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Abstract Carcinogenesis is a multistep and also a multifacto-
rial process that involves agents like genetic and environmental
factors. Matrix metalloproteinases (MMPs) are major proteo-
lytic enzymes which are involved in cancer cell migration,
invasion, and metastasis. Genetic variations in genes encoding
the MMPs were shown in human studies to influence cancer
risk and phenotypic features of a tumor. The complex role of
MMPs seems to be important in the mechanism of carcino-
genesis, but it is not well recognized. Rodent studies concen-
trated particularly on the better understanding of the biological
functions of the MMPs and their impact on the pathological
process, also through the modification of Mmp genes. This
review presents current knowledge and the existing evidence
on the importance of selected MMPs in genetic mouse models
of cancer and human genetic association studies. Further, this
work can be useful for scientists studying the role of the genetic
impact of MMPs in carcinogenesis.

Keywords MMP . Cancer . Genetic mousemodels . Genetic
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Introduction

The interactions between tumor cells and their microenviron-
ment reveal the key role of matrix metalloproteinases (MMPs)

during the process of carcinogenesis. Tumor growth and me-
tastasis formation depend on the cell-cell and cell-matrix
interactions and also modifications of the tissue through the
action of proteolytic enzymes [1–3]. In the early 1980s, Liotta
et al. indicated in in vitro studies on mouse cancer cells the
importance of these enzymes in the process of metastasis [4].
Members of the MMP family of extracellular proteases in-
clude six subgroups which, due to differences in their structure
domain, may be involved in a large variety of physiological
and pathological processes [5]. The large family of MMPs is
composed of 25 endopeptidases in humans and 24 in mice [6,
7]. MMP enzymes play a significant role in cancer invasion,
metastasis, and angiogenesis also through their impact on cell
behavior such as growth of metastasized tumor cells and
increased motility of the epithelial cells [5, 8]. Studies show
that the activity of MMP plays a role in extracellular matrix
(ECM) protein breakdown, cleavage of cell surface receptors,
and release of apoptotic signals, and it is associated with
advanced stages and poor clinical outcome in various types
of cancer [9–11]. However, MMPs have been reported to be
important also at an early stage of tumor progression [12–14].
In 2003, Balbin et al. in his study demonstrated for the first
time that Mmp-8 has a protective role in mouse skin cancer
[15]. Nowadays, the reviews focused on the MMP role in
cancer metastasis and angiogenesis postulated various op-
posed effects, such as tumor supporting and inhibiting
[16–18]. In this paper, we shall present and discuss current
knowledge about MMP studied in mice tumor models and
human genetic association studies.

Evaluation of the role of MMP in cancer in genetic mouse
models

The design and conduction of genetic association studies can
be challenging and replete with difficulties because of the
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balance of different risks in relation to one another. For all
these reasons, the mouse model studies allow us to control or
eliminate the effects of genetic and environmental variation
and enhance our understanding of cancer disease [19–21].
Despite several limitations resulting from the ethical and
technical constraints, the mouse model is a valuable tool
because some types of tumors in mice are similar in morphol-
ogy, histopathology, and molecular characteristics to human
tumors [22]. Nowadays, there are many ways to generate
genetically engineered mice (GEM)—mice with induced mu-
tations, such as mouse loss of function, i.e., knockdown,
knockout, and dominant negative, andmouse gain of function,
i.e., transgenic, knockin, and virus-mediated delivery [19, 23].
The Mmp gene knockout mutation also known as Mmp--
deficient or null mice is the most common among GEM.
Mouse mutants increased our understanding of the molecular
and biological functions of protein by engineering constitutive
or conditional deletions which delete or invert all or part of a
target gene such that the gene is inactivated [24]. Because the
loss of function of a gene may be comparable to the effect that
occurs for the functional genetic polymorphism in humans,
they can be used as a background for showing a relationship
between genotype and cancer risk factor.

Genetic mouse models reveal the complexity of MMPs in a
variety of biological processes together with normal and path-
ological tissue conditions, under identical environmental and
genetic conditions [25, 26]. Therefore, they are useful in ex-
tending our understanding of cancer pathogenesis. The use of
combined mutational mouse models may be exploited to dem-
onstrate interactions between MMPs and other ECM mole-
cules important in understanding the carcinogenic mechanism
[17, 27]. Interactions between MMPs and proteinases of other
classes are another important aspect of tumor biology. Under-
standing these interactions is also necessary for development
of effective therapeutic strategies [28]. Additionally, in vitro
studies in mice bring us closer to understanding not only the
role of MMPs but also the importance of genetic variants of
Mmp genes. Thus, genetically modified mouse models allow
us to explore the mechanisms underlying the role of various
MMPs in cancer, which may be helpful in planning and
interpreting future human genetic association studies.

The MMP mRNA expression and activity determined by
real-time PCR, zymography, immunoblotting, or immunohis-
tochemistry are recently used as biomarkers of tumor invasion
and metastasis in mice, as shown by numerous in vivo studies
[29–32].

Genetic polymorphisms in the MMPs as a regulator
of MMP gene expression and their impact on cancer risk

The synthesis of theMMPs is observed under both normal and
pathological conditions [33]. Connective tissue cells such as

fibroblasts, leukocytes, and macrophages, and tumor stromal
elements can synthesize and secrete proMMPs. Awide variety
of extracellular factors, including specific tissue MMP inhib-
itors, cytokines, and environmental growth factors, regulate
the synthesis and activity of MMPs in tissue. Expression of
MMP genes is under transcriptional regulation by the extra-
cellular factors, transcription factors such as activator protein-
1, E-twenty-six specific domain, Sp-1, nuclear factor-κB, and
promoter TATA box, and also under regulation of genetic
polymorphisms [34–36].

The genetic polymorphisms are DNA heritable sequence
variants in the genome that may contribute to phenotypic
variability, which cause variation in expression, including
silencing of genes. Most of the common genetic variants are
single nucleotide polymorphisms (SNPs) and deletion-
insertion variants (DIVs). These changes probably represent
the majority of genetic variability in the human population
[37]. A SNP consists in base pair substitution, while a DIV
involves nucleotide deletion or insertion. Those allelic vari-
ants generated as the result of conversion of a nucleotide to
another at a homologous position in the promoter region of the
gene may affect gene transcriptional activity. SNPs in the
promoter region of MMP may affect transcription through
creating a binding site for E-twenty-six or abolishing the
binding site for Sp1 [38, 39]. At the same time, SNPs located
in exons may lead to a replacement and affect protein func-
tion. Another type of genetic polymorphisms is polymorphic
microsatellites containing cytosine-adenine dinucleotide re-
peats and rare copy number variations (CNVs). Taken togeth-
er, these genetic variabilities have a proven or likely effect on
gene expression with a possible impact on the process of
tumorigenesis and cancer risk [40].

The functional polymorphisms in the MMPs have been
examined in many cancer-associated studies among various
populations. Those studies investigated not only the relation-
ship between common genetic polymorphisms and cancer risk
but also cancer prognosis, invasiveness, and recurrence
[41–43]. The resultant data confirm not only the impact of
various genetic polymorphisms in the MMPs on cancer risk
but also the lack of association. The results appear to be
unclear about whether some common genetic polymorphisms
ofMMPs may be used as a predictor of cancer risk. Thus, the
goals of meta-analysis were to provide an overview of the
evidence regarding the MMP genetic polymorphisms and
cancer risk [44–48].

To date, genome-wide association studies which used only
total cases of cancer versus the control population have not
identified loci in MMPs to affect breast or bladder cancer risk
[49, 50]. Also, studies which use mouse mapping quantitative
trait loci to predicted human disease MMP genes have not
been identified [51, 52]. Both methods have limitations,
but use of the GEM might enable better understanding
of these results.
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Most reports agree that factors contributing to cancer de-
velopment involve both environmental and genetic risk fac-
tors. A variety of environmental risk factors, environmental
carcinogens, and genetic predispositions greatly affect the risk
of cancer [41]. Notably, the large heterogeneity of the
human population in terms of dietary, lifestyle habits,
and environmental exposures makes it difficult to assess
the relationship between selected risk factors and cancer
risk [24].

A number of studies have reported the effect of the envi-
ronmental factor on disease risk to vary with genotype
[53–56]. The MMP genetic polymorphisms may modify the
significance of an environmental risk factor for bladder cancer
through enhanced sensitivity to cigarette smoke [57–62].
Studies in cancer and other disease suggest that common
genetic variants of MMPs may also interact with cigarette
smoking in esophageal squamous cell carcinoma [63], lung
cancer [64], and myocardial infarction [65]. However, despite
this, there is still limited knowledge of both genetic and
environmental causes of cancer. New studies are now required
to explain the importance of common genetic variants in
combinations with environmental factors and elucidate the
existing dependence in cancerogenesis. In such cases, the
challenge will be taking into account SNPs, CNVs, and their
potential interactions with environmental risk factors for dis-
ease such as carcinogens and many others. It appears that the
environmental exposure studies will use the next gener-
ation mutant mouse lines mimicking human genetic
polymorphisms to examine their significance in human
tumors [66].

MMPs in carcinogenesis: genetic mouse models
and human genetic association studies

As has been stated by Iyer et al., the creation ofMmp-deficient
mice is one of the major MMP milestones [67]. The mouse
model has been mainly selected from among the rodent model
to study the role of MMPs.

The first cancer study using GEM models in Mmp was
conducted in 1995 [68]. In the MMP studies, the most com-
monly used GEMmodels are knockout mice, double-deficient
mice, but also transgenic mice.Mmp-deficient mice were also
evaluated in induced disease such as arthritis, pulmonary
fibrosis, and acute hepatitis [27] and in the mouse
model of cardiovascular disease [69]. No physiological
alterations were observed in the majority of Mmp-defi-
cient mice, possibly due to the enzymatic compensation
and other effects described by Scroyen et al. [70].
However, Mmp-deficient mice demonstrate the individu-
al functions of MMPs [71].

Numerous studies in genetic mouse models of cancer sug-
gest that MMP deficiency may lead to decreased or increasedT
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tumor progression, incidence, size, and metastasis. In most
cases, experimental studies in genetic mouse models of cancer
and human association studies confirmed the importance of
MMPs (Table 1).

According to the results of the human clinical specimens,
genetic mousemodels, and human association studies, the role
of MMPs in carcinogenesis may be categorized as follows:
tumor-promoting, anticancer, and both effects [145].

MMPs with tumor-promoting roles (MMP-1, MMP-2,
MMP-7, MMP-14)

Genetic mouse model studies presenting the tumor-promoting
role of MMPs in cancer are shown in Table 2. To our knowl-
edge, only one study concerns Mmp-1a-deficient mouse
ortholog of human MMP-1. In vivo data imply that Mmp-1a
has a role in lung tumor progression [119]. Moreover, associ-
ation studies suggest that functional polymorphism in the
MMP-1 is associated with risk of colorectal [82, 89–91],
bladder [57, 58, 62], renal [139, 140], head and neck
[105–111], and lung cancer [64, 120] and risk of lymph node
metastases in breast cancer patients [146–148].

Konstantinopoulos et al. wrote in 2008 that MMP-2 may
exert cancer-promoting effects [145], and also Mmp-2-defi-
cient mice show antitumor effects on various cancers. The
MMP-2 genetic polymorphism was associated with risk of
breast [72–75], gastric [99, 100], esophageal [63, 112], cervi-
cal [87], colorectal [92], lung [121, 122], head and neck [113,
114], and bladder cancer [60].

Mmp-7 (matrilysin-1) has widely been studied in the defi-
cient and transgenic mice; the results demonstrated influences
on early-stage mammary cancer [12, 77] and decreased tu-
morigenesis [94, 95, 132, 137]. Studies on genetic polymor-
phism in the MMP-7 show association with risk of bladder
[57], breast [78], gastric [101–103], ovarian [130], head and
neck [115], esophageal, and lung cancer [103].

MT1-MMP also known as MMP-14 has been described as
MMP with anticancer effects [145], but two in vivo studies
showed that overexpression of MT1-MMP-induced remodel-
ing of the ECM and mammary gland adenocarcinoma

formation [81]; in pancreatic cancer, the MT1-MMP overex-
pression was seen to affect cancer development [134]. The
genetic polymorphism in the MT1-MMP showed association
only with susceptibility to hepatocellular carcinoma [118] and
oral cancer [116].

Moreover, the results of mouse studies concerning the
influence of MMPs on carcinogenesis make it possible to
draw some additional conclusions: Mmp-1a modulates im-
mune response to chemical carcinogens by polarization of a
Th1/Th2 [119],Mmp-7mediates tumor-induced osteolysis by
solubilization of RANKL [79], and MT1-MMP may be able
to increase TGF-β signaling [134].

MMPs with tumor-suppressive roles (MMP-8)

The studies confirm that the MMP-8 (collagenase-2) is a
metalloproteinase which may exert an anticancer effect (Ta-
ble 3). Gene knockout mice have been also generated to
distinguish the roles of Mmp-8. MMP-8 may control the
invasion potential of tumor cells by modulating cell adhesion
[125]. The protective role ofMMP-8 has been shown inMmp-
8-deficient mice [15, 117]. MMP-8 genetic polymorphism
also showed association with cancer risk, i.e., with low risk
of bladder cancer [60] and with lymph node metastases clas-
sification in breast cancer patients [149].

MMPs with promoting and antitumor-promoting roles
(MMP-3, MMP-9, MMP-11, MMP-19)

Genetic mouse models of cancer presents a dual role ofMMPs
in carcinogenesis, especially for the MMP-3 and MMP-9
(Table 4). MMP-3 is also known as stromelysin-1 and
STR1. WAP-Str1 transgenic mice in mammary cancer can
influence the initiation of a tumor; on the other hand, there
were no differences in mammary tumor invasion in MMTV/
TGF-α;Str1 transgenic mice [68, 83]. Genetic polymorphism
in theMMP-3 is associated with bladder [61], breast [82, 84],
head and neck [104], and colorectal cancer [90, 96].

MMP-9 is probably the most widely studied metallopro-
teinase. Studies show that Mmp-9 is very important in tumor

Table 3 The MMPs with tumor-suppressive roles and functions in mouse models of cancer

Allelic composition
mouse lines

References Cancer type Induction Effect

MMP-8, matrix metalloproteinase 8, collagenase-2

Mmp-8−/− deficient mice Balbín [15] Skin Exposure to DMBA, TPA Increased the incidence
of tumors

Mmp-8−/− deficient mice Gutiérrez-Fernández [125] Lung Injection of B16F10, LLC cells Increased the metastasis
formation

Mmp-8−/− deficient mice Korpi [117] Squamous cell carcinoma
of the tongue

Exposure to 4NQO Increased the incidence
of tumors
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incidence and metastasis [80, 88, 93, 123, 126–128, 131, 138,
143, 144] and may have an anticancer effect in colitis-
associated colon cancer and pancreatic neuroendocrine tumor
[97, 135]. Association was found between the MMP-9 poly-
morphisms and risk of bladder cancer [61], and tumor stage or
grade [59]. Additionally, studies of genetic mouse models
describe the roles of MMP-9 release VEGFA from the extra-
cellular matrix [131], change Notch-1 activation by module
cell cycle inhibitor p21/WAF1/Cip1 and beta-catenin protein
activity [97], and participate in keratinocyte differentiation
[143]. Expression of MMP-9 was suppressed by zoledronic
acid [88].

MMP-11 (stromelisin-3 or ST3) and MMP-19 are impor-
tant in cancer cell proliferation [150] and demonstrated the
opposite roles in studies of genetic mouse models. MMP-11
has influence on adipogenic markers such as peroxisome
proliferator-activated receptor and adipocyte protein 2 [85].
TheMmp-19-deficient mouse model not only is considered to
negatively regulate the early steps of tumor angiogenesis and
invasion but is also thought to be associated with decreased
susceptibility to cancer [141, 142]. The association of genetic
polymorphisms in theMMP-11 andMMP-19with cancer risk
has not been investigated; only the results of MMP-19 expres-
sion have been described as associated with cancer processes
[151–153].

Tumorigenic phenotypes in mice were induced either by
chemical induction, transgenic complementation, tumor cell
injection, or tumor transplantation. The tumors were chemi-
cally induced in mice by exposure to selected carcinogens,
like 7,12-dimethylbenzanthracene (DMBA) [68, 98], urethane
(ethyl carbamate) [119], 4-nitroquinoline-N-oxide (4NQO)
[117], methylcholanthrene (MCA) [141], A′-ethyl-A′-
nitrosourea (ENU) [77], DMBA also with tumor promoter
12-O-tetradecanoylphorbol-13-acetate (TPA) [15], and potent
carcinogen azoxymethane (AOM) and dextran sodium sulfate
(DSS) [97].

The researchers in in vivo studies of MMPs also used
transgenic complementation of Mmp-deficient mice or muta-
tion necessary for cancer. The various transgenic and mutation
mouse models of cancer were used: models of pancreatic
carcinoma—Rip1-Tag2 [131], Kras [134], Myc-BclXl [135];
model of cervical cancer—HPV/E2 [88]; model of prostate
cancer—CR2-Tag [136]; model of colon cancer—cis-Apc/
Smad4 [94]; model of squamous cell carcinoma—HPV16
[143]; model of intestinal neoplasia—Min/Apc [95]; and
models of mammary cancer—MMTV [12, 68, 81], MMTV-
PyVT [80], and MMTV-ras [86]. Also, five studies used im-
munodeficient mice Rag-1 [127, 129] and Rag-2 [123, 137,
138].

The primary tumors were generated by the injection of
tumor cells such as osteolytic luciferase-tagged mammary
tumor cell lines (PyMT-Luc and 4T1-Luc, 17L3C-Luc) [76,
79], CMT93 mouse colon cancer cells [93, 94], SKOV3ip1T
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cells [129], LUC-A549 cells [123], Lewis lung carcinoma
cells (LLC) [123–126, 144], and B16F10 cells [125], B16-
BL6 cells [126], and others [85, 142, 144]. Lynch et al., Jodele
et al., Kubota et al., and Bruni-Cardoso et al. have used tumor
transplantation or xenotransplantation into Mmp-deficient
mice [127, 128, 137, 138].

Different strain-specific responses occurring in mice with
various genetic backgrounds may exert different effects in
carcinogenesis. Therefore, only specific selected strains
should be used in the experiments [32].

Conclusion

Already in 1999,Westermarck and Kahari (in review) described
in vitro and in vivo studies and reported the evidence for the role
and biologicalmechanisms of theMMPs driving tumor invasion
and growth [35]. Currently, the results of the genetic mouse
studies demonstrated that deficient mice and transgenic mice
models are a successful tool used to identify and explain the
functions of MMPs. These studies confirm the importance of
differences in genetic pathophysiological mechanisms for dis-
tinct MMP genes in various cancer subtypes. In genetic mouse
models in which the tumors are induced by chemical carcino-
gens, cell injection, or tumor implantation, the changing of
genetic background may affect tumor susceptibility.

Accumulating evidence suggests that susceptibility to can-
cer is mediated by genetic and environmental factors and
complex gene-environment interactions. Therefore, there is
an urgent need for mouse studies in which we may simplify
experiments by control of variables such as dietary and life-
style habits and environmental exposures. It seems that the
loss of function of the Mmp gene may be comparable to the
effect that occurs for the functional genetic polymorphism in
the MMP. Therefore, the GEM can be used as a background
for showing a relationship between environmental risk factors,
genotype, and cancer.

In this review, we summarize and compare the results of
genetic mouse models and human association studies, already
categorized according to the possible effect of MMPs on the
development of cancer. Among the known 25 MMPs, only 9
MMPs have been examined in mouse models: MMP-1,
MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-11,
MMP-14, MMP-19. Presented studies confirm that one of
the most widely studied of the MMPs is MMP-9. Moreover,
only the breast, mammary gland, lung, and pancreatic cancer
sites have been extensively studied in mice. Therefore, it
seems to be important to focus on the role of various MMPs
in other types of cancer, including bladder cancer.

It should be noted that to gain a better understanding of the
role of various MMPs in various cancer types, each of the
MMPs should be assessed within the same tumor

environment. Therefore, more in vivo and in vitro studies
are required to allow comparison of the same cancer types
and stages. Results from these studies which are based on
fundamental knowledge are essential for further investigation
in human cancer association studies.

Taken together, genetic in vivo studies complemented by
human genetic association studies will extend our knowledge
about the genetic predisposition to cancer, by clarifying some of
the problems mentioned above: the genetic modifiers and gene-
environment interaction. Future studies will enable the identifi-
cation of genetic markers essential for early detection of tumors
in the future by means of molecular diagnostic procedures.
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