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With the recent increase in study sample sizes in human genetics, there has been growing interest in inferring historical
population demography from genomic variation data. Here, we present an efficient inference method that can scale up to
very large samples, with tens or hundreds of thousands of individuals. Specifically, by utilizing analytic results on the
expected frequency spectrum under the coalescent and by leveraging the technique of automatic differentiation, which
allows us to compute gradients exactly, we develop a very efficient algorithm to infer piecewise-exponential models of the
historical effective population size from the distribution of sample allele frequencies. Our method is orders of magnitude
faster than previous demographic inference methods based on the frequency spectrum. In addition to inferring de-
mography, our method can also accurately estimate locus-specific mutation rates. We perform extensive validation of our
method on simulated data and show that it can accurately infer multiple recent epochs of rapid exponential growth,
a signal that is difficult to pick up with small sample sizes. Lastly, we use our method to analyze data from recent
sequencing studies, including a large-sample exome-sequencing data set of tens of thousands of individuals assayed at a few
hundred genic regions.

[Supplemental material is available for this article.]

The demography of an evolving population strongly influences

the genetic variation found within it, and understanding the in-

tricate interplay between natural selection, genetic drift, and de-

mography is a key aim of population genomics. For example, the

human census population has expanded more than 1000-fold in

the last 400 generations (Keinan and Clark 2012), resulting in

a state that is profoundly out of equilibriumwith respect to genetic

variation. Recently, there has been much interest in studying

the consequences of such rapid expansion on mutation load and

the genetic architecture of complex traits (Gazave et al. 2013;

Lohmueller 2014; Simons et al. 2014). Estimating the population

demography is necessary for developing more accurate null

models of neutral evolution in order to identify genomic regions

subject to natural selection (Williamson et al. 2005; Boyko et al.

2008; Lohmueller et al. 2008). The problem of inferring de-

mography from genomic data also has several other important

applications. In particular, the population demography is needed

to correct for spurious genotype-phenotype associations in

genome-wide association studies due to hidden population sub-

structure (Marchini et al. 2004; Campbell et al. 2005; Clayton et al.

2005), to date historical population splits, migrations, admixture,

and introgression events (Gravel et al. 2011; Li and Durbin 2011;

Luki�c and Hey 2012; Sankararaman et al. 2012), to compute ran-

dom match probabilities accurately in forensic applications

(Balding and Nichols 1997; Graham et al. 2000), for examples.

A commonly used null model in population genetics assumes

that individuals are randomly sampled from a well-mixed pop-

ulation of constant size that evolves neutrally according to some

model of random mating (Ewens 2004). However, several recent

large-sample sequencing studies in humans (Coventry et al. 2010;

Fu et al. 2012;Nelson et al. 2012; Tennessen et al. 2012) have found

an excess of single nucleotide variants (SNVs) that have very low

minor allele frequency (MAF) in the sample compared to that

predicted by coalescent models with a constant effective pop-

ulation size. For example, in a sample of ;12,500 individuals of

European descent analyzed by Nelson et al. (2012), >74% of the

SNVs have only one or two copies of the minor allele, and >95% of

the SNVs have an MAF <0.5%. On the other hand, assuming

a constant population size over time, Kingman’s coalescent pre-

dicts that the number of neutral SNVs is inversely proportional to

the sample frequency of the variant (Fu 1995). Keinan and Clark

(2012) have suggested that such an excess of sites segregating with

low MAF can be explained by recent exponential population

growth. In particular, a rapid population expansion produces ge-

nealogical trees that have long branch lengths at the tips of the

trees, leading to a large fraction of mutations being limited to

a single individual in the sample. Motivated by these findings and

rapidly increasing sample sizes in population genomics, we here

tackle the problem of developing an efficient algorithm for in-

ferring historical effective population sizes and locus-specific mu-

tation rates using a very large sample, with tens or hundreds of

thousands of individuals.

At the coarsest level, previous approaches to inferring de-

mography from genomic variation data can be divided according

to the representation of the data that they operate on. Full
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sequence-based approaches for inferring the historical population

size such as the works of Li and Durbin (2011) and Sheehan et al.

(2013) use between two and a dozen genomes to infer piecewise

constant models of historical population sizes. Since these ap-

proaches operate genome wide, they can take into account linkage

information between neighboring SNVs. On the other hand, they

are computationally very expensive and cannot be easily applied to

infer recent demographic events from large numbers of whole ge-

nomes. A slightly more tractable approach to inferring potentially

complex demographies involves comparing the length distribution

of identical-by-descent and identical-by-state tracts betweenpairs of

sequences (Palamara et al. 2012; Harris and Nielsen 2013).

The third class of methods, and the one that our approach

also belongs to, summarizes the variation in the genome sequences

by the sample frequency spectrum (SFS). The SFS of a sample of size

n counts the number of SNVs as a function of their mutant allele

frequency in the sample. Since the SFS is a very efficient di-

mensional reduction of large-scale population genomic data that

summarizes the variation in n sequences by n � 1 numbers, it is

naturally attractive for computational and statistical purposes.

Furthermore, the expected SFS of a random sample drawn from the

population strongly depends on the underlying demography, and

there have been several previous approaches that exploit this re-

lationship for demographic inference. Nielsen (2000) developed

amethod based on coalescent tree simulations to infer exponential

population growth from single nucleotide polymorphisms that are

far enough apart to be in linkage equilibrium. Coventry et al.

(2010) developed a similar coalescent simulation-based method

that additionally infers per-locus mutation rates and applied this

method to exome-sequencing data from ;10,000 individuals at

two genes. Nelson et al. (2012) have also applied this method to

a larger data set of 11,000 individuals of European ancestry (CEU)

sequenced at 185 genes to infer a recent epoch of exponential

population growth. The common feature of all these methods is

that they use Monte Carlo simulations to empirically estimate the

expected SFS under a given demographic model, and then they

compute a pseudo-likelihood function for the demographic model

by comparing the expected and observed SFS. The optimization

over the demographic models is then performed via grid search

procedures. More recently, Excoffier et al. (2013) have developed

a software package that employs coalescent tree simulations to

estimate the expected joint SFS of multiple subpopulations for

inferring potentially very complex demographic scenarios from

multipopulation genomic data. The problem of demographic in-

ference has also been approached from the perspective of diffusion

processes. Given a demographic model, one can derive a partial

differential equation (PDE) for the density of segregating sites at

a given derived allele frequency as a function of time. Gutenkunst

et al. (2009) used numerical methods to approximate the solution

to this PDE, while Luki�c et al. (2011) approximated this solution

using an orthogonal polynomial expansion. The coalescent-based

method of Excoffier et al. (2013), fastsimcoal, and the diffusion-

based method of Gutenkunst et al. (2009), @a@i, can infer the joint

demography of multiple subpopulations with changing population

sizes and complex patterns of migration between subpopulations.

In this paper, we focus on the problem of inferring the ef-

fective population size as a function of time for a single randomly

mating population. As mentioned above, our method is based on

the SFS. By restricting our inference to a single population, we are

able to compute the expected SFS exactly, rather than using Monte

Carlo simulations or solving PDEs numerically. Briefly, we utilize

the theoretical work of Polanski et al. (2003) and Polanski and

Kimmel (2003), which relate the expected SFS for a sample of size

n froma single population to the expectedwaiting times to the first

coalescence event for all sample sizes #n. We show that the latter

quantities can be computed efficiently and numerically stably for

very large sample sizes and for an arbitrary piecewise-exponential

model of the historical effective population size. Further, our

method utilizes the technique of automatic differentiation to

compute exact gradients of the likelihood with respect to the pa-

rameters of the effective population size function, thereby facili-

tating optimization over the space of demographic parameters.

These techniques result in our method being both more accurate

and more computationally efficient than @a@i and fastsimcoal. In

what follows, we carry out an extensive simulation study to

demonstrate that our method can infer multiple recent epochs of

rapid exponential growth and estimate locus-specific mutation

rates with a high accuracy. We then apply our method to analyze

data from recent sequencing studies.

Results
Inwhat follows,we perform extensive validation of ourmethod on

simulated data using several sets of demographic models similar to

those inferred by recent large-sample studies. We also apply our

method to the neutral region data set of Gazave et al. (2014) and

the exome-sequencing data set of Nelson et al. (2012) to detect

signatures of recent exponential population growth.

Simulated demographic models

To validate our inference algorithm, we simulated data under the

coalescent with recombination using the simulation program ms

(Hudson 2002) with the following two demographic scenarios:

• Scenario 1: This demographic scenario models two ancestral

population bottlenecks followed by an epoch of exponential

growth.We simulated data setswith several values for the growth

duration t1 and per-generation growth rate r1 such that the

population expansion factor ð1+ r1Þt1 is fixed at 512, which is

close to the estimated population expansion factor inferred by

Nelson et al. (2012) in the CEU subpopulation. The ancestral

population bottlenecks reflect the out-of-Africa bottleneck and

the European-Asian population split, and these parameters were

set to those estimated by Keinan et al. (2007). The population

size functions for this scenario are shown in Figure 1A.

• Scenario 2: In this scenario, there are two epochs of exponential

growth, the older of which (called epoch 2) lasts for t2 = 300

generations with a growth rate of r2 = 1% per generation, and

a recent epoch (called epoch 1) of more rapid growth lasting t1 =

100 generations with a growth rate of r1 = 4%per generation. This

model also incorporates the two ancestral population bottlenecks

inferred by Keinan et al. (2007) and is shown in Figure 1B.

For each demographic scenario, we simulated several data sets

using the coalescent simulator ms (Hudson 2002) with 10,000

diploid individuals and 100 unlinked loci each of length 10 kb,

while using a realistic recombination rate of 10�8 per base per

haploid per generation within each locus.We used amutation rate

of 2.5 3 10�8 per base per haploid per generation at each locus.

Maximum likelihood estimation (MLE) of demographic parameters

We applied our method to estimate the exponential growth rate

and onset times for Scenario 1 and Scenario 2 while assuming that
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the details of the ancestral population bottlenecks are known. We

did not try to estimate the ancestral population bottlenecks be-

cause our focus was on inferring recent population expansion

events which are not detectable with small sample sizes. To infer

ancient demographic events such as bottlenecks, we think that

genome-wide methods such as those of Li and Durbin (2011) and

Sheehan et al. (2013) will be more powerful. Figure 2, A and B

shows violin plots of the inferred values of the duration and rate of

exponential growth for each of the simulation parameter settings

in Scenario 1, with the joint distribution over the inferred pa-

rameters shown in Supplemental Figure S1. In each simulation

parameter combination in Scenario 1, the population expands by

a factor of 512 in the epoch of recent exponential growth. The solid

red curves in Supplemental Figure S1 represent the exponential

growth parameter combinations that have this same population

expansion factor, while the dashed red curves are the parameter

combinations having 25%higher and lower population expansion

factors. As can be seen from the tight clustering of points along the

red curves in Supplemental Figure S1, the jointly inferred expo-

nential growth parameter combinations quite accurately reflect

the exponential population expansion factor—i.e., when the inferred

growthonset time is large, the inferred growth rate is correspondingly

lower, so that the population expands by the same factor in the

inferred demographic model as in the true demographic model.

Similarly, Figure 2, C and D shows the marginal distribution of the

inferred values of the growth onset times and rates for each of the two

Figure 1. Population size N(t) as a function of time (measured in generations) for (A) several choices of t1 and r1 in Scenario 1, and (B) Scenario 2. The
present time corresponds to t = 0.

Figure 2. Performance of our method on simulated data. Each violin plot is generated using 100 simulated data sets with 100 unlinked loci of 10 kb
each over 10,000 diploid individuals. The gray solid horizontal lines indicate the true values for the simulation parameters. Themedian inferred parameter
values, indicated by dashed black lines, match the true parameter values very well. Panels A and B, respectively, show violin plots of the duration and rate of
exponential growth in thepopulation size for each of the six simulation parameter settings of Scenario 1, illustrated in Figure 1A. PanelsC andD showviolin plots
of the onset times (t1 and t2) and exponential growth rates (r1 and r2) for the two epochs of exponential growth in Scenario 2, illustrated in Figure 1B.
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epochs in Scenario 2, with the joint distribution of the inferred pa-

rameters for each of the two epochs shown in Supplemental Figure

S2. Since most points in Supplemental Figure S2 fall within the

dashed red curves, this indicates that the population expansion fac-

tors from the inferred estimatesmatch the true population expansion

factor in each epoch quite well.

We also applied the coalescent simulation-based method of

Excoffier et al. (2013), fastsimcoal, to the same simulated data sets

used with our method above. Since we are working with large

sample sizes here, for computational reasons we restricted fastsim-

coal to use 200 and 500 coalescent tree simulations per likelihood

function evaluation for Scenario 1 and Scenario 2, respectively, and

at most, 40 rounds of conditional expectation maximization (ECM

cycles). Figure 3 shows the results of running fastsimcoal on the

simulated data sets for Scenario 1. We do not show the results of

running fastsimcoal on thedata sets for Scenario 2 because therewas

a huge variance in the estimated parameters. Note that in their

work, Excoffier et al. (2013) use 105 coalescent tree simulations per

likelihood function evaluation and 20–40 ECM cycles. There is

substantially more bias in the estimated growth onset times and

more uncertainty in the growth rates compared to our method (see

Fig. 2A,B), which should decrease if one uses more coalescent tree

simulations to evaluate the likelihood at each point. However, if we

had used 105 trees per likelihood computation as was done in

Excoffier et al. (2013), the inference would have taken an estimated

21 CPU days per data set for Scenario 1 and 47 CPU days per data set

for Scenario 2 on average. In contrast, our method took on average

;1.5CPUminutes per data set for Scenario 1 and20CPUminutes per

data set for Scenario 2.

Estimation of per-locus mutation rates

Our method can compute the MLE for the mutation rate at each

locus while estimating the optimal population size function pa-

rameters (see Equation 8 in Methods). The inferred mutation rates

for each set of parameters in Scenario 1 and Scenario 2 are shown in

Supplemental Figure S3. Since the mutation rates are estimated

using the inferred demography, uncertainty in the demographic

estimates will lead to uncertainty in themutation rate estimates, as

canbe seen for the estimates for Scenario 2 in Supplemental Figure S3.

For Scenario 1 with t1 = 100 gens and r1 = 6.4% per gen, we also

simulated data setswhere themutation rate at each locus is randomly

chosen from the range 1.13 10�8 to 3.83 10�8 per base per gen per

haploid, and then held fixed across all the simulated data sets. This is

the rangeofmutation rates estimated fromfamily trio databyConrad

et al. (2011). Figure 4A shows the performance of our method on

simulated data sets with 100 loci each of length 10 kb and demon-

strates that our procedure can accurately recover the mutation rates.

Estimation of confidence intervals

Our inference algorithm described in Methods assumes that the

sites within each locus are unlinked, in which case the function

LðFÞ given in Equation 9 is a true log-likelihood function. However,

since actual genomic data (and our simulated data sets) involve

nontrivial linkage within a locus, the functionLðFÞ in Equation 9 is

a composite log-likelihood function. Hence, the asymptotic confi-

dence interval expressions in the ‘‘Confidence intervals’’ section of

Methods will not necessarily be well calibrated. To understand this

issue a bit better, we simulated data sets under Scenario 1 with t =

100 gens and r1 = 6.4% per gen. We generated data sets with a se-

quence lengthof 106 bpby simulating 106/munlinked loci of length

m bp each and with a recombination rate of 10�8 per base per gen

per haploid. We did this for m 2 {100, 103, 104} bp. By linearity of

expectation, the expected total number of segregating sites is in-

dependent of the locus lengthm. Hence, for small locus lengthsm,

we expect fewer segregating sites per locus and thus more in-

dependence between the segregating sites across the sequence. In

such cases, we expect the function in Equation 9 to be close to the

true log-likelihood function. Figure 5, A and B shows asymptotic

confidence intervals for the inferred growth onset times and growth

rates over 100 simulated data sets. According to those figures, the

asymptotic confidence interval procedure in Methods is close to an

idealized confidence interval estimation procedure when the locus

lengthm is shorter than 1 kb. For longer locus lengths ofm = 10 kb,

we performed a resampling block bootstrap procedure with 200

bootstrap resamples per data set to estimate confidence intervals

for the exponential population growth parameters. As shown in

Figure 3. Performance of fastsimcoal (Excoffier et al. 2013) on simulated data for Scenario 1. Panels A and B, respectively, show violin plots of the
inferred duration and rate of exponential growth in the population size for 100 simulated data sets for each of the simulation parameter settings in Scenario
1. These are the same simulated data sets used to generate Figure 2, A and B and Supplemental Figure S1. The gray solid horizontal lines indicate the true
values for the simulation parameters. When applying fastsimcoal, due to computational reasons we used 200 and 500 coalescent tree simulations for
Scenario 1 and Scenario 2 per likelihood function estimation and limited the number of rounds of conditional expectation maximization (ECM cycles) to
40. On one of these 100 simulated data sets, their method appeared to have a runaway behavior and produced unreasonable estimates after 40 ECM
cycles; this data set was excluded from these plots.
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Figure 5,C andD, the bootstrap confidence intervals aremuchmore

faithful to an idealized confidence interval estimation procedure

and are better calibrated than those produced by the asymptotic

confidence interval estimation procedure.

Application to real data I: neutral regions

The data set of Gazave et al. (2014) consists of 15 carefully curated

loci from 500 individuals of European ancestry that were se-

quenced at a high coverage depth of 2953. These loci were chosen

Figure 4. Mutation rates inferred by our method. (A) Inferredmutation rates for simulated data sets with 100 loci from 10,000 diploids under Scenario 1
with t1 = 100 and r1 = 6.4%. The mutation rates at the 100 loci were drawn randomly from the range [1.1 3 10�8, 3.8 3 10�8]. The loci are sorted in
ascending order of the simulated mutation rates. The increasing solid line indicates the mutation rates used in the simulation, while the circle and the
vertical bars, respectively, denote themedian and one standard deviation of the inferred mutation rate over 100 simulated data sets. (B) Inferredmutation
rates for each of the 185 genes in the exome-sequencing data set of Nelson et al. (2012). The solid line connects our point estimates for the mutation rate,
while the light vertical bars denote 95% confidence intervals that were constructed by a resampling block bootstrap procedure with 1000 bootstrap
samples. The dashed line connects the point estimates of the mutation rate inferred by Nelson et al. (2012). While the mutation rates estimated by our
method and that of Nelson and coworkers are very close to each other, themutation rates estimated by ourmethod are systematically higher at each locus
owing to the lower population expansion rate inferred by our method.

Figure 5. Calibration plots for asymptotic (A,B), and bootstrap (C,D) confidence intervals of the duration and rate of exponential growth for Scenario 1
with t1 = 100 gens and r1 = 6.4% per gen for 200 simulated data sets of 10,000 diploids, each with 100 unlinked loci of lengthm. For each confidence level
a on the x-axis, the y-axis counts the fraction of data sets where the true parameter estimates lie outside the 100(1 � a)% predicted confidence interval.
The straight black lines denote the plot that would be obtained from an idealized confidence interval estimation procedure. (A,B) Asymptotic confidence
interval calibration plots for the inferred (A) duration and (B) rate of exponential growth. As the locus lengthm increases, linkage disequilibrium causes the
composite log-likelihood approximation in Equation 9 to become increasingly inaccurate, thus leading to poorly calibrated asymptotic confidence in-
tervals form = 10 kb. (C,D) Bootstrap confidence interval calibration plots using 200 bootstrap replicates per simulated data set for the inferred (C ) duration
and (D) rate of exponential growth. The bootstrap confidence intervals are much better calibrated than those produced by the asymptotic confidence
interval estimation procedure.
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to be distant from known or potential coding regions, as well as

regions believed to be under selection. These 15 loci contain

1688 segregating sites that were sequenced in at least 450 in-

dividuals. Gazave and coworkers employed coalescent simula-

tions to fit several demographic models incorporating recent

exponential population growth to this data set. In their models,

they assumed that the ancient European demography has two

population bottlenecks that were inferred by Keinan et al.

(2007). Incidentally, these are also the same bottlenecks that were

used in our simulation study (Scenarios 1 and 2) described above.

Gazave and coworkers’ best-fit model (Model II) had a growth rate

of 3.38% per generation starting about 140 generations in the

past.

We applied our inference program to fit a model of ex-

ponential growth while fixing the parameters of the two an-

cient bottlenecks to the values inferred by Keinan et al. (2007).

We inferred the following three parameters: the rate and the

onset time of recent exponential growth, and the population

size just before the onset of exponential growth. We inferred

that the population grew exponentially at a rate of 3.89% per

generation starting 130 generations in the past, resulting in

a present effective population size of about 820,000 individuals.

Supplemental Figure S4 shows the inferred demographic model,

while Table 1A summarizes the point estimates and 95% confi-

dence interval for the inferred parameter values. The confidence

intervals for the demographic parameters were generated using

1000 block bootstrap resamples. These confidence intervals

have significant overlap with those estimated by Gazave et al.

(2014) in their best-fit model. To get a sense of the goodness of fit

of our inferred demographic model, we generated 104 bootstrap

replicates by drawing samples from a multinomial distribution

given by the expected SFS of our inferred demographic param-

eters and then computing the Pearson x2 test statistic on each of

these replicates and using the expected counts given by the

expected SFS of the inferred parameters. This gives us an em-

pirical distribution for the Pearson x2 statistic under the null

hypothesis that the data are generated according to the PRF

model with demographic parameters given by our inferred pa-

rameters. We did not use the asymptotic x2 distribution because

the cell counts corresponding to the intermediate and tail en-

tries of the SFS were too low. Of the bootstrap replicates, 99.94%

have a larger x2 statistic than that for the observed data, in-

dicating that we cannot reject our inferred demographic model

at the 5% significance level.

Application to real data II: exome-sequencing

Nelson et al. (2012) sequenced more than 14,000 individuals from

several case-control studies at 202 coding regions that are of in-

terest for drug targeting. This data set includes the SFS of a sample

of 11,000 individuals of European ancestry containing ;2600

segregating sites among ;43,000 fourfold degenerate sites in 185

genes (Nelson et al. 2012, Database S3). Using the demographic

estimates of Schaffner et al. (2005) for modeling the ancient

demography of the CEU population, Nelson and coworkers

employed the coalescent simulation-based approach of Coventry

et al. (2010) to fit an epoch of recent exponential growth to their

data. They estimated that the effective population size of the CEU

subpopulation expanded from 7700 individuals 375 generations

ago to ;4 million individuals at the present time at a rate of

;1.68% per generation.

We also applied our method to this data set to infer an epoch

of recent exponential growth. In particular, we inferred the onset

time and the rate of recent exponential population growth while

fixing the population size before the onset of growth and the pa-

rameters of the two bottlenecks in the ancient demography to

those estimated by Schaffner et al. (2005). We computed empirical

confidence intervals for these parameter estimates using a resam-

pling block bootstrap procedure with 1000 bootstrap resamples.

Our point estimates and 95% confidence intervals for the de-

mographic parameters are summarized in Table 1Bwith the inferred

effective population size function shown inSupplemental Figure S5.

We estimated that the effective population size grew exponentially

from 7700 individuals 372 generations ago (95% CI: [308, 446]

generations) to about 1.96 million individuals (95% CI: [1.68, 2.39]

million) at the present time at a rate of;1.50%per generation (95%

CI: [1.26%, 1.80%] per generation). To measure the goodness of fit

of our inferred demographic model, we performed a similar pro-

cedure to that described in the previous section. Creating an em-

pirical distribution for the Pearson x2 statistic using 104 bootstrap

replicates drawn from a multinomial distribution given by the

expected SFS of our inferred demographic parameters, we found

that 75.7% of the simulation replicates had a larger x2 test statistic

than that of the data, indicating that we cannot reject our inferred

demographic model at the 5% significance level.

There are several reasons for the difference in demographic

estimates between our method and that of Nelson et al. (2012).

First, the coalescent simulations of Nelson and coworkers were

performed assuming that all sites within a locus are completely

linked, while we make the opposite extreme assumption that all

Table 1. Point estimates and 95% confidence intervals for the demographic parameters inferred by our method on real data

(A) Neutral regions’ data set of Gazave et al. (2014)

Parameter Point estimate 95% confidence interval

Population size before growth onset (diploids) 5769 (4802, 8785)
Growth rate (% per gen) 3.89% (2.97%, 6.96%)
Growth onset time (gens) 129.8 (99.2, 162.6)
Population size after growth (diploids) 818,786 (492,068, 6,527,975)

(B) Exome-sequencing data set of Nelson et al. (2012)

Parameter Point estimate 95% confidence interval

Growth rate (% per gen) 1.50% (1.26%, 1.80%)
Growth onset time (gens) 371.6 (308.3, 446.1)
Population size after growth (diploids) 1,957,982 (1,682,260, 2,392,230)
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sites are freely recombining and evolve independently. Second,

Nelson and coworkers used 400 simulated coalescent trees to ap-

proximate the likelihood for each combination of demographic

parameters, resulting in a noisy likelihood surface. Our method, in

contrast, uses exact computation to determine the expected SFS

for a given demographic model. Third, they computed the log-

likelihood on a discretized grid of demographic parameters, which

might result in their procedure being far from the maximum

likelihood estimate if the log-likelihood function is fairly flat. Our

approach mitigates this problem by employing sophisticated

gradient-based algorithms that can adapt their step size to the

likelihood landscape.

We also estimated the mutation rate at each locus using our

method (see Equation 8 in Methods). Figure 4B shows our muta-

tion rate estimates and 95% confidence intervals and compares

them to those reported by Nelson et al. (2012). Our estimates are

close to those of Nelson and coworkers while being systematically

larger. This systematic difference can be explained by noting that

our inferred population growth rate is slower than that inferred by

Nelson and coworkers, resulting in a higher mutation rate being

needed to explain the same number of rare variants.

Discussion
Before one can perform any meaningful demographic inference

from SFS data, it is worth examining whether the statistical prob-

lem is well defined.Myers et al. (2008) showed that, in general, the

historical effective population size function is not uniquely de-

termined by the SFS, no matter how large the sample size consid-

ered. In particular, they showed that there are infinitely many

population size functions that can generate the same expected SFS

for all sample sizes.While this nonidentifiability resultmight seem

like a barrier to statistical inference, it was recently shown (Bhaskar

and Song 2014) that if the effective population size function does

not oscillate too often, a condition that is met for several widely

used demographic model families such as piecewise-exponential

functions, then the expected SFS of a sample of moderate size can

uniquely identify the underlying population size function. More

precisely, Bhaskar and Song (2014) showed that any family of

population size functions is identifiable using the expected SFS of

a sample of n sequences as long as suitably time-rescaled versions

of every pair of functions in the family do not ‘‘cross’’ (i.e., change

the sign of their pointwise difference) each other more than n � 2

times.

The theoretical results of Bhaskar and Song (2014) apply to

the case where the expected SFS of a model is available as data.

However, the empirical SFS obtained from a finite genome may be

noisy and may not have converged to the expected SFS. In such

a case, using a large number of segregating sites from a large sample

sizemayhelpwith inference. In this paper, we developed amethod

that can leverage genomic variation data from samples involving

tens of thousands of individuals to infer piecewise-exponential

models of recent changes in the effective population size.

Similar to the SFS-based demographic inference methods of

Nielsen (2000), Coventry et al. (2010), and Excoffier et al. (2013),

we also work in the coalescent framework rather than in the dif-

fusion setting. However, ourmethod differs from existingmethods

in several ways. First, our method is based on an efficient algo-

rithmic adaption of the analytic theory of the expected SFS for

deterministically varying population size models that was de-

veloped by Polanski et al. (2003) and Polanski and Kimmel (2003).

This is in contrast to expensive Monte Carlo coalescent simula-

tions employed by the aforementioned coalescent-basedmethods.

As a result, our approach is much more efficient and allows us to

more thoroughly search the space of demographic models of in-

terest. In a related work, Marth et al. (2004) developed analytic

expressions for the expected SFS of piecewise-constant population

size models and used them for inferring piecewise-constant pop-

ulation size histories for European, Asian, and African-American

populations. However, their analytic expressions are not numeri-

cally stable for sample sizes larger than about 50 individuals and,

moreover, do not extend to more general population size models.

On the other hand, our approach utilizes numerically stable ex-

pressions for the expected SFS developed by Polanski and Kimmel

(2003) which extend to arbitrary variable population size models.

Second, our method uses the Poisson Random Field (PRF)

approximation proposed by Sawyer and Hartl (1992). Under this

approximation, the segregating sites within a locus are assumed to

be far enough apart to be completely unlinked. This is also the

same approximation made by numerical and spectral methods for

inference under the Wright-Fisher diffusion process (Gutenkunst

et al. 2009; Luki�c et al. 2011), and by the coalescent method

of Excoffier et al. (2013) At the other extreme, the method of

Coventry et al. (2010) assumes that all the segregating sites in

a locus are completely linked and hence share the same underlying

genealogy. Both these model simplifications—the assumption of

perfectly linked or completely independently evolving sites within

a locus—are biologically unrealistic. However, as we demonstrated

in our results on simulated data, our method can recover de-

mographic parameters accurately even when the data are gener-

ated under realistic recombination rates that are inferred from

human genetics studies.Working in the PRFmodel also confers on

our method a significant computational benefit. Under this as-

sumption,we can derive efficiently computable expressions for the

maximum likelihood estimate of the mutation rates at each locus.

This contrasts with coalescent simulation-based methods where

either the mutation rate is assumed to be known (Excoffier et al.

2013) or a grid search has to be performed over the mutation rates

(Coventry et al. 2010; Nelson et al. 2012). This makes our method

orders of magnitude more efficient.

Third, our method has advantages over the diffusion-based

methods of Gutenkunst et al. (2009) and Luki�c et al. (2011). By

working in the coalescent framework, the running time of our

method is independent of the population size. Furthermore, by

leveraging analytic andnumerically stable results for the expected SFS

under the coalescent, our computations are exact.On theotherhand,

the method of Gutenkunst et al. (2009) must carefully discretize the

allele frequency space to minimize the accumulation of numerical

errors, while the method of Luki�c et al. (2011) has to choose

a suitable order for the spectral expansion of the transition density

function of the diffusion process.

Finally, since our method is based on a likelihood function

that is computed exactly, we can take advantage of the technique

of automatic differentiation (Griewank and Corliss 1991) to com-

pute exact gradients of the likelihood function. This is one of the

key novel features of our approach and obviates the need for doing

a grid search over the parameters. Instead, we take advantage of

efficient gradient-based algorithms for optimization over the space

of demographic parameters.

Our method is especially suited for inferring details of recent

demographic expansion, since the SFS from large samples contains

much information about recent rapid population growth.While in

theory our method can also be applied to estimate parameters of

ancient population demography such as ancient population
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bottlenecks, there might be more uncertainty in these parameter

estimates compared to estimates from methods that use full or

partial haplotype information (Li and Durbin 2011; Palamara et al.

2012; Harris and Nielsen 2013; Sheehan et al. 2013; Steinr€ucken

et al. 2013). We recommend using our method by fixing the an-

cestral demographic parameters using estimates obtained by other

means or by running our method with several parameter combi-

nations for the ancient demography. Our method also assumes

that the regions being analyzed are subject to neutral evolution.

However, even neutrally evolving sites that are located close to

regions under selective pressure would be subject to hitchhiking

or background selection, and the inferred demographic and

mutation parameters would need to be interpreted accordingly.

For the application of our method, we chose to examine the data

set of Gazave et al. (2014) because those sites were chosen to be

distant from coding regions and regions believed to be under

selective constraint.

Our approach suggests several directions for future research. It

would be interesting to investigate other families of parametric

population size functions thatmight better fit humangenetic data.

For example, Reppell et al. (2014) studiedmore general population

growth models that allow for super- and subexponential growth

through the incorporation of an acceleration parameter. Such

richer parametric families might allow one to fit demographic

models with a smaller number of growth epochs to the data. It is

easy to extend our method to such parametric families, since the

only dependence on the functional form of the population size

function is in the integral expressions given in the Supplemental

Material. More generally, the analytic theory underlying our

computation of the expected SFS extends to an arbitrary variable

population size model, and hence our method can be easily ex-

tended to perform inference under any parametric demographic

model that is identifiable from the expected SFS of a finite sample;

general bounds on the sample size sufficient for identifiabilitywere

obtained by Bhaskar and Song (2014).

It would also be useful to extend the analytic coalescent theory

of the SFS to more realistic demographic models that incorporate

multiple populations with migrations and time-varying population

sizes. This would enable one to develop demographic inference al-

gorithms that are potentially more efficient and accurate than co-

alescent simulation-based methods or numerical diffusion-based

methods. The method we developed is limited to inferring the ef-

fective population size of a single randomly mating subpopulation.

If the sampled individuals in fact belong to different subpopulations,

the distribution of variants observed in the sample would strongly

depend on the details of the population structure, and this would

consequently also impact the results of the inference procedure. For

example, if the subpopulations are well-mixed (i.e., close to being

panmictic), the inferred population size function might closely ap-

proximate the sum of the sizes of the subpopulations from which

the sample is drawn. At the other extreme, if the migration rates

between the subpopulations are extremely low, most of the variants

would be segregating within a single subpopulation with very few

variants being present in multiple subpopulations. The inferred

population size function would then strongly depend on the pro-

portion of samples drawn from each subpopulation and their

corresponding demographic histories. In general, the effect of

population structure on the inferencewould depend strongly on the

underlying demography, and caremust be taken when applying our

method to samples drawn from highly structured populations.

A natural extension to the SFS, which captures variation in

samples frommultiple subpopulations, is the joint population SFS

which counts the number of segregating sites in the sample as

a function of the sample allele frequency in each subpopulation.

Chen (2012) has developed analytic expressions for the expected

joint population SFS of multiple subpopulations when the mi-

grations are instantaneous exchanges of individuals between

subpopulations. Even more fundamentally, it would be interesting

to characterize the statistical identifiability of complexdemographic

models from the joint population SFS of random samples.

Another direction for research is to understand how the un-

certainties in the inference of different parameters are related to

each other. For example, the violin plots in Figure 2, A and B show

that when there is more uncertainty in the inference of the expo-

nential growth rate, there is less uncertainty in the inference of the

growth duration, and vice versa. A similar observation can be made

from Figure 2, C and D for the inference of the exponential growth

parameters of the two epochs in Scenario 2. It would be interesting

to understand if there is a fundamental quantifiable uncertainty

relation that is independent of the inference algorithm, or if this

behavior is specific to our inference procedure.

Methods
In this sectionwe provide an overview of ourmethod. The involved
computational details are provided in the SupplementalMaterial. In
our work we utilize automatic differentiation (Griewank and Corliss
1991), a technique that allows one to compute exact gradients nu-
merically without requiring explicit symbolic expressions for the
gradient. This technique has not beenwidely adopted in population
genetics, so we include a brief exposition of it here.

Model and notation

We assume that our data are drawn according to Kingman’s co-
alescent from a single panmictic population having population
size N(t) haploids at time t, where t is increasing in the past.
Without loss of generality, we assume that the sample is drawn
from the population at the present time t = 0.We shall also assume
the infinite-sites model of mutation, where mutations occur at
a low enough rate that any segregating site in the sample has ex-
perienced at most one mutation event.

The data we wish to analyze, denoted by D, consist of the
sample frequency spectrum (SFS) for n haploid (or n/2 diploid)
individuals at each of L loci located sufficiently far apart along the
genome. The SFS at locus l is a vector sðlÞ = ðsðlÞ1 ; . . . ; s

ðlÞ
n�1Þ, where

s
ðlÞ
i is the number of segregating sites which have i copies of the
mutant allele among the n alleles at that site. We are also given
the length m(l) of each locus l. For notational convenience, let
sðlÞ =+n�1

i=1 s
ðlÞ
i be the total number of segregating sites in the

sample at locus l. Given the data D, our goal is to infer the
haploid effective population size function N(t) and the per-base
locus-specific mutation rates m(l). We use F to denote a vector
of parameters that parameterize the family of piecewise-
exponential demographic models. Note that such a family also
contains piecewise-constant population size functions. While
we describe our method assuming knowledge of the identities of
the ancestral and mutant alleles, we can just as easily work with
the folded SFS which counts the segregating sites as a function
of the sample minor allele frequency, if the identity of the an-
cestral allele is not known.

Likelihood

Let us first restrict attention to a single locus l. For a locus with
lengthm bases and per-base per-generationmutation ratem, let u/2
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denote the population-scaled mutation rate for the whole locus.
Specifically,

u=4Nrmm;

where Nr denotes a reference population size which is used as
a scaling parameter.

We wish to compute the probability of the observed fre-
quency spectrum s = (s1, . . ., sn�1) at locus l under the infinite-
sites model. (We omit the superscript l for ease of notation.) If all
the sites in the locus are completely linked and the n individuals
in the sample are related according to the coalescent tree T, then
the probability of observing the frequency spectrum s is given
by

PðsjT ;F; uÞ=
Yn�1

i=1

exp

�
� u

2
tn;iðTÞ

� �u
2
tn;iðTÞ

�si
si!

; ð1Þ

where tn,i(T) is the sum of the lengths of branches in the coalescent
tree T which subtend i descendant leaves. The explanation for
Equation 1 is as follows: In the infinite-sites mutation model, mu-
tations occur on the coalescent tree according to a Poisson process
with rate u/2, where everymutation generates a new segregating site.
Amutation creates a segregating site with imutant alleles if and only
if it occurs on a branch that subtends i descendants in the sample. To
avoid unwieldy notation, we drop the dependence on the tree T for
the branch lengths tn,i(T). To compute the probability of the ob-
served frequency spectrum s, we need to integrate Equation 1 over
the distribution f(T |F) of n-leaved coalescent trees T under the de-
mography F. Let T n denote the space of coalescent trees with n
leaves. Then, abusing notation, the probability PðsjF; uÞ can be
written as

PðsjF; uÞ=
Z
T n

PðsjT;F; uÞf ðTjFÞdT

=

Z
T n

Yn�1

i=1

exp

�
� u

2
tn;i

� �
u

2
tn;i

�si

si!

2
664

3
775f ðTjFÞdT

=

Z
T n

Yn�1

i=1

�
u

2
tn;i

�si

si!

2
664

3
775exp

�
�u

2
tn

�
f ðTjFÞdT

PðsjF; uÞ

=

Z
T n

�
s

s1; . . . ; sn�1

�"Yn�1

i=1

�
tn;i
tn

�si
#
exp

�
�u

2
tn

� �
u

2
tn

�s

s!
f ðTjFÞdT;

ð2Þ

where s=+n�1
i=1 si. In Equation 2, tn =+

n�1
i=1 tn;iðTÞ, the total branch

length of the tree T on n haploid individuals. It is not known how
to efficiently and exactly compute Equation 2, even when F rep-
resents the constant population size demographic model. Most
works approximate the integral in Equation 2 by sampling co-
alescent trees under the demographicmodelF. In order to find the
MLE for u, they must repeat this Monte Carlo integration for each
value of u in some grid.

Poisson Random Field approximation

In our method we use the Poisson Random Field (PRF) assump-
tion of Sawyer and Hartl (1992), which assumes that all the sites

in a given locus are completely unlinked, and hence the un-
derlying coalescent tree at each site is independent. Under this
assumption, the probability of the observed frequency spectrum s
is given by

PðsjF; uÞ=
Yn�1

i=1

�
u

2
EF

�
tn;i
��

si!

si

exp

�
� u

2
EF½tn�

�

=C
Yn�1

i=1

�
u

2
EF

�
tn;i
��si

exp

�
� u

2
EF½tn�

�
; ð3Þ

where the expectations EF½�� in Equation 3 are taken over the distri-
butiononcoalescent treeswithn leaves drawn fromthedemographic
model parameterized by F, and C =

Qn�1
i=1

1
si !
is a data-dependent con-

stant that can be ignored for maximum likelihood estimation.
Hence, under the PRF approximation, the problem of com-

puting the likelihood in Equation 3 reduces to that of computing
the expectations EF½tn;i� and EF½tn� for the demographic model
given by F. Using analytic results for the SFS for variable pop-
ulation sizes developed by Polanski et al. (2003) and Polanski and
Kimmel (2003), we can develop an efficient algorithm to numeri-
cally stably and exactly compute EF½tn;i� and EF½tn� for a wide class
of population size functions NðtÞ. In this work, we consider in-
ference in the family of piecewise-exponential functions with ei-
ther a prescribed or variable number of pieces. The details of
computing EF½tn;i� and EF½tn� for such a class of population size
functions is given in the Supplemental Material. Inference under
other families of parametric demographic models can just as easily
be performed if one can efficiently compute the integral expres-
sions given in the Supplemental Material.

Taking logarithms on both sides in Equation 3, we get the
following log-likelihood for the demographic model F and muta-
tion rate u at this locus:

L ðF; uÞ= logPðsjF; uÞ = +
n�1

i=1

si
�
logEF

�
tn;i
�
+ log u

	
� u

2
EF½tn�+ constantðsÞ; ð4Þ

where constant (s) depends on s but not on the parameters F, u.
Assuming the loci are all completely unlinked, the log-

likelihood for one locus given in Equation 4 can be summed across
all loci l = 1, . . ., L to get a log-likelihood for the entire data set D:

L


F;
n
uðlÞ
oL

l=1

�
= logP



DjF;

n
uðlÞ
oL

l=1

�
= +

L

l=1

"
+
n�1

i=1

s
ðlÞ
i



logEF

�
tn;i
�

+ log uðlÞ
�
� uðlÞ

2
EF½tn�

#
+ constantðsÞ: ð5Þ

It is easy to see that L is a concave function of the mutation
rates u(l), since the HessianH ofLwith respect to u = (u(1), . . ., u(L)) is
given by

Hl;l0 ðuÞ =
@2L

@uðlÞ@uðl
0 Þ = � dl;l0

1�
uðlÞ
�2 +

n�1

i=1

s
ðlÞ
i ; ð6Þ

showing that H(u) is negative definite for all u _ 0. Hence, the
mutation rates of the loci that maximize L are the solutions of
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0=
@L
@uðlÞ

=
1

uðlÞ
+
n�1

i=1

s
ðlÞ
i � 1

2
EF½tn�; ð7Þ

yielding the following maximum likelihood estimate for the mu-
tation rate u(l) at locus l given the demographic model:

û
ðlÞ
=
2+n�1

i=1 s
ðlÞ
i

EF½tn�
: ð8Þ

Note that for a constant population size, Equation 8 is the
same asWatterson’s estimator u

ðlÞ
W for themutation rate (Watterson

1975), namely

u
ðlÞ
W =

+n�1
i=1 s

ðlÞ
i

+n�1
i=1

1

i

;

since for a constant population size, E½tn�=2+n�1
i=1

1
i . Substituting

the MLE for u(l) in Equation 8 into Equation 5, we obtain the log-
likelihood with the optimal mutation rates:

LðFÞ = +
n�1

i=1

" 
+
L

l=1

s
ðlÞ
i

!
log

�
EF

�
tn;i
�

EF½tn�

�#
+ constantðsÞ: ð9Þ

If we define the discrete probability distributions p= fpkgn�1
k=1

and jn ðFÞ= fjn;kðFÞgn�1
k=1

by

pk =
+L

l=1s
ðlÞ
k

+n�1
i=1+

L
l=1s

ðlÞ
i

and

jn;kðFÞ=
EF

�
tn;k
�

EF½tn�
;

then we see that the demographic model F̂ that is the MLE of the
likelihood function LðFÞ in Equation 9 is given by

F̂ = argmax
F

LðFÞ

= argmin
F

KLðpkjnðFÞÞ;

ð10Þ

where KL(P k Q ) denotes the Kullback-Liebler divergence of dis-
tribution Q from P.

Hence, for a given demographic model F, we can compute
the log-likelihood using Equation 9 and infer the optimal muta-
tion rate at each locus independently according to Equation 8. We
compute the gradient of LðFÞ with respect to F using automatic
differentiation (Griewank and Corliss 1991), detailed below. Once
we have access to the gradient of LðFÞ, we can more efficiently
search over the space of demographic models using standard
gradient-based optimization algorithms.

Some computational details

For a sample of size n and a piecewise-exponential demographic
model with M epochs, the terms EF½tn;i� in Equation 9 can be
computed inO(nM) time for each value of the index i, 1# i# n� 1.
Hence, the time complexity for evaluating the log-likelihood
function in Equation 9 is O(n2M). However, since we would like to
use our method for large sample sizes on the order of tens to

hundreds of thousands of individuals, in practice, and for the
study reported in Results, we evaluate Equation 9 by using only the
leading entries of the SFS which account for some significant
fraction of the segregating sites in the observed sample. In partic-
ular, for the results on simulated and real data sets reported in
Results, when computing the KL divergence in Equation 10,we use
the first k entries of the SFS which account for a fraction f = 90% of
the segregating sites in the observed data while collapsing the
remaining n � k � 1 SFS entries into one class. It is an important
open question to understand how such a binning strategy affects
demographic inference procedures that operate on frequency
spectrum data. We examine this issue empirically in Section 2 of
the Supplemental Material.

Confidence intervals

If we ignore the fact that we are using the PRF assumption to treat
the sites within each locus as freely recombining, Equation 9 is the
log-likelihood function of L independent samples from a multi-
nomial distribution with n � 1 categories and probabilities jn(F) =
(jn,1(F), . . ., jn,n�1(F)), where jn;iðFÞ =EF½tn;i�=EF½tn�, and
+n�1

i=1 jn;iðFÞ=1. Since the probability models specified by the like-
lihood functionLðFÞ are identifiable for a sufficiently large sample
size n that depends on the number of parameters being inferred
(Bhaskar and Song 2014), and since jn(F) is differentiable with
respect to F, it follows from the asymptotics of maximum likeli-
hood estimators that

ffiffi
s

p 

F̂�F�

�


!ds!N N
�
0; I�1ðF�Þ

	
; ð11Þ

where F* is the true underlying demographic model, and IðF�Þ is
the expected Fisher information matrix of a single observation.
The elements of IðF�Þ are given by

IðF�Þa;b = � EF�

�
@2LðFÞ
@Fa@Fb

����
F�

�
; ð12Þ

where Fi denotes the ith element of the demographic parameter
vectorF. For the log-likelihood function LðFÞ in Equation 9, using
EF� ðpkÞ= jn;kðF�Þ, it is straightforward to show that Equation 12
simplifies to

IðF�Þa;b = +
n�1

k=1

@jn;kðFÞ
@Fa

@jn;kðFÞ
@Fb

1

jn;kðFÞ

�����
F=F�

: ð13Þ

We calculate the partial derivatives in Equation 13 via auto-
matic differentiation during the computation of p(F) (Griewank
andCorliss 1991). This allows us to construct asymptotic empirical
confidence intervals for F*. An asymptotic 100(1 � a)% confi-
dence interval for the parameters of F* is given by

F̂a6za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�1



F̂
�
a;a

r
; ð14Þ

where za/2 is the 100(1 � a/2)th percentile of a standard normal
distribution.

If the loci being analyzed are longwith low levels of intralocus
recombination, then Equation 9 is a composite log-likelihood
function rather than a true likelihood function. In such cases,
we compute empirical confidence intervals for the demographic
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parameters using a nonparametric block bootstrap procedure
(Efron and Tibshirani 1986). In particular, we subsample L loci
with replacement from the original data set of L loci, where each
locus is sampled with probability proportional to the number of
segregating sites in it. We examine the performance of the as-
ymptotic confidence interval procedure and the block bootstrap
on simulated data in Results.

Automatic differentiation

Since our inference algorithm and asymptotic confidence interval
estimation procedure rely heavily on computing gradients via
automatic differentiation, we briefly describe this technique here
to keep the paper self-contained. Automatic differentiation (AD) is
a powerful technique for computing the gradient (and higher-
order derivatives) of a mathematical function that is implemented
in a computer program. The basic idea in AD is to track the values
and gradients of the intermediate variables in a computer program
evaluated at the desired value of the independent variables, where
the chain rule of calculus is repeatedly employed to compute the
gradients. For example, suppose we had the mathematical func-
tion f(x) = sin(x2 + x) that is implemented via the following com-
puter function f(x):

function fðxÞf
y=x � x
z=y+x

w= sinðzÞ
return w

g

To calculate the numerical value of df/dx, we augment the
intermediate variables in this program to create a new variable per
existing variable that will track the derivative with respect to x,
evaluated at the value passed for the argument x. In particular, in
this program,we define x0 = dx/dx (whichwill be trivially initialized
to 1), y0 = dy/dx, z0 = dz/dx, and w0 = dw/dx. Suppose we wish to
evaluate f and its gradient (with respect to x) at x = 1/2. The desired
df/dx evaluated at x = 1/2 is equal tow0 evaluated at x = 1/2. The key
idea in AD is to evaluate y0, z0, andw0 at the same time that y, z, and
w are being evaluated for the input variable value x = 1/2. These
augmented variables y0, z0, andw0 can be computed using the chain
rule of calculus. The evaluation of the original and augmented
variables of the function at x = 1/2 proceeds as follows:

ðx; x0Þ = ð1=2;1Þ:

ðy; y0Þ = ðx3 x; x3 x0 + x0 3 xÞ
= ð1=231=2;1=231+131=2Þ= ð1=4;1Þ: ð15Þ

ðz; z0Þ= ðy + x; y0 + x0Þ
= ð1=4+1=2;1+1Þ = ð3=4;2Þ: ð16Þ

ðw;w0Þ= ðsinðzÞ; cosðzÞ3 z0Þ
= ðsinð3=4Þ; cosð3=4Þ32Þ: ð17Þ

Note that the chain rule was invoked in Equations 15, 16, and
17 to calculate y0, z0, and w0 at x = 1/2. Using features of modern

programming languages such as function and operator over-
loading, the chain rule calculations for common mathematical
functions can be abstracted away in a library, thus requiring min-
imal changes to the user’s program. In our demographic inference
software package, we used the AD library ADOL-C (Walther and
Griewank 2012).

AD offers advantages over both symbolic and numerical
methods for gradient evaluation. Since one does not have to derive
and implement potentially complicated expressions for the sym-
bolic gradient of the original mathematical function, AD helps
reduce the chances of implementation errors. At the same time, AD
computes exact gradients as opposed to approximate numerical
methods like finite-difference schemes. The description provided
above is called forward-mode AD; there are also other evaluation
orders for the terms in the chain rule computation in AD. We refer
the interested reader to Griewank and Corliss (1991) for a more
detailed survey of this topic.

Software availability

We have implemented the algorithms described in this paper in
an open-source software package called fastNeutrino, which
stands for fast Ne (effective population size) and mUTation Rate
Inference using aNalytic Optimization. It is publicly available at
http://fastneutrino.sourceforge.net.

Acknowledgments
A.B. thanks Andrew Chan for helpful discussions at the initial
stages of this work. We also thank John Novembre and Darren
Kessner for sharing their demographic estimates on the exome-
sequencing data set, andAlonKeinan and LiMa for sharing the SFS
of the neutral regions data set. We thank Nick Patterson and two
anonymous reviewers for their suggestions that helped to improve
the manuscript. A.B. and Y.S.S. acknowledge the generous support
of the Simons Institute for the Theory of Computing, where much
of this manuscript was completed while the authors were partici-
pating in the 2014 program on ‘‘Evolutionary Biology and the
Theory of Computing.’’ A.B. thanks Hideki Innan for hosting him
while the final version of this work was completed under a short-
term postdoctoral fellowship from the Japan Society for the Pro-
motion of Science. This research is supported in part by NIH
grants R01-GM094402 and R01-GM108805, a Packard Fellowship
for Science and Engineering, and a Simons-Berkeley Research
Fellowship.

References

Balding DJ, Nichols RA. 1997. Significant genetic correlations among
Caucasians at forensic DNA loci. Heredity 78: 583–589.

Bhaskar A, Song YS. 2014. Descartes’ rule of signs and the identifiability of
population demographic models from genomic variation data. Ann Stat
42: 2469–2493.

Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD,
Lohmueller KE, Adams MD, Schmidt S, Sninsky JJ, Sunyaev SR, et al.
2008. Assessing the evolutionary impact of amino acidmutations in the
human genome. PLoS Genet 4: e1000083.

Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, Groop LC,
Altshuler D, Ardlie KG, Hirschhorn JN. 2005. Demonstrating
stratification in a European American population. Nat Genet 37: 868–
872.

Chen H. 2012. The joint allele frequency spectrum of multiple populations:
a coalescent theory approach. Theor Popul Biol 81: 179–195.

Clayton DG,Walker NM, Smyth DJ, Pask R, Cooper JD, Maier LM, Smink LJ,
Lam AC, Ovington NR, Stevens HE, et al. 2005. Population structure,
differential bias and genomic control in a large-scale, case-control
association study. Nat Genet 37: 1243–1246.

Bhaskar et al.

278 Genome Research
www.genome.org

http://fastneutrino.sourceforge.net


Conrad D, Keebler J, DePristo M, Lindsay S, Zhang Y, Casals F, Idaghdour Y,
Hartl C, Torroja C, Garimella K, et al. 2011. Variation in genome-wide
mutation rates within and between human families. Nat Genet 43: 712–
714.

Coventry A, Bull-Otterson LM, Liu X, Clark AG, Maxwell TJ, Crosby J,
Hixson JE, Rea TJ, Muzny DM, Lewis LR, et al. 2010. Deep resequencing
reveals excess rare recent variants consistent with explosive population
growth. Nat Commun 1: 131.

EfronB, Tibshirani R. 1986. Bootstrapmethods for standard errors, confidence
intervals, and other measures of statistical accuracy. Stat Sci 1: 54–75.

Ewens W. 2004. Mathematical population genetics: I. Theoretical introduction,
2nd ed. Springer, New York.

Excoffier L, Dupanloup I, Huerta-S�anchez E, Sousa VC, Foll M. 2013. Robust
demographic inference from genomic and SNP data. PLoS Genet 9:
e1003905.

Fu YX. 1995. Statistical properties of segregating sites. Theor Popul Biol 48:
172–197.

Fu W, O’Connor TD, Jun G, Kang HM, Abecasis G, Leal SM, Gabriel S,
Altshuler D, Shendure J, Nickerson DA, et al. 2012. Analysis of 6,515
exomes reveals the recent origin of most human protein-coding
variants. Nature 493: 216–220.

Gazave E, Chang D, Clark AG, Keinan A. 2013. Population growth inflates
the per-individual number of deleterious mutations and reduces their
mean effect. Genetics 195: 969–978.

Gazave E,Ma L, ChangD, Coventry A, Gao F,MuznyD, Boerwinkle E, Gibbs
RA, Sing CF, Clark AG, et al. 2014. Neutral genomic regions refine
models of recent rapid human population growth. Proc Natl Acad Sci
111: 757–762.

Graham J, Curran J, Weir B. 2000. Conditional genotypic probabilities for
microsatellite loci. Genetics 155: 1973–1980.

Gravel S, Henn BM, Gutenkunst RN, Indap AR, Marth GT, Clark AG, Yu F,
Gibbs RA, Bustamante CD, Altshuler DL, et al. 2011. Demographic
history and rare allele sharing among human populations. Proc Natl
Acad Sci 108: 11983–11988.

Griewank A, Corliss GF. 1991. Automatic differentiation of algorithms: theory,
implementation, and application. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. 2009.
Inferring the joint demographic history of multiple populations from
multidimensional SNP frequency data. PLoS Genet 5: e1000695.

Harris K, Nielsen R. 2013. Inferring demographic history from a spectrum of
shared haplotype lengths. PLoS Genet 9: e1003521.

Hudson R. 2002. Generating samples under a Wright–Fisher neutral model
of genetic variation. Bioinformatics 18: 337–338.

Keinan A, Clark AG. 2012. Recent explosive human population growth has
resulted in an excess of rare genetic variants. Science 336: 740–743.

Keinan A, Mullikin JC, Patterson N, Reich D. 2007. Measurement of the
human allele frequency spectrum demonstrates greater genetic drift in
East Asians than in Europeans. Nat Genet 39: 1251–1255.

Li H, Durbin R. 2011. Inference of human population history from
individual whole-genome sequences. Nature 475: 493–496.

Lohmueller KE. 2014. The impact of population demography and selection
on the genetic architecture of complex traits. PLoS Genet 10: e1004379.

Lohmueller KE, Indap AR, Schmidt S, Boyko AR, Hernandez RD, Hubisz MJ,
Sninsky JJ, White TJ, Sunyaev SR, Nielsen R, et al. 2008. Proportionally
more deleterious genetic variation in European than in African
populations. Nature 451: 994–997.

Luki�c S, Hey J. 2012. Demographic inference using spectral methods on SNP
data, with an analysis of the human out-of-Africa expansion. Genetics
192: 619–639.

Luki�c S, Hey J, Chen K. 2011. Non-equilibrium allele frequency spectra via
spectral methods. Theor Popul Biol 79: 203–219.

Marchini J, Cardon LR, Phillips MS, Donnelly P. 2004. The effects of human
population structure on large genetic association studies. Nat Genet 36:
512–517.

Marth G, Czabarka E, Murvai J, Sherry S. 2004. The allele frequency
spectrum in genome-wide human variation data reveals signals of
differential demographic history in three large world populations.
Genetics 166: 351–372.

Myers S, Fefferman C, Patterson N. 2008. Can one learn history from the
allelic spectrum? Theor Popul Biol 73: 342–348.

Nelson MR, Wegmann D, Ehm MG, Kessner D, Jean PS, Verzilli C, Shen J,
Tang Z, Bacanu S-A, Fraser D, et al. 2012. An abundance of rare
functional variants in 202 drug target genes sequenced in 14,002 people.
Science 337: 100–104.

Nielsen R. 2000. Estimation of population parameters and recombination
rates from single nucleotide polymorphisms. Genetics 154: 931–942.

Palamara PF, Lencz T, Darvasi A, Pe’er I. 2012. Length distributions of
identity by descent reveal fine-scale demographic history. Am J Hum
Genet 91: 809–822.

Polanski A, Kimmel M. 2003. New explicit expressions for relative
frequencies of single-nucleotide polymorphisms with application
to statistical inference on population growth. Genetics 165: 427–
436.

Polanski A, Bobrowski A, Kimmel M. 2003. A note on distributions of times
to coalescence, under time-dependent population size. Theor Popul Biol
63: 33–40.

Reppell M, Boehnke M, Z€ollner S. 2014. The impact of accelerating, faster
than exponential population growth on genetic variation.Genetics 196:
819–828.

Sankararaman S, Patterson N, Li H, P€a€abo S, Reich D. 2012. The date of
interbreeding between Neandertals and modern humans. PLoS Genet 8:
e1002947.

Sawyer SA, Hartl DL. 1992. Population genetics of polymorphism and
divergence. Genetics 132: 1161–1176.

Schaffner S, Foo C, Gabriel S, Reich D, Daly M, Altshuler D. 2005.
Calibrating a coalescent simulation of human genome sequence
variation. Genome Res 15: 1576–1583.

Sheehan S, Harris K, Song YS. 2013. Estimating variable effective population
sizes from multiple genomes: a sequentially Markov conditional
sampling distribution approach. Genetics 194: 647–662.

Simons YB, Turchin MC, Pritchard JK, Sella G. 2014. The deleterious
mutation load is insensitive to recent population history. Nat Genet 46:
220–224.

Steinr€ucken M, Paul JS, Song YS. 2013. A sequentially Markov conditional
sampling distribution for structured populations with migration and
recombination. Theor Popul Biol 87: 51–61.

Tennessen JA, Bigham AW, O’Connor TD, FuW, Kenny EE, Gravel S, McGee
S, Do R, Liu X, JunG, et al. 2012. Evolution and functional impact of rare
coding variation from deep sequencing of human exomes. Science 337:
64–69.

Walther A, Griewank A. 2012. Getting started with ADOL-C. In
Combinatorial scientific computing (ed. Schenk O), pp. 181–202.
Chapman and Hall/CRC, London.

Watterson G. 1975. On the number of segregating sites in genetical models
without recombination. Theor Popul Biol 7: 256–276.

Williamson SH, Hernandez R, Fledel-Alon A, Zhu L, Nielsen R, Bustamante
CD. 2005. Simultaneous inference of selection and population growth
from patterns of variation in the human genome. Proc Natl Acad Sci 102:
7882–7887.

Received May 22, 2014; accepted in revised form December 8, 2014.

Efficient inference of population size histories

Genome Research 279
www.genome.org


