = ·, X = ·) nor the model for P(Z = 1|X = ·) 

can conflict with parametric specifications of IV(V = ·) and neither the models for E{φ(X)|V 
= ·} and E(H2|Z = ·, X = ·) nor the model for P(Z = 1|X = ·) can conflict with parametric 

specifications of MIV(V = ·). Essentially, the variation independence of H1 and H2 

respectively with IV(·) and MIV(·) is a consequence of the fact that the restrictions imposed 

on the law of H1 and H2 by the IV assumptions do not depend on the functional form of 

IV(·) and MIV(·)respectively. In contrast, restrictions on E(Y|Z = ·, X = ·) and E(D|Z = ·, X = 
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·) or on E(Y|Z = ·, D = ·, X = ·) and E(D|Z = ·, X = ·) impose restrictions on IV(·) and 

therefore may conflict with parametric specifications for it. One could reasonably argue that 

this conflict is of no great importance for practice because all models are almost certainly 

misspecified to a larger or smaller extent. Furthermore, it may be easier to build and check 

models for E(Y|Z = ·, D = ·, X = ·) and E(D|Z = ·, X = ·) than models for E(Hj|Z = ·, X = ·). 

Although we do not disagree with these points, we nevertheless find it conceptually 

important to demonstrate that there is methodology that, under the assumptions stated, is 

internally consistent.

3.1. Estimation of LATE(·) and MLATE(·) under models for the propensity score or outcome 
regression

The following theorem gives two key expressions for the moment restrictions that are 

satisfied by the functionals IV(V) and MIV(V) on which our proposed estimators rely.

Theorem 1. For j ∈ {1, 2}, if the denominators of IV(V) and MIV(V) are non-zero with 

probability 1, then

(5)

and

(6)

where p(Z|X) ≡ P(Z = 1|X)Z {1 − P(Z = 1|X) }1 −Z.

Proof. Equation (5) with j = 1 follows by algebra from the definition (1) and with j = 2 it 

follows from the definition (2). Specifically, to arrive at result (5) from definition (1) when j 

= 1 note that the difference between the numerator on the right-hand side of definition (1) 

and the product of IV(v) with the denominator on the right-hand side of definition (1) is the 

same as the left-hand side of result (5). Likewise, to arrive at result (5) from (2) when j = 2 

note that the sum of the denominator on the right-hand side of definition (2) with the product 

of the numerator on the right-hand side of definition (2) times MIV(v)−1 is the same as the 

left-hand side of equation (5). Equation (6) is equivalent to equation (5) because

and

Theorem 1 suggests that well-behaved estimators of β can be obtained under parametric 

specifications of either P(Z = 1 |X) or E (Hj|Z, X) where throughout we assume j = 1 if β 
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indexes the parametric specification (3) for LATE(V) and j = 2 if β indexes the specification 

(4) for MLATE(V). We now describe such estimators.

Define

and

where m1 (V; β) and m2 (V; β) are the parametric specifications for LATE(v) defined in 

equation (3) and for MLATE(v) defined in equation (4) respectively. Throughout we let β0 

denote the true the value of β under the given specification (3) or (4).

A consistent and asymptotically normal estimator β̂
ipw of β0 under a parametric class for the 

instrument probabilities

(7)

where π(·; ·) is a specified function that is smooth in α and  is a specified subset of Rd, is 

computed as the solution of

(8)

where p(Z|X; α) ≡ π(X; α)Z {1 − π(X; α)}1 − Z,q(V; β) is a user specified p × 1 vector-

valued function (e.g. q(V; β) = ∂mj (V; β) /∂β), and

(9)

is the maximum likelihood estimator of α. Throughout En(·) stands for the empirical mean 

operator. Identity (6) implies that under the IV assumptions, under the parametric 

specification (3), and with j = 1 in display (5), √n(β̂
ipw − β0) converges in law to a mean 0 

normal distribution when condition (7) and regularity conditions hold and, in addition, for 

some σ and z = 0, 1, P(Z = z|X; α) > σ > 0. The same holds under the parametric 

specification (4) and with j = 2 in display (5).

Alternatively, one can compute a consistent and asymptotically normal estimator β0 under a 

parametric class for E(Hj | Z, X) that respects the constraint (5). To aid the specification of 

such a parametric class, we re-express the constraint (5) as the condition that, for some r(X),
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When V ≠ X we derive a flexible parametric specification for E(Hj | Z, X) that respects 

constraint (5) from the following three specifications:

a. a linear parametric specification for r(X),

(10)

where φ (X) ≡ (φ1 (X), …, φK (X))T and φs, s ∈ {1, …, K}, are user-specified real-

valued functions,

b. a linear model for the mean of φ(X) given V,

(11)

where ϕ (V; γ) ≡ (ϕ1 (V; γ), …, ϕK(V; γ))T, Γ is a subset of a Euclidean space and 

φk, k ∈ {1, …, K}, are user-specified real-valued functions (when V is null we set 

ϕ(V; γ) = γ, thus leaving ℳ unrestricted) and

c. a parametric specification for E(Hj| Z = 0, X), i.e.

(12)

where k (·; ·) is a specified function smooth in ν and ϒ is a subset of a Euclidean 

space.

Specifications (10)–(12) imply the following model respects the constraint (5):

(13)

where η ≡ (ρ, ν) and h (z, x; η, γ) = k (x; ν) + ρT {φ(x) − ϕ(v; γ)} z.

When V = X, we ignore specification (11) and replace specification (13) with

(14)

where h(·; ·) is a specified function that is smooth in η and ϒ is a subset of a Euclidean 

space. This specification also respects the constraint (5) because when V = X this constraint 

is the same as the condition that E(Hj |Z, X = x) does not depend on Z.

An estimator β̂
reg that is consistent and asymptotically normal for β0 under specifications 

(11) and (13) when V ≠ X or specification (14) when V = X can be computed as the first 

component of the vector (β̂
reg, η̂) solving
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(15)

where l(·, ·; ·, ·, ·) is a user-specified vector-valued function of the same dimension as (β, η),

and γ̂ solves En[{ ∂ϕ(V; γ)T/∂γ} {φ(X) − ϕ(V; γ)}] = 0 if V ≠ X, εj(β, η, γ) ≡ Hj(β) − h(X; η) 

if V = X. One practical choice of l(Z, X; β, η, γ̂) is

(16)

Under specifications (11) and (13) when V ≠ X or specification (14) when V = X, the IV 

assumptions and the parametric specification (3) if j = 1 or specification (4) if j = 2, E{εj (β0, 

η0, γ0)|Z, X} = 0 where (η0, γ0) are the true values of (η, γ), so √n(β̂
reg − β0) converges in 

law to a mean 0 normal distribution provided standard regularity conditions for convergence 

of M-estimators hold.

Selection of the parametric class for E(Hj|Z, X) can be aided with the following α-level 

score type test of the null hypothesis ℍ0 : η2 = 0 where  and η2 is of 

dimension, say, d2. Let

where (β̃
reg, η̃

1) solves

Under ℍ0, √nRn converges in law to a mean 0 d2-variate normal distribution with variance–

covariance matrix, say, J. Thus, if Ĵ is a consistent estimator of J, a test that rejects ℍ0 

when  Ĵ Rn > χ1 −α,d2 where χ1 −α,d2 is the (1 − α)-quantile of a χ2-distribution with d2 

degrees of freedom is an asymptotic α-level test of ℍ0. A consistent variance estimator Ĵ 
can be derived from standard Taylor expansion arguments for M-estimators (Stefanski and 

Boos, 2002).

3.2. Doubly robust estimation of LATE (·) and MLATE (·)

In this section we derive a doubly robust estimator β̂
dr of β which satisfies that √n(β̂

dr − β0) 

converges to a mean 0 normal distribution under the IV assumptions and regularity 

conditions provided that one of the following two conditions (a) or (b) holds, even if both do 

not hold simultaneously:
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a. specifications (11) and (13) are correct when V ≠ X, or specification (14) is correct 

when V = X,

b. specification (7) is correct.

The estimator β̂
dr solves the estimating equations

(17)

where, for each fixed β, η̂(β) solves En{lη (Z, X; β, η, γ)̂ εj (β, η, γ̂)} = 0 with lη defined as in 

equation (16) and

if V ≠ X or a(X; α, η, γ) ≡ h(X; η) if V = X.

The estimator β̂
dr is consistent for β0 when (b) holds because

for all β since E{(−1)1−Z p(Z|X; α0)|X} = 0.

In contrast, consistency when condition (a) holds can be seen after re-expressing equation 

(17) as

and noting that, by virtue of equality (5) of theorem 1, E[q(V; β){h(1, X; η0, γ0) − h(0, X; 

η0, γ0)}] = 0 and, by E{εj(β, η0, γ0)|Z, X} = 0, E{b(Z, X) εj(β, η0, γ0)} = 0 for all b(Z, X) 

and, in particular, for b(Z, X) = q(V; β)(−1)1−Z p(Z|X; α)−1 with arbitrary α.

The convergence of √n(β̂
dr − β0) to a normal distribution follows after noticing that (β̂

dr, η̂, γ̂, 

α̂) where η̂ ≡ η̂(β̂
dr) is an M-estimator, i.e. it solves a joint system of estimating equations. 

The accuracy of this asymptotic result in finite samples hinges on the strength of the 

instrument Z, i.e. on how close Δ(V) = E{E(D|Z = 1, X) − E(D|Z = 0, X)|V} is to 0. 

Theoretical results exploring the asymptotic distribution of β̂
dr as Δ(V) shrinks to 0 at 

different rates with sample size, similarly to those in the conventional IV literature, should 

be explored but are beyond the scope of this paper.

The asymptotic variance of β̂
dr can be consistently estimated with the standard empirical 

sandwich variance estimator (Stefanski and Boos, 2002) or with the non-parametric 

bootstrap (Gill, 1989).
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In the special case of estimation of β0 ≡ LATE, i.e. when V is null, we have that H1(β) = Y − 

βD and our doubly robust estimator is similar to that in Tan (2006a) and that in Uysal 

(2011), except that they replaced h{Z, X; η̂(β), γ̂} with Ê(Y|Z, X) − βÊ(D|Z, X). Tan 

computed estimators Ê(Y|Z, X) and Ê(D|Z, X) under parametric models for E(Y|D = d, Z = z, 

X = ·) and E(D|Z = z, X = ·), d, z = 0, 1 whereas Uysal (2011) computed them under 

parametric models for E(Y|Z = z, X = ·) and E(D|Z = z, X = ·), z = 0, 1.

3.3. Local efficiency under correct parametric specification of the propensity score model

In addition to β̂
ipw and β̂

dr, there are other consistent and asymptotically normal estimators 

of β0 under the propensity score specification (7) and the IV assumptions. Specifically, 

given a user-specified p × 1 function s(x; β), consider the estimator β̂
S solving

Because E{q(V; β)(−1)1−Z p(Z|X)−1 s(X)} = 0 it follows that under regularity conditions, 

when condition (7) holds, √n(β̂
s − β0) converges to a mean 0 normal distribution with 

variance Σq,s, where Σq,s depends on q(·) and on s(·). Invoking the theory of inverse-

probability-weighted (IPW) estimation in Robins and Rotnitzky (1992), in the 

supplementary Web appendix we show that for each fixed q(·) the optimal choice sopt,j(X), 

in the sense that Σq,s − Σq,sopt,j ⩾ 0 (i.e. semipositive definite), is given by

In the supplementary Web appendix we also show that, when the specifications (11), (13) 

and (7) hold if V is not equal to X or when the specifications (14) and (7) hold if V = X, the 

limiting distribution of √n(β̂
dr − β0) has variance precisely equal to the bound Σq,sopt,j. The 

estimator β̂
dr, however, may have asymptotic variance even larger than that of βîpw if 

specification (11) and/or (13) is incorrect when V ≠ X or if specification (14) is incorrect 

when V = X. Using ideas similar to those in Tan (2006b, 2010) we can construct another 

doubly robust estimator βd̃r that remedies this flaw. The estimator β̃
dr is computed by solving

(18)

where Id is the p × p identity matrix and Ĉ(β) is the p × p matrix formed by the first p 

columns of the p × (p + d) matrix

with
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Like β̂
dr, the estimator β̃

dr is doubly robust and has asymptotic variance equal to Σq,sopt,j 
when specifications (11), (13) and (7) are correct (specifications (14) and (7) are correct if V 
= X), but unlike β̂

dr, it is guaranteed to be the most efficient estimator, asymptotically, 

among the class of estimators solving equations of the form (18) with Ĉ(β) replaced by an 

arbitrary p × p constant matrix C. In particular, letting C = 0 we conclude that under model 

(7), β̃
dr is never less efficient asymptotically than β̂

ipw. See the supplementary Web appendix 

for a sketch of the proof of the asymptotic properties of βd̃r.

A further result, which is derived in the supplementary Web appendix, establishes that for j 

∈ {1, 2} the optimal function qopt,j(·), in the sense that Σq,sopt,j − Σqopt,j,sopt,j ⩾ 0 for any q 

(·), is

where

The optimal function qopt,j(·) depends on the unknown observed data distribution and hence 

it is not available for data analysis. However, we can estimate it under working parametric 

specifications for its unknown constituents,

(19)

and

(20)

where ej (·; ·) and tj (·) are smooth functions and Δ and Ω are included in Euclidean spaces. 

To do so we estimate δ and ω with the weighted least squares estimators δ̂ and ω̂ by 

regressing (−1)1−Z p(Z|X; α̂)−1 DYj−1 and p(Z|X; α̂)−2[Hj(β̂
dr) − a{X;α̂, η̂(β̂

dr), γ̂}]2 on V 
under models (19) and (20) respectively, where βd̂r is a preliminary doubly robust estimator 

of β computed using an arbitrary q(V; β). We then estimate qopt,j(V; β) with
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When specification (7) is correct and P(Z = z|X) > σ > 0 for z = 0 or z = 1, the estimators β̂
dr 

and β̃
dr that use q̂opt,j(V; β) for q(V; β) and the estimator β̃

C that solves equation (18) with 

Ĉ(β) replaced by an arbitrary p × p constant matrix C and with qôpt,j(V; β) instead of q(V; β) 

satisfy under regularity conditions

a. √n(β̂
dr − β0), √n(β̃

dr − β0) and √n(β̃
C − β0) converge to mean 0 normal distributions 

with variances Σdr, Σbetter.dr and ΣC respectively. Furthermore, Σbetter.dr − ΣC ≤ 0 

and Σbetter.dr − Σdr ≤ 0.

b. If, additionally, the specifications (11) and (13) are correct when V ≠ X, or 

specification (14) is correct when V = X, then Σdr = Σbetter.dr = Σqopt,j,sopt,j .

3.4. Estimation of least squares approximations under incorrect specifications of local 
average treatment effect curves

A slight modification of the procedure for computing βd̂r and β̃
dr yields estimators that are 

doubly robust for least squares approximations of the true local average treatment effect 

curves when the parametric specifications for these curves are incorrect.

Given a real-valued function w(v), the w-weighted least squares approximation of the 

LATE(·) curve is

(21)

In the supplementary Web appendix we show that, under the IV conditions, βw,0 satisfies

(22)

where qw(V) ≡ w(V) ∂m1(V;β)/∂β|β=βw,0. Arguing as in section 3.2, we conclude that, when 

condition (b) of Section 3.2 holds (i.e. when the propensity score specification (7) is 

correct), the estimators βd̂r and β̃
dr that use q(V; β) = qw(V; β) ≡ w(V)∂m1(V; β)/∂β converge 

in probability to βw,0 even if the specification (3) is incorrect.

However, unfortunately, β̂
dr and β̃

dr need not converge to βw,0 for any w when the propensity 

score model is incorrect even if condition (a) of Section 3.2 holds. This happens essentially 

because equation (22) is equivalent to

(23)

which involves E{H1(βw,0)|Z, X} but not E(H1|Z, X). Nevertheless, the equality (23) 

suggests that consistent and asymptotically normal estimators of βw,0 under parametric 

models for E{H1(βw,0)|Z, X} should exist. However, some care must be taken in formulating 

such models. For instance, one cannot postulate that E{H1(βw,0)|Z, X} ∈ ℋ where ℋ is 

defined in specification (13) with j = 1 since this specification is necessarily wrong if the 

model (11) is correct. This happens because ℋ respects the constraint (5) but E {H1(βw,0)|Z, 

Ogburn et al. Page 15

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



X} does not, since of all random variables of the form H1(m) = Y − m(V)D for any m(V), 

only H1 = Y − IV(V)D satisfies the constraint (5) as this constraint identifies the IV(·) curve.

A slight modification to the class ℋ yields a new class that respects the constraint (23) but 

not necessarily the stronger constraint

and thus gives the opportunity of formulate a correctly specified model for E{H1(βw,0)|Z, 

X}. Specifically, the parametric specification

(24)

where φ(·) and k(·; ·) are user-chosen functions as defined in Section 3.1 and

(25)

necessarily respects constraint (23) but not the aforementioned stronger constraint.

A modification in the computation of β̂
dr yields a new estimator β̂̂dr, which is described 

below, that satisfies for a given, user-specified, weight function w(·) the following two 

conditions:

a. √n(β̂
d̂r − β0) converges to a normal distribution if the parametric specification (3) 

for LATE(·) is correct and either condition (a) or condition (b) of Section 3.2 holds, 

and

b. √n(β̂̂dr − βw,0) converges to a normal distribution if the parametric specification (3) 

for LATE(·) is incorrect but either condition (b) of Section 3.2 or the parametric 

specification (24) holds.

Consider first the case V ≠ X. The estimator β̂̂dr solves equation (17) with qw(V; β) instead 

of q(V; β), and with a{X; α̂, η̂(β), γ̂} replaced by

where η = (ν, ρ, λ),

(26)

η̂(β) solves
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with

γ̂ solves

and

When V = X, β̂̂dr is computed analogously except that ρ is set to 0 and γ is absent.

The desired properties (a) and (b) of the estimator β̂̂dr are deduced from the following 

considerations. When condition (b) holds, the estimator β̂
d̂r is consistent and asymptotically 

normal for βw,0 regardless of whether or not specification (3) holds because En[qw(V; β)

(−1)1−Z × p(Z|X; α̂)−1 b{X; β, α̂, η̂(β), γ̂, θ̂(β)}] converges to 0 in probability for all β. In 

contrast, the convergence of β̂
d̂r to β0 when specification (3) and condition (a) hold, and the 

convergence of β̂̂dr to βw,0 when specification (3) is incorrect but condition (24) holds 

follows arguing as in Section 3.2 for the convergence of β̂
dr to β0 when condition (a) holds, 

after noting that the class

with θ defined as in equation (25) includes both the class ℋ (corresponding to λ = 0) and the 

class ℋw (corresponding to ρ = 0).

An estimator β̃̃dr satisfying properties (a) and (b) and additionally guaranteed to be at least as 

efficient asymptotically as β̂
ipw is constructed just like β̃

dr in Section 3.2 but replacing a{X; 

α̂, η̂(β), γ̂} with b{X; β, α̂, η̂(β), γ̂, θ̂(β)}, q(V; β) with qw(V; β) and h{Z, X; η̂(β), γ̂} with 

hw{Z, X; β, η, γ̂, θ̂(β)}. In the supplementary Web appendix we also describe an estimator 

β̂̂opt,dr which satisfies property (a) and has limiting normal distribution with variance equal 

to Σqopt,1,sopt,1 when conditions (a) and (b) of Section 3.2 hold and yet converges to a 

weighted least squares approximation when the specification (3) for LATE(V) is wrong.

For estimation of the MLATE(·) curve in the supplementary Web appendix we show that the 

estimator β̂̂dr that is computed by using H2(β) instead of H1(β) and with qw(V; β) redefined 
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as m2(V; β) {∂m2(V; β) /∂β}w(V) satisfies properties (a) and (b) where in the statements of 

these properties, specifications (3) and (24) are replaced with specification (4) and the 

specification that E{H2(βw,0)|Z = z, X = x} ∈ ℋw respectively, and βw,0 is redefined as

with e0(v) ≡ E(Y0|D1 > D0, V = v). Note that, unlike definition (21), βw,0 is now a weighted 

least squares approximation with weights that are unknown to the data analyst since they 

depend on the unknown function e0(V). It does not appear to be possible to construct doubly 

robust estimators of weighted least squares approximations to the MLATE(·) curve for 

known, i.e. user-specified, weights.

4. Connections to models for the treatment effect on the treated

Robins (1994) and Tan (2010) considered estimation of the so-called additive treatment 

effect on the treated contrast

This contrast quantifies the effect of treatment D on the subset of the subpopulation with 

baseline covariates V = v comprised of subjects who would be treated with D = 1 if Z were 

set to z. Robins (1994) showed for V = X and Tan (2010) showed for V a strict subset of X, 

that ATT(z, v) is identified under the IV assumptions (a)–(d) and (f) in Section 2.1 and 

specific restrictions on ATT(·, ·). In particular, Robins (1994) showed that, when V = X, 

ATT(z, v) is identified under assumptions (a)–(d) and (f), and the no additive treatment–

instrument interaction on the treated: ATT(z, v) = ATT(v) does not depend on z (assumption 

v-ATT).

Remarkably, Robins showed that under these assumptions ATT(v) = IV(v).

In fact, it is easy to show that the preceding assertions remain true when V is a strict subset 

of X. We thus see that, under assumptions (a)–(d) and (f) in Section 2.1, the structural 

interpretation of the observed data functional IV(v) depends on which of the assumptions (e) 

or (v-ATT) is adopted. The only exception is when P(D0 = 1) = 0, or equivalently when P(D 

= 1|Z = 0) = 0, since in such a case the complier subpopulation is the same as the 

subpopulation defined by condition D1 = 1, and consequently LATE(v) = ATT(v).

A further deep connection exists between the works of Robins (1994) and Tan (2010) and 

the problem that is addressed in this paper. For short, refer to the model defined by 

assumptions (a)–(f) in Section 2.1 as ‘our additive model’ and to the model defined by 

assumptions (a)–(d), (f) and v-ATT as the ‘Robins–Tan additive model’. Remarkably, the 

problem of estimating the parameter β indexing a parametric specification m1 (v; β) for 

LATE(v) under our additive model is formally identical to the problem of estimating the 

parameters β indexing a parametric specification m1 (v; β) for ATT(v) under the Robins–Tan 
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additive model. This surprising fact is explained by the following three results whose proofs 

will be sketched below:

a. under the intersection model that assumes (a)–(f) in Section 2.1 and v-ATT, i.e. the 

model that makes simultaneously the assumptions of our additive model and of the 

Robins–Tan additive model, LATE(v) and ATT(v) are indeed identical causal 

effect contrasts;

b. our model is statistically indistinguishable from the intersection model, i.e., given 

our model, the intersection model imposes restrictions that always fit the observed 

data perfectly and hence cannot be rejected by any statistical test;

c. the restrictions that are imposed on the observed data law by the intersection model 

and not imposed by the Robins–Tan additive model are only inequality constraints.

Results (a) and (b) imply that a functional of the observed data law is equal to LATE(v) = 

ATT(v) under the intersection model if and only if it is equal to LATE(v) under our additive 

model. If this were not so, there would be some observed data law functional equal to 

LATE(v) under the intersection model but not under our additive model (the opposite is not 

possible because our additive model is bigger than the intersection model). But in such a 

case, there would be a restriction, specifically the restriction that sets the new functional 

equal to LATE(v), that would be satisfied under the intersection model but not under our 

additive model, thus contradicting result (b).

Result (c) implies that a functional of the observed data law is equal to ATT(v) under the 

intersection model if and only if it is equal to ATT(v) under the Robins–Tan additive model. 

If this were not so, the intersection model would satisfy an equality constraint that is not 

satisfied by the Robins–Tan additive model, namely the constraint that sets a new functional 

of the observed data law equal to ATT(v), thus contradicting result (c).

Results (a)–(c) then imply that any functional of the observed data law that is equal to 

ATT(v) under the Robins–Tan model must be equal to LATE(v) under our additive model 

and vice versa. This, in turn, proves that the problem of conducting inference about the 

parameters β of models m1(v; β) for ATT(v) under the Robins–Tan assumptions is formally 

the same as the problem of conducting inference about the parameters β indexing a 

parametric specification m1(v; β) for LATE(v) under our additive model.

A further result (result (d) stated below) implies that IV(v) is indeed the only functional of 

the observed data law that is equal to LATE(v) under our additive model and, consequently, 

the only observed data functional equal to ATT(v) under the Robins–Tan additive model:

(d) the only restrictions imposed on the observed data law by our additive model are 

inequality constraints on certain conditional distributions.

As indicated, result (d) implies that no functional of the observed data law other than IV(v) 

can be equal to LATE(v) under our additive model. If this were not so, then the observed 

data law would satisfy an equality constraint under our model, namely the equality that sets 

IV(v) equal to the other functional that agrees with LATE(v), thus contradicting result (d).
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We now demonstrate results (a)–(d). Results (a) and (b) are a consequence of the fact that 

the intersection model can be equivalently defined as the model that imposes restrictions 

(a)–(f) in Section 2.1 and the additional restriction

(27)

where T denotes compliance type, i.e. T = at if and only if D1 = D0 = 1 (always-taker), T = nt 

if and only if D1 = D0 = 0 (never-taker), T = co if and only if D1 > D0 (complier) and T = de 

if and only if D1 < D0 (defier). This equivalence holds because assumption v-ATT is the 

same as the assumption that

(28)

Thus, when no defiers exist, i.e. when assumption (e) holds, equation (28) is equivalent to 

equation (27).

Result (a) follows because restriction (27) implies that ATT(v) ≡ E(Y1 − Y0|T ∈ {co, at}, V 
= v) = E(Y1 − Y0|T = co, V = v) ≡ LATE(v), so under the intersection model, LATE(v) is 

indeed equal to ATT(v). Result (b) follows because, under assumptions (a)–(f), a test of the 

intersection model is a test that restriction (27) holds. No test can be constructed with power 

to detect departures from equation (27) because E(Y0|T = at, V) is not identified and the law 

of the observed data does not bound its range, when, as we have assumed throughout, Y has 

unbounded support.

Results (c) and (d) are a consequence of the following lemmas whose proofs are given in the 

supplementary Web appendix.

Lemma 1. The only restrictions on the observed data law encoded by our additive model are 

0 < P(Z = 1|X) < 1 and the following inequality constraints. For any y < y′,

(29)

(30)

(31)

Lemma 2. The only restrictions on the observed data law that are imposed by the Robins–

Tan additive model are 0 < P(Z = 1|X) < 1 and E {E (D|Z = 1, X) |V} − E{E(D|Z = 0, X) |V} 

≠ 0.

It is interesting to contrast the structural interpretation of the functional E(H1|Z, X) under our 

additive model and the Robins–Tan additive models. In the supplementary Web appendix 

we show that, under the Robins–Tan additive model,
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and under our additive model,

(32)

Abadie (2003) has previously derived result (32) in the special case V = X under our 

additive model. Observe that only under the Robins–Tan additive model and only for the 

special case V = X, E(H1|Z, X) has a simple structural interpretation, namely as E(Y0|X = x) 

(since by v-ATT implies ATT(z, X) = ATT(X) when V = X). No simple structural meaning 

can be given to E(H1|Z, X) in all other cases. It is this counterintuitive aspect of the 

functional E(H1|Z, X) that we believe may have delayed the discovery of the doubly robust 

estimators of β proposed in this paper.

Robins (1994) and Tan (2010) also discussed inference about models for the multiplicative 

treatment effect on the treated curve MTT(z, v) ≡ E(Y1|Dz = 1, V = v) /E(Y0|Dz = 1, V = v). 

Deep connections along the lines made in this section also exist between the work of Robins 

(1994) and Tan (2010) for inference about MTT(z, v) and the proposal for estimation about 

MLATE(v) in this paper.

5. Data Analysis

We apply the procedures that are discussed in this paper to estimate the local average 

treatment effect of participation in 401(k) programs on household saving. 401(k) tax-

deferred retirement plans were introduced in the 1980s with the goal of encouraging 

household saving; they have since grown to be the most popular retirement plans in the 

USA. But economists have hypothesized that 401(k) plans may not represent increased 

saving; rather they may replace other modes of saving for those who participate. Among 

people who are eligible to participate in 401(k) plans, those who choose to participate are 

likely to be more inclined to save than those who choose not to participate. Therefore, 

standard methods for examining the effect of 401(k) participation on savings based on 

covariate adjustment are inappropriate as underlying saving preference is an unmeasured 

confounder of the treatment–outcome relationship. Using 401(k) eligibility as an instrument 

for 401(k) participation, estimation of the local average treatment effect of 401(k) 

participation on savings is feasible.

Poterba et al. (1994, 1995) and Abadie (2003) analysed data from the US Census Bureau's 

1991 Survey of Income and Program Participation to test whether participation in 401(k) 

plans increases household savings. Here we reanalyze the data that were analyzed by Abadie 
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(2003), consisting of a sample of 9725 household reference subjects aged 25–64 years and 

their spouses, with annual income between $10000 and $200000. In our analysis as in 

Abadie's, the outcome Y is net financial assets, the instrument Z is an indicator of 401(k) 

eligibility, the treatment D is an indicator of 401(k) participation and the vector of covariates 

is X = (X1, X2, X3, X4) where X1 is age (approximated to the closest integer year after 

subtracting the minimum age in the sample), X2 is an indicator of marital status (married or 

not), X3 is family size and X4 is annual household income (in thousands of dollars).

In this example, the instrumentation assumption (d) and monotonicity assumption (e) hold 

trivially because it is not possible to choose to participate in 401(k) plans if not eligible to do 

so (D0 = 0 with probability 1). The exclusion restriction (b) is very plausible because 401(k) 

plans are run through employers with only some employers granting eligibility to their 

employees; evidence suggests that the effect of an employer's offer of 401(k) eligibility on 

an employee's saving behaviour operates only through the employee's choice to participate 

or not in the programme (Poterba et al., 1995). Finally, the randomization assumption is also 

likely to hold when we include in X the measured predictors income, age, marital status and 

family size of eligibility and savings. Because D0 = 0 there can be no defiers or always 

takers and the complier subpopulation is comprised of all eligible subjects who chose to 

participate; consequently LATE(·) = ATT(·) is estimable with these survey data.

To illustrate our methodology we considered estimation of the parameters indexing models 

for LATE(V) for two choices of V, namely V =X4 (income) and V = null. We shall see that 

the analysis when V = X4 showed that income was a significant determinant of LATE. This 

gave us the opportunity to explore the behaviour of the proposed estimators under 

misspecification of the model for the LATE(·) curve. Specifically, we applied the procedures 

in this paper to estimate a scalar parameter β under the specification m(X;β) = β, i.e. under a, 

probably misspecified, model that assumes that LATE(X) does not depend on income or any 

of the other covariates in X. This specification was also used to analyze these data in Abadie 

(2003).

Table 1 reports the estimators of β with their bootstrap standard errors in parentheses in the 

case V = X4 under the specification m(X4;β) = β0 + β1X4. Table 1 reports results for eight 

estimators: five doubly robust estimators βd̂r, two IPW estimators β̂
ipw and one outcome 

regression estimator β̂
reg. The estimator β̂

reg was computed by using the function l(Z, X; β, 

η, γ) given in expression (16). Three of the doubly robust estimators, denoted by , 

, , used q(V) equal to q̂opt,1 (V) as defined in Section 3.3. In the 

calculation of q̂opt,1 (V), log [e1(V; δ)/{1 − e1(V; δ)}] and log{t1(V; ω)} were linear 

functions of income and income2. (When, as in this data set, Z = 0 implies D = 0, e1(V; δ) is 

a model for E{E(D|X, Z = 1) |V}.) The fourth doubly robust estimator, which is denoted 

with , used q(V) = ∂m(V;β) /∂β = (1, X4)T and the last doubly robust estimator, which is 

denoted by  used q(V) = (1, X4)T {expit(ζ̂
0 + ζ̂

1X4) − expit(ζ̂0 + ζ̂
1X4)2} where 

expit(ζ̂
0 + ζ̂

1X4)dr was the fitted value from a logistic regression of Z on X4. These last two 
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choices of q(V) were also used to construct the two IPW estimators, which are denoted by 

 and  respectively.

In the calculation of the doubly robust and IPW estimators we used the propensity score 

model kπ which assumed that log[π (x; α) / {1 − π (x; α)}] was linear in indicator variables 

of the combined levels of marital status and age as well as in all powers of income up to the 

power kπ. As in Abadie (2003), we did not include family size because it did not 

significantly predict Z. Also, the outcome regression model in the calculation of the doubly 

robust estimators and of β̂
reg, which is denoted in what follows by , assumed that 

E{H1(β0)|Z, X} = k(X; ν) + ρT{φ(X) − φ(V; γ)}Z. The function k(x; ν) was linear in powers 

of income up to power kh and in indicators of the combined levels of age, marital status and 

family size (dichotomized at its mean). The function φ(x) was a vector of indicators of 

combined levels of age, marital status and family size; each entry of φ(v; γ) was a linear 

logistic regression model for the corresponding entry of φ(x) with covariates being income, 

income2, …, incomekh. The estimators ,  and  were computed by using 

models ( kπ and  with kπ = kh ≡ k. In Table 1 the first three rows report these 

estimators by using k as indicated by the column labels. The estimator  had kπ 

fixed at 4 and kh as indicated by the column labels. Likewise the estimator  had kh 

fixed at 4 and kπ as indicated by the column labels. The estimators  and  had 

kπ as indicated by the column labels. Finally, the estimator β̂
reg had kh as indicated by the 

column labels. In the data set as well as in each bootstrap replication we first estimated the 

propensity scores, then threw out the data from subjects in the bottom and top 1% of the 

estimated values of π(X; α̂), and finally carried through the entire procedure for arriving at 

the estimators of β using the remaining data. In the data set, this pruning did not noticeably 

change the values of our estimators, suggesting that the data pruning did not result in 

substantial bias, but it had a dramatic effect on stabilizing the bootstrap standard error 

estimators.

According to the theory that is presented in this paper,  with kπ = kh sufficiently large 

should result in optimal inference about β. We therefore first examine the rows 

corresponding to  and the columns with kπ = kh equal 4, 5 and 8 in Table 1. We note that 

the coefficient of income is roughly 330 with a standard error around 80, suggesting that 

401(k) plans have more effect on the savings of families of higher income. For example, for 

kπ = kh = 4, the estimated effect of 401(k) participation for an eligible person with annual 

income $50000 who chooses to participate in the programme is to increase her family's net 

financial assets by $14910 whereas the increase for a person with an income of $100000 is 

$31310.

Unlike the slope coefficient, the intercept does not appear to be significantly different from 

0; a 95% confidence interval for the intercept would include 0 as the point estimate is 

roughly half its standard error. For this reason, we henceforth focus attention on the 

behaviour of the remaining estimators of the income coefficient. Since the three doubly 
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robust estimators ,  and  with kπ = kh ⩾ 4 are all approximately equal to 

330, we conclude that it is likely that the linear model for LATE(X4) is approximately 

correct. If it were not, the estimators ,  and  would not be expected to 

exhibit similar values as they would have different probability limits because they use 

different functions q(V). Therefore, in what follows, we shall refer to an estimator of the 

slope coefficient as ‘unbiased’ if it is roughly equal to 330. Observe that, as predicted by 

theory, the doubly robust estimators that use q ̂opt,1(V) are more efficient than the IPW or any 

of the other doubly robust estimators. (In fact, these doubly robust estimators are even more 

efficient than the estimator β̂
reg; presumably this reflects the fact that the choice (16) that we 

recommended for ease of calculation is not optimal). A comparison of the IPW estimators 

with the estimator  and of the outcome regression estimator with 

illustrates the advantage of doubly robust estimation over IPW and outcome regression 

estimation. These comparisons reveal that doubly robust estimators require only one of the 

two models to be nearly correct and the analyst does not need to know which one is correct. 

Note that whereas the IPW estimators are severely ‘biased’ if kπ is 1 or 2, the doubly robust 

estimator  that uses the same model for the propensity score but a model 

with kh = 4 is roughly ‘unbiased’. Likewise, the outcome regression estimator that has kh 

equal to 1 or 2 is biased but the ‘bias’ is corrected by the estimator .

Turn now to estimation of β under a model m(X; β) for LATE(X) that assumes that m(X; β) 

= β. This model is presumably wrong because, as we have already seen from the previous 

analysis, income modifies the effect of treatment D among the compliers. Additional 

evidence for misspecification is presented in Fig. 1, which displays the values of three 

different doubly robust estimators β̂
dr, denoted with ,  and  which used 

respectively q(X) = e1(X; δ̂)t1(X; ω̂), q(X) = ∂m(X; β)/∂β = 1 and q(X) = π(X, α̂) − π(X, α̂)2, 

where log [e1(X; δ)/{1 − e1(X; δ)}] and log{t1(X; ω)} were linear functions of family size, 

income, income2 and indicators of age and marital status. The estimators assumed model kπ 

for the propensity score and an outcome regression model  that specifies that E{H1(β0)|

Z, X} = k(x; ν) where k(x; ν) is the same function as defined earlier. (Recall that under the 

assumption that the model m(X; β) is correct, E{H1(β0)|Z, X} does not depend on Z). The 

plot displays the values of ,  and  as kh = kπ ≡ k varies from 1 to 8. Each 

estimator stabilizes for k ⩾ 3; however each stabilizes to a different value. This is as 

predicted by the theory of Section 3.4 according to which, when model m(X; β) is incorrect 

and model kπ is correct, each estimator converges in probability to a distinct weighted least 

squares approximation β0,w with a weight that depends on the choice of function q(X). 

Specifically, when kπ is correct and the model m(X; β) for LATE(X) is misspecified, , 

 and  converge in probability to distinct values β0,wineff, β0,wineff,stable and 

β0,wopt where wineff(X) = 1, wineff,stable(X) = π(X, α0) − π(X,α0)2 and wopt(X) = e1(X; 

δ*)t1(X; ω*) with δ* and ω* the probability limits of δ̂ and ω̂.
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The parameter β0,wineff is of particular interest as an easy calculation shows that β0,wineff is 

equal to the marginal LATE, i.e. to βnull ≡ LATE(V) when V = null. Thus, the estimator 

 converges to βnull when the model kπ is correct. In fact, the IPW estimator  that 

uses the same q(X) as  and the same model kπ also converges to βnull when model kπ 

is correct. This is so because β̂
dr and β̂

ipw have the same probability limits when they use the 

same correctly specified propensity score model regardless of whether or not the parametric 

specification for LATE(·) is correct. These theoretical results are confirmed in Fig. 2, which 

displays the estimators  and  computed under model kπ and model  with kh = 

kπ = k. In addition, Fig. 2 displays the doubly robust estimator β̂
null,dr of βnull, i.e. of the 

marginal LATE. This estimator is computed under model kπ and a model  that 

assumes that E{H1(βnull)|Z, X} = k(X; ν) + ρT[φ(X) − E{φ(X)}]Z with k(x; ν) as defined 

earlier and φ(x) a vector function of indicators of the combined levels of age, marital status, 

family size (dichotomized at its mean) and powers of income up to power kh. Note that in 

Fig. 2  and  are both close to β̂
null,dr for kπ ⩾ 4.

If model kπ is wrong and m(X; β) = β is an incorrect specification for LATE(X) both 

and  are inconsistent for β0,wineff = βnull. This occurs because, as discussed in Section 

3.4,  is not doubly robust for β0,wineff under incorrect specification of the model for the 

LATE(·) curve. In contrast, βn̂ull,dr is double robust for βnull, i.e. it is consistent either if 

model kπ is correct or if model  is correct. In fact, βn̂ull,dr is a member of the class of 

estimators β̂̂dr that were described in Section 3.4; it is algebraically equal to the estimator β̂̂dr 

that uses qw(V) = 1 with V = X. Recall that, unlike β̂
dr, the estimator β̂

d̂r that uses a given 

qw(V) is doubly robust for β0,w. Table 2 illustrates these points. The row that is labelled 

‘Model kπ’ lists estimators that were computed under model kπ with kπ = 4. The row that 

is labelled ‘Model wrong’ lists estimators that were computed under the model wrong that 

incorrectly sets P(Z = 1|X) to be equal to the constant . For estimators β̂
null,dr and , kh 

was chosen to be 4. All the estimators in the first row are approximately equal. However, a 

column-by-column comparison of the two rows reveals that of the three estimators only 

β̂
null,dr remains approximately unchanged when it is computed under wrong. This is as 

predicted by theory (provided that the model  with kh = 4 is approximately correct). To 

confirm that these findings were unlikely to be due to chance, we computed for each column 

the ratio  where Δ̂ is the difference between the first and second row, and  is the 

bootstrap standard error of Δ̂. Under the null hypothesis that the probability limits of the 

estimators in the two rows are the same, T should approximately have a standard normal 

distribution. For β̂
null,dr, T̂ was 0.51 whereas, for  and , T̂ was −1.91 and −3.14 

respectively.

Ogburn et al. Page 25

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



6. Conclusion

In this paper we introduced a new class of estimators for parametric forms for additive and 

multiplicative local average treatment effect curves as functions of covariates V, where V 
may be a subset of the covariates X required for the candidate instrument to be a valid IV 

Our estimators are doubly robust, i.e. they are consistent and asymptotically normal if either 

one of two dimension reducing models is correctly specified. Unlike other proposals, these 

dimension reducing models are always compatible with the assumed parametric functional 

form for the local average treatment effect on the additive scale if Y has unbounded support, 

and with the assumed parametric functional form for the effect on the multiplicative scale if 

Y has support in the positive real line and is unbounded. We discussed the connection 

between our model for the local average treatment effects and the Robins–Tan model for the 

effect of treatment on the treated, and we argued that the correspondence between the two 

models is unsurprising because the restrictions on the observed data law that is imposed by 

the two models differ only in inequality constraints, and because under an untestable 

assumption about the distribution of the counterfactual outcomes the two estimands are 

identified by the same functional of the observed data.

Future work is needed to explore the performance of our estimators for weak instruments in 

finite samples. Another potential topic for future work arises from the fact that, when Y is 

binary, the outcome regression model and the model for MLATE(·) are not variation 

independent. Thus, the model m2(·; β) could conflict with a proposed model for E(H2|Z, X). 

If the propensity score model is correctly specified the resulting estimator of β0 will still be 

consistent; however, this variation dependence implies that we may not have two 

independent opportunities for valid inference about β0. In forthcoming work, we 

reparameterize the model for MLATE when Y is binary to recover doubly robustness.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Estimation of the marginal LATE based on incorrectly assuming that 
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Fig. 2. 
Doubly robust estimation of the marginal LATE versus estimation based on incorrectly 

assuming that 
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Table 2
Estimation of the marginal LATE effect

Model Point estimators†

β̂null,dr=β̂̂dr

kπ=4 12213 12179 12434

wrong 11859 13140 17651

Test statistic‡

0.51 −1.91 −3.14

†
β̂dr is the estimator of Section 3.4 that uses qw(V) =1.

‡
Test statistic is the difference of the estimators in the first and second rows divided by the bootstrap standard error of the difference.
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