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Introduction
Existing antipsychotic medications have their 
main therapeutic effect through dopamine D2 
receptor blockade [Kapur and Mamo, 2003]. 
Although approximately 30% of patients respond 
to antipsychotic treatment and enter full remis-
sion, and a further 30% show some response, 
around 20–30% do not respond to these medica-
tions at all [Meltzer, 1997; Mosolov et al. 2012], 
perhaps due to them having a different neuro-
pathological basis to their condition [Stone et al. 
2010; Egerton et al. 2012; Demjaha et al. 2012]. 
With the exception of clozapine, current antipsy-
chotic medications do not show significant differ-
ences in efficacy, and are primarily differentiated 
by their side-effect profiles [Meltzer, 1997; 
Abbott, 2010; Lieberman et  al. 2005]. Side 
effects can be severe, with extrapyramidal symp-
toms being typically problematic in typical antip-
sychotic drugs, and metabolic changes, leading 
to weight gain and type 2 diabetes, commonly 
occurring with atypical antipsychotic drugs 
[Lieberman et  al. 2005; Langer and Halldin, 
2002]. For those patients that do respond, long-
term compliance is required, with attempts to 
discontinue medication generally leading to 
relapse [Langer and Halldin, 2002; Boonstra 
et  al. 2011; Stefansson et  al. 2008; Pratt et  al. 

2012]. In addition, even when effective in reduc-
ing positive symptoms, dopamine-blocking antip-
sychotic drugs are largely ineffective at reducing 
negative symptoms and cognitive impairments, 
and it is these domains that are the most impor-
tant predictors for long-term social functioning 
[Langer and Halldin, 2002; Stefansson et  al. 
2008; Pratt et al. 2012]. There is thus a pressing 
need to develop novel treatments that have more 
tolerable side effects, and that are effective in 
those patients who fail to respond to currently 
available antipsychotic drugs. Drug models of 
psychosis may assist in the identification of alter-
native therapeutic targets and may be utilized in 
the development and screening of novel com-
pounds prior to testing in patients.

The ideal model of schizophrenia would faith-
fully mimic the biological changes driving 
pathogenesis and carry high predictive value for 
the efficacy of novel therapeutics [Langer and 
Halldin, 2002]. Many drug models of schizo-
phrenia have been investigated for this purpose, 
and several have shown promising results. It is 
important to note that, in contrast to drug mod-
els, schizophrenia is chronic, neurodevelopmen-
tal, and episodic with different symptom 
domains predominating at different stages. 
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Therefore, any purely pharmacological model is 
likely destined to be incomplete in the extent to 
which it can represent the full picture of 
schizophrenia.

Common discrepancies between pharmacologi-
cal models and schizophrenia include an inabil-
ity to faithfully mimic all of the symptom 
domains, insight into the fact that the symptoms 
were caused by a drug, and the experience of 
euphoria, or simply of liking the drug effects 
[Curran et  al. 2009; Abi-Saab et  al. 1998]. 
Furthermore, some drugs known to induce 
schizophrenia-like symptoms in humans do so 
only after continued administration (e.g. 
amphetamine), which make them less suitable 
for experimental medicine studies due to ethical 
concerns as well as issues with practicality and 
the increased risk of adverse effects. In testing 
novel antipsychotics against drug models of psy-
chosis, it is also worth considering that any 
observed attenuation of symptoms with the 
antipsychotic may be due to a pharmacological 
interaction that is irrelevant to the biology of 
schizophrenia [Jones et al. 2011].

Animal models of psychosis have some advan-
tages for testing novel agents, as chronic and peri-
natal dosing regimens are possible, but they are 
difficult to interpret unless they have been exten-
sively cross-validated with human models. All of 
the primary symptoms of schizophrenia, such as 
hallucinations, delusions and thought disorder, 
require verbal report for their measurement in 
order to be properly tested and measured, and it 
is not always clear how relevant animal-based bio-
markers are to the uniquely human symptoms of 
schizophrenia. Furthermore, putative therapeutic 
agents do not always have the same effects in ani-
mals as in man [Pratt et  al. 2012; Curran et  al. 
2009; Jones et al. 2011].

Several drugs induce effects that resemble at least 
some of the symptoms of schizophrenia in ani-
mals and man [Curran et  al. 2009; Jones et  al. 
2011; Marcotte et  al. 2001]. In this review, we 
investigate the relative strengths of dopaminergic, 
glutamatergic, serotonergic, endocannabinoid, 
GABAergic, cholinergic and kappa-opioid phar-
macological models of schizophrenia, comparing 
neurochemical findings in schizophrenia support-
ing the models, considering the effects of the can-
didate drugs in humans and contrasting evidence 
from animal models.

Pharmacological models of schizophrenia

Dopaminergic
The relationship between the clinical effective 
dose of antipsychotic drugs and their affinity for 
the D2 receptor has been established for more 
than 30 years [Seeman and Lee, 1975; Kapur 
et  al. 2005]. Patients with schizophrenia have 
been shown to have evidence of abnormal dopa-
minergic function, with increased dopamine 
release following amphetamine administration, 
elevated synaptic dopamine and increased [18F]
DOPA uptake [Laruelle et al. 1996, 2003; Kegeles 
et  al. 2002, 2010; Abi-Dargham et  al. 2009; 
Howes et al. 2012]. The dopaminergic theory of 
aberrant salience provides an explanation for 
some of the positive delusional symptoms of psy-
chosis due to overactive mesolimbic dopaminer-
gic transmission [Kapur et  al. 2005; Seeman, 
1987; Seeman and Kapur, 2000]. In contrast, it 
has been suggested that an underactive dopamine 
system in the frontal cortex may underlie some of 
the negative symptoms [Davis et al. 1991].

The psychostimulants amphetamine and cocaine 
increase synaptic levels of dopamine, and have 
been reported to exacerbate psychotic episodes in 
people with existing schizophrenia [Farren et al. 
2000; Bramness et al. 2012]. In early studies of 
amphetamine administration in healthy volun-
teers, large single oral doses were found to induce 
an acute psychosis [Angrist and Gershon, 1970; 
Bell, 1973]. However, at lower doses, paranoid 
and other psychotic symptoms emerge only with 
repeated dosing, and only in some individuals. It 
has been suggested that amphetamines may act as 
a stressor to induce psychosis in a vulnerable sub-
set of the population [Bramness et al. 2012].

Positive symptoms induced by amphetamines 
and cocaine include auditory hallucinations, 
thought disorder and grandiose delusions, and 
chronic amphetamine users have been found to 
score highly on the Positive and Negative 
Syndrome Scale (PANSS) [Angrist and Gershon, 
1970; Harris and Batki, 2000; Wolkin et al. 1994; 
Angrist et al. 1974]. However, in a recent survey 
of effects associated with amphetamine use, we 
found that schizophrenia-like effects were rela-
tively rare in regular users, and that experienced 
users ranked amphetamine behind ketamine and 
alcohol in terms of its propensity to cause thought 
disorder, and behind cannabis, psilocybin and 
ketamine in terms of likelihood of inducing 
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hallucinations and delusions [Carhart-Harris 
et al. 2013a].

In rodents, administration of dopaminergic stim-
ulants has been reported to induce repeated (‘ste-
reotyped’) behaviours, such as locomotion, 
sniffing and chewing, that may be related to the 
positive symptoms of psychosis, as well as to 
impaired prepulse inhibition (PPI), a marker of 
sensory gating impairment also seen in patients 
with schizophrenia [Segal and Mandell, 1974]. 
With chronic dosing, the PPI and stereotyped 
behaviours occur at increasing frequency and 
duration over time [Segal and Mandell, 1974]. 
This phenomenon is termed ‘sensitization’ and 
some groups have suggested that sensitization 
shares common mechanisms with the develop-
ment of psychosis in man [Ujike, 2002; 
Featherstone et al. 2007]. This induced state has 
been linked to: (1) changes in the inhibitory dopa-
mine D3 receptor function (possibly by down-
regulating their availability for stimulation); (2) 
altered dopamine transmission in the nucleus 
accumbens; and (3) increases in total D2 receptor 
dimerization [Wang et  al. 2010; Richtand et  al. 
2001]. As in patients with schizophrenia, sensi-
tized rats show an enhanced dopamine release in 
response to amphetamine compared with con-
trols, and some limited but long-term cognitive 
impairments have also been reported in attention 
and set-shifting which are features of schizophre-
nia [Tenn et  al. 2003; Fletcher et  al. 2005]. 
Amphetamine-induced sensitization is commonly 
used as a model for the positive symptoms of 
schizophrenia but it is not thought to fully resem-
ble the cognitive and negative symptom domains 
[Jones et al. 2011; Wang et al. 2010]. Furthermore, 
purely dopaminergic models are likely to lead to 
the development of more dopamine-targeting 
antipsychotic drugs, which may be unlikely to 
lead to a great improvement in efficacy or safety. 
Thus, alternative models are of interest for the 
identification of novel drug targets.

Glutamatergic
The NMDA receptor hypofunction hypothesis of 
schizophrenia has been suggested as an alterna-
tive or additional neurochemical model of schizo-
phrenia to the dopamine hypothesis [Olney and 
Farber, 1995; Goff and Coyle, 2001]. Glutamate 
signalling plays an important role in synaptic 
plasticity and cortical processing in the brain and 
genetic studies have implicated abnormalities in 
this system as possible drivers of pathogenesis in 

schizophrenia [Schwartz et al. 2012]. It has also 
been suggested that glutamate-driven excitotoxic-
ity could underlie reductions in grey matter vol-
ume seen in schizophrenia [Olney and Farber, 
1995; Okugawa et  al. 2007; Hertzmann et  al. 
1990]. Although there is little direct evidence of 
NMDA receptor hypofunction in schizophrenia, 
one imaging study using an NMDA receptor sin-
gle photon emission tomography tracer reported 
a reduction in NMDA receptor binding in medi-
cation free patients with schizophrenia [Pilowsky 
et al. 2006]. Similarly, NMDA receptor NR1 sub-
unit mRNA has been reported to be reduced in 
post-mortem patients with schizophrenia [Law 
and Deakin, 2001].

The dissociative anaesthetics phencyclidine 
(PCP) and ketamine are both uncompetitive 
NMDA receptor antagonists suggested to be 
pharmacological models of schizophrenia 
[Laruelle et al. 2000]. They have been shown to 
lead to increases in the power of gamma oscilla-
tions [Rotaru et al. 2012], increases in functional 
connectivity [Driesen et al. 2013], and increases 
in prefrontal glutamate (or glutamine) levels, 
demonstrated both in animal microdialysis stud-
ies, and in human proton magnetic resonance 
spectroscopy (1H-MRS) studies [Moghaddam 
et  al. 1997; Rowland et  al. 2005; Stone et  al. 
2012a]. The mechanism by which they lead to 
these changes is still controversial, although it has 
been shown that NMDA receptor inhibition leads 
to a reduction in GABAergic interneuron func-
tion, possibly through preferential effects of keta-
mine on NMDA receptors expressed on these 
cells [Homayoun and Moghaddam, 2007]. This 
has been suggested to lead to increases in pyrami-
dal cell firing due to disinhibition [Olney and 
Farber, 1995]. Recent work suggests that the 
preferential blockade of NMDA receptors on cor-
tical GABAergic interneurons is unlikely to occur, 
however, with more evidence for a preferential 
sensitivity of pyramidal cell NMDA receptors to 
ketamine [Rotaru et  al. 2012]. One intriguing 
possibility is that reductions in GABAergic 
interneuron function may be mediated by the 
generation of brain superoxide, since inhibiting 
superoxide levels prevented reductions in 
interneuron activity following ketamine adminis-
tration [Behrens et al. 2007]. Furthermore, inhi-
bition of the formation of reactive oxygen species 
prevents the psychosis-like effects of NMDA 
receptor blockade in animal models [Sorce et al. 
2010; Levkovitz et  al. 2007; Zhang et  al. 2007; 
Monte et al. 2013].
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Ketamine has been demonstrated to exacerbate 
positive and negative symptoms in pre-existing 
schizophrenia [Lahti et  al. 1995b] and, in some 
patients, use has been linked to impairment in 
cognition, specifically by inducing a larger deficit 
in recall memory in people with schizophrenia 
compared to controls [Malhotra et al. 1997; Lahti 
et al. 1995a]. Acute doses of ketamine in healthy 
volunteers induce schizophrenic-like positive and 
negative symptoms, and may also lead to impair-
ments in cognitive function that resemble schizo-
phrenia [Stone et al. 2012a; Krystal et al. 2005; 
Morgan et al. 2004; Deakin et al. 2008]. Ketamine 
binding to NMDA receptors has been reported to 
correlate with its effect on negative symptoms 
[Stone et al. 2008] whereas downstream effects of 
ketamine, including increases in 1H-MRS-
measured prefrontal glutamate levels and keta-
mine-induced changes in functional magnetic 
resonance imaging (fMRI) signal, correlated with 
ratings of positive psychotic symptoms [Stone 
et al. 2012a; Deakin et al. 2008], suggesting that 
different symptom clusters may have distinct 
underlying mechanisms.

There are several dissimilarities between the keta-
mine-induced state and schizophrenia [Steen 
et al. 2006]. For example, auditory hallucinations 
are one of the most common symptoms in schizo-
phrenia, but the hallucinations and illusions expe-
rienced following acute administration of 
ketamine are more commonly visual [Abi-Saab 
et al. 1998; Steen et al. 2006]. On this basis, it has 
been suggested that, rather than modelling 
chronic schizophrenia, acute ketamine adminis-
tration may induce a state closer to the prodrome/
early stages of schizophrenia, when fleeting visual 
changes of the type that occur following ketamine 
administration have also been reported to occur 
[Klosterkotter et al. 2001; Corlett et al. 2007].

Another criticism of acute ketamine or PCP 
administration is that it is unlikely to be able to 
replicate the neurobiological changes that occur 
over time in the schizophrenic brain [Malhotra 
et al. 1997; Tsai and Coyle, 2002]. Thus, there has 
been considerable interest in the long-term effects 
of these drugs. Some chronic PCP and ketamine 
users have been found to have persistent schizo-
phrenia-like symptoms [Jentsch and Roth, 1999; 
Krystal et al. 1994], and such patients may pre-
sent with a symptomatic profile that can so closely 
resemble schizophrenia that it may even be misdi-
agnosed as such [Abi-Saab et  al. 1998; Javitt, 
1987]. Reported symptoms in chronic PCP and 

ketamine users may include paranoid delusions, 
persistent cognitive deficits and, in chronic PCP 
users, there have been reports of a greater inci-
dence of auditory than visual hallucinations 
[Jentsch and Roth, 1999]. Depressive and disso-
ciative symptoms also increase with persistent use 
of ketamine in chronic users [Morgan et al. 2004].

Biochemical brain changes that are similar to 
those seen in patients with schizophrenia have 
been found in chronic ketamine and PCP users. 
Dopamine D1 receptors are upregulated in the 
frontal cortex of patient with schizophrenia and in 
chronic ketamine users [Narendran et al. 2005]. 
This upregulation is associated with cognitive 
impairment and dopaminergic hypofunction 
[Narendran et al. 2005]. Chronic ketamine users 
have also been found to have other brain imaging 
changes associated with schizophrenia including 
reduced thalamic NAA [Stone et al. 2014b], and 
reduced prefrontal grey matter volume [Liao et al. 
2011]. Furthermore, chronic PCP users have 
been found to have decreased blood flow in the 
frontal cortex, similar to that seen in schizophre-
nia [Hertzmann et al. 1990].

In animal models, NMDA receptor antagonists 
induce behavioural, locomotor and cognitive 
changes, and chronic administration also induces 
neurobiological changes similar to those found in 
the brains of schizophrenia patients [Jones et al. 
2011; Jentsch and Roth, 1999]. Primates given a 
chronic infusion of PCP display scanning and 
pacing behaviours and rodents develop deficits in 
motor planning, working memory and stereotyp-
ies [Linn et  al. 1999]. These symptoms can be 
attenuated, but not abolished completely, with 
antipsychotic medication, which may suggest 
something of their underlying neurobiology 
[Steinpreis et  al. 1994]. Importantly, chronic 
administration of PCP may be a useful means to 
study similar degeneration to that seen in the 
brains of schizophrenia patients because it also 
induces cortical neurodegenerative changes in 
rats [Olney and Farber, 1995; Wang and Johnson, 
2005]. This effect can be blocked by AMPA 
receptor antagonists and so it may be that excess 
glutamate release is driving neurotoxicity in the 
model [Olney and Farber, 1995; Deutsch et  al. 
2001]. In rodents with chronic PCP treatment, 
PPI is disrupted, dopaminergic transmission in 
the frontal lobe is reduced and changes in the 
mesolimbic and frontal–cortical dopamine sys-
tems mimic those of schizophrenia [Jones et  al. 
2011; Jentsch and Roth, 1999]. Chronic neonatal 
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administration of PCP induces lasting cognitive 
deficits and increases in putative animal equiva-
lents of positive symptoms [Stefani and 
Moghaddam, 2005; Uehara et  al. 2010]. 
Furthermore, in primate models, these neurobio-
logical changes persist beyond the acute effects of 
the drug and behavioural and cognitive deficits 
can still be seen after PCP administration has 
been stopped [Olney and Farber, 1995; Jentsch 
et al. 1997].

The models generated by the use of dissociative 
anaesthetics demonstrate that NMDA receptor 
dysfunction could be a key factor in the patho-
genesis of schizophrenia [Olney and Farber, 1995; 
Laruelle et  al. 2000; Javitt and Zukin, 1991]. 
NMDA receptor antagonist models of schizo-
phrenia could have value in predicting the efficacy 
of much needed therapies that target the cognitive 
and negative symptom domains of the illness 
because of their evident interaction with areas of 
cognition relevant to schizophrenia [Laruelle 
et al. 2000; Neill et al. 2010]. It should be borne 
in mind, however, that these drugs are known to 
act on multiple neurotransmitter systems in the 
brain including dopamine [Jentsch et  al. 1997; 
Kapur and Seeman, 2002], and this may be cen-
tral to their generation of a more complete clini-
cally picture of schizophrenia than those that act 
primarily on a single neurotransmitter system.

Serotonergic
Although less widely studied than dopamine or 
glutamate, there is evidence that the serotonin 
(5-HT) system may also be involved in psychotic 
symptom formation. Support comes from the 
observation that hallucinogens such as LSD and 
psilocybin are 5-HT2A receptor agonists 
[Vollenweider and Geyer, 2001]. These drugs 
induce psychopathologies which include agita-
tion, anxiety, visual hallucinations and illusions, 
which are similar to symptoms seen in the first 
psychotic episode of the illness [Fletcher and 
Honey, 2006; Hyde et  al. 1978]. Furthermore, 
these drugs disrupt PPI through direct stimula-
tion of the 5-HT2A receptors [Quednow et  al. 
2012; Aghajanian and Marek, 2000], lead to a 
blending of the brain networks engaged during 
rest and active task performance [Carhart-Harris 
et al. 2013b], and lead to downstream increases in 
glutamate release [Scruggs et al. 2003; Muschamp 
et  al. 2004], closely resembling effects seen in 
patients with psychosis. It is interesting to note 
that blockade of 5-HT2A receptors inhibits the 

effects of NMDA receptor antagonists, suggesting 
that at least some of the psychosis-like effects of 
NMDA receptor antagonism may be mediated 
via serotonergic mechanisms [Aghajanian and 
Marek, 2000; Breese et al. 2002].

Many atypical antipsychotics such as clozapine, 
risperidone and olanzapine are 5-HT2A receptor 
antagonists, having higher affinity for 5-HT2A 
receptors than for dopamine D2 receptors [Jentsch 
and Roth, 1999; Williams et  al. 1997; Meltzer, 
1996]. It is unclear to what extent these proper-
ties are involved in their antipsychotic effect, how-
ever. 5-HT2A receptor antagonists have been 
suggested to be potentially useful in improving 
cognition or negative symptoms in patients with 
schizophrenia [Akhondzadeh et  al. 2008; Roth 
et al. 2004], but trials of 5-HT2A antagonists for 
schizophrenia to date have not progressed beyond 
phase III due to lack of efficacy against positive 
symptoms [de Paulis, 2001; Ebdrup et al. 2011].

There are several differences between the symp-
toms of schizophrenia and the hallucinogenic 
state induced by serotonergic drugs [Corlett et al. 
2009]. With serotonergic drugs, subjects tend to 
experience hallucinations which are generally vis-
ual, and so not typical of established schizophre-
nia, although they may resemble symptoms that 
occur in the early phase of psychosis [Klosterkotter 
et  al. 2001; Geyer and Vollenweider, 2008]. 
Perceptions and expectations of the action of 
these drugs can also alter the subsequent psyche-
delic experience and this means that the effects of 
the drugs can be unpredictable for different sub-
jects, possibly making it a model that is difficult to 
reliably reproduce [Corlett et  al. 2009]. 
Nonetheless, schizophrenia-like states can be 
observed in people while on these drugs and 
altered activity in the prefrontal cortex results in 
mild thought disorder and altered perception 
which are similar to that seen in schizophrenia 
[Carter et al. 2005; Strassman et al. 1994; Carhart-
Harris et al. 2012]. Furthermore, individuals with 
a family history of schizophrenia appear to be at 
greater risk of schizophreniform symptoms fol-
lowing LSD [Vardy and Kay, 1983], and it has 
been suggested that LSD use may lead to an ear-
lier onset of schizophrenia [Breakey et al. 1974].

Many studies have shown that humans and 
rodents can develop tolerance to psychedelics and 
so this model may be limited in the extent to which 
it can represent the long-term neurobiological 
changes that characterize the schizophrenic brain 
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[Marcotte et  al. 2001]. However, a recent study 
has shown that chronic administration of lower 
doses of LSD in rodents can induce a behavioural 
syndrome that persists after the drug is stopped 
[Marona-Lewicka et  al. 2011]. Symptoms from 
this chronic administration include irritability, 
hyper-sensitivity to noise, anhedonia, social with-
drawal and locomotor changes, which can be 
reduced by the administration of antipsychotic 
drugs [Marona-Lewicka et al. 2011].

Endocannabinoid
Manipulation of the endocannabinoid system 
provides another possible way to model schizo-
phrenic-like symptoms. The primary active com-
ponent of cannabis, delta-9 tetrahydrocannabinol 
(THC) is an agonist of the cannabinoid receptor 
CB1. Its mechanism of action is not fully under-
stood but binding of this molecule may act down-
stream of dopamine release and play a regulatory 
role in several neurotransmitter systems [Kuepper 
et al. 2010; Koethe et al. 2009]. The endocannab-
inoid system plays a role in attention, learning 
and memory and so dysregulation of this system 
could plausibly be another contributor to the 
pathogenesis of schizophrenia [Fernandez-Espejo 
et al. 2009; Solowij and Michie, 2007].

Acute cannabis or THC administration may 
induce positive and negative symptoms as well as 
cognitive impairments resembling those of schiz-
ophrenia in healthy individuals, and may also 
exacerbate the symptoms of schizophrenia in 
those already affected by the condition [Koethe 
et al. 2009; Morrison et al. 2009; Morrison and 
Stone, 2011; D’Souza, 2007; D’Souza et al. 2004, 
2005; Stone et al. 2014a]. Cannabis administra-
tion is associated with changes in neurophysiolog-
ical measures that resemble those seen in patients 
with schizophrenia including P50 suppression, 
mismatch negativity and the P300 potential 
[Gallinat et al. 2012]. THC has also been shown 
to modulate binocular depth perception, in a 
manner that resembles changes seen in prodro-
mal psychosis and schizophrenia [Koethe et  al. 
2006]. THC-induced psychotic symptoms have 
been shown to be associated with disruption of 
coherence between frontal theta brain activity 
[Morrison et al. 2011], and with changes to the 
normal pattern of brain activity preceding con-
scious action [Stone et al. 2012b; Ford et al. 2002, 
2007]. Disruptions of brain activity prior to the 
onset of willed action have also been demon-
strated in patients with schizophrenia, and are 

suggested to underlie impairments in efference 
copy generation, leading to misrecognition of self-
generated actions as arising from an external 
source [Stone et al. 2012b; Ford et al. 2002].

Rodent and primate THC models mimic some of 
the cognitive impairments seen in schizophrenia. 
For example, a dose-dependent impairment in 
spatial working memory has been reported in adult 
rhesus monkeys following THC administration 
and the effect is more marked when THC is admin-
istered in adolescence when the brain is more vul-
nerable to chemical interference [Verrico et  al. 
2012]. Working memory dysfunction, impaired 
PPI and persisting behavioural changes with 
underlying neurobiological changes following ado-
lescent exposure, have been observed in rodents 
following THC treatment, effects that could be 
symptomatically controlled with antipsychotic 
agents given to adult rats [Realini et  al. 2009; 
Rubino et al. 2008; Schneider and Koch, 2003].

Further support for endocannabinoid models of 
psychosis comes from research using cannabidiol 
(CBD). Although it has relatively low affinity for 
CB1 and CB2 receptors in displacement studies, 
cannabidiol appears to act as noncompetitive 
antagonist of both CB1 and CB2 receptors at 
relatively low concentrations when studied in vivo, 
although the mechanism by which this occurs has 
still not been fully elucidated [Thomas et  al. 
2007]. CBD has been reported to have anxiolytic 
and antipsychotic properties, with a recent dou-
ble-blind placebo-controlled study in patients 
with early stage schizophrenia reporting efficacy 
versus psychotic symptoms of similar magnitude 
to existing antipsychotic agents, but with a lower 
incidence of side effects [Leweke et  al. 2012]. 
This suggests that the symptoms of schizophrenia 
may emerge, at least in part, through activation of 
CB1 and/or CB2 receptors, and CBD may inhibit 
this effect. Interestingly, CBD has been reported 
to reduce the psychomotor activating effects of 
ketamine, with a trend to reduce ketamine-
induced depersonalization [Hallak et  al. 2011], 
suggesting that some of the downstream effects of 
NMDA receptor blockade may be mediated by 
the endocannabinoid system.

GABAergic
There is a growing body of evidence for the dys-
function of GABAergic neurons in schizophrenia 
and, as gamma-aminobutyric acid (GABA) sig-
nalling interacts very closely with glutamatergic 
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and dopaminergic, models of GABAergic dys-
function may help to unify our understanding of 
schizophrenia [Pratt et  al. 2012]. Post-mortem 
studies have found differences in GABA receptor 
subunit expression and reduced GABAergic cell 
types in the brains of schizophrenic patients [Pratt 
et al. 2012]. It is also known that the GABA sys-
tem undergoes changes during adolescence and 
that this is a time where patients commonly begin 
to show symptoms of schizophrenia [Lewis et al. 
1999]. Furthermore GABAergic firing regulates 
dopamine transmission in the prefrontal cortex 
and a GABA interneuron deficit in schizophrenia 
has been proposed to underlie some of the clinical 
symptoms [Lewis et  al. 1999; Japha and Koch, 
1999]. GABA-A antagonists disrupt PPI when 
injected into the rodent medial prefrontal cortex 
through their action on the dopaminergic system, 
an effect which can be reversed with D2-blocking 
antipsychotic drugs [Japha and Koch, 1999]. In a 
related theory (arising from the methylazoxyme-
thonol acetate rodent model of schizophrenia), 
Lodge and Grace hypothesized that increased hip-
pocampal glutamatergic outputs, arising second-
ary to reductions in hippocampal parvalbumin 
staining GABAergic interneurons in schizophre-
nia, drive increased striatal dopamine activity 
[Lodge and Grace, 2011; Gill et al. 2011]. Grace 
and collaborators subsequently showed that a 
novel positive allosteric modulator of the alpha-5 
subunit of GABA-A receptors reduced hyperac-
tive locomotor response and spontaneously active 
VTA dopamine neurons in this model [Gill et al. 
2011], suggesting that normalization of hip-
pocampal GABAergic function might be a valid 
approach to antipsychotic drug development.

There is some evidence that GABA-A receptor 
manipulation affects psychotic symptoms on 
humans. In a recent study, the benzodiazepine 
receptor antagonist iomazenil led to worsening of 
psychotic symptoms and perceptual alterations in 
patients with schizophrenia, but not controls 
[Ahn et al. 2011]. In healthy volunteers, the com-
bination of iomazenil with m-cholorphenylpiper-
izine (m-CPP), a partial agonist of 5-HT2A/2C 
receptors, has also been shown to lead to percep-
tual disturbances and other effects suggested to 
resemble psychosis [D’Souza et al. 2006]. In con-
trast, the psychoactive component of the fly aga-
ric mushroom, muscimol, is a potent GABA-A 
receptor agonist, and this, and other, GABA-A 
agonists have generally been found to lead to con-
fusion in healthy volunteers, and worsening of 
schizophrenia in patients, possibly through 

preferential action at presynaptic receptors 
[Meldrum, 1982; Yamamoto et al. 2011].

Although there is considerable interest in the 
potential for novel drugs targeting GABA neuro-
transmission in schizophrenia [Rudolph and 
Knoflach, 2011], results from existing com-
pounds in patients have not been promising 
[Rudolph and Knoflach, 2011; Buchanan et  al. 
2011]. It is hoped that novel approaches to this 
system may yield additional benefit [Rudolph and 
Knoflach, 2011].

Cholinergic
There has been considerable interest in both nic-
otinic and muscarinic neurotransmission in 
schizophrenia.

Nicotinic. It is well recognized that patients with 
schizophrenia have a much higher use of tobacco 
than other patients with mental illness, and it was 
hypothesized that this may be in an effort to self-
medicate and reduce some of the negative and 
cognitive symptoms of the illness [Ripoll et  al. 
2004]. Patients with schizophrenia have been 
reported to have reduced alpha-4 and alpha-7 
nicotinic receptor brain expression in post- 
mortem studies [Ripoll et al. 2004], and nicotine 
has been reported to improve PPI in NMDA 
receptor antagonist models of psychosis [Domino 
et al. 2004; Levin et al. 2005], although nicotine 
did not attenuate ketamine effects in humans 
[D’Souza et al. 2012]. A number of alpha-7 nico-
tinic agonists have been developed for use in 
patients with schizophrenia, and early trials have 
shown promising results on cognitive and nega-
tive symptoms [Lieberman et al. 2013; Freedman 
et al. 2008].

Although nicotinic antagonists are generally used 
as muscle relaxants and are not thought to have 
any effects on mental state, the centrally acting 
drug bupropion has some effect on inhibiting nic-
otinic receptors and has also been reported that it 
may be associated with the development of psy-
chotic symptoms [Kumar et al. 2011]. However, 
given its rich pharmacology, including actions as a 
dopamine and noradrenaline reuptake inhibitor 
[Arias et al. 2009], it is questionable whether nico-
tinic receptor antagonism is involved in this effect. 
Furthermore, Varenicline, a partial agonist at 
alpha-4 nicotinic receptors, and a full agonist at 
alpha-7 nicotinic receptors [Mihalak et al. 2006], 
has been reported to have no significant effect in 
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worsening psychotic symptoms in patients with 
schizophrenia, with only 5% of patients reporting 
an increase in symptoms [Cerimele and Durango, 
2012]. It thus seems that nicotinic receptor antag-
onism does not reliably induce or worsen positive 
psychotic symptoms, and due to the systemic 
effects of full nicotinic receptor antagonists, it is 
unlikely nicotinic antagonists would be useful to 
model for cognitive impairment in schizophrenia.

Muscarinic. Blockade of acetylcholine receptors 
with atropine, scopolamine and other drugs have 
been reported to lead to delirium and hallucina-
tions (generally visual) [Perry and Perry, 1995], 
as well as cognitive impairments [Minzenberg 
et  al. 2004; Klinkenberg and Blokland, 2010], 
and it has been suggested that antimuscarinic 
drugs may induce a syndrome closely related to 
schizophrenia [Barak, 2009].

Unmedicated first episode patients with schizo-
phrenia have been reported to have reduced mus-
carinic receptor availability [Raedler et al. 2003], 
and clozapine has higher occupancy of muscarinic 
receptors than olanzapine [Raedler, 2007]. It is 
possible that this binding may underlie some of 
clozapine’s enhanced efficacy, as has been shown 
to be an M1/M4 partial agonist, and another drug 
(xanomeline) sharing this property has been 
reported to show antipsychotic efficacy versus 
positive and negative symptoms, as well as 
improvements in measures of cognition in early 
clinical trials [Mirza et  al. 2003; Shekhar et  al. 
2008]. Problems with cholinergic side effects 
from xanolemine have led to high levels of drop-
out from these studies, however [Mirza et  al. 
2003]. Scopolamine has been used to model cog-
nitive impairments [Klinkenberg and Blokland, 
2010], and it seems reasonable that these drug-
induced effects may have a similar neurochemical 
basis to those occurring in schizophrenia, and so 
could provide a target for the development of 
novel agents to improve cognition in affected 
patients [Barak and Weiner, 2011].

Kappa opioids
Salvia divinorum is a kappa opioid agonist, which 
is becoming more commonly used as a recrea-
tional drug, and which leads to potent symptoms 
of dissociation and complex and vivid hallucina-
tions (visual, tactile and auditory) [Johnson et al. 
2011; Lange et al. 2010; Ranganathan et al. 2012]. 
However, the effects of salvia divinorum may not 
be particularly representative of schizophrenic 

psychosis, since participants describe entering 
other realms and meeting entities or beings 
[MacLean et al. 2013] and this is rarely reported 
in schizophrenia. Although long-term effects have 
not generally been reported, there is one case 
report of an individual developing schizophreni-
form psychosis following exposure to salvia divi-
norum [Przekop and Lee, 2009].

There has been some suggestion that kappa opi-
oid receptors may be abnormally distributed in 
the hippocampus in patients with schizophrenia, 
and that cerebrospinal fluid (CSF) level of dynor-
phins, the endogenous peptide ligands for kappa 
opioid receptors, may correlate with symptoma-
tology and response to antipsychotic treatment 
[Tejeda et  al. 2012]. However, research studies 
into the kappa opioid system in schizophrenia 
have been relatively small in scale, and further 
work is required [Tejeda et al. 2012].

Convergence of models via prefrontal 
glutamate
Several of these proposed models, in particular, 
acute NMDA receptor blockade, 5HT2A agonism, 
THC administration and amphetamine adminis-
tration, have all been reported to increase synap-
tic glutamate levels in prefrontal cortex (either 
measured directly by microdialysis, or estimated 
using 1H-MRS) [Moghaddam et  al. 1997; 
Rowland et al. 2005; Stone et al. 2012a; Scruggs 
et  al. 2003; Muschamp et  al. 2004; Pistis et  al. 
2002; Del Arco et al. 1998]. Although it has not 
been established whether the increased glutamate 
levels are associated with the psychosis-like effects 
of these drugs, it is interesting to note that glu-
tamine, a marker of increased prefrontal gluta-
mate release, has been reported in patients in the 
early phase of psychosis [Marsman et  al. 2013] 
and, furthermore, that prefrontal glutamate levels 
appear to be associated with failure to achieve 
remission following dopaminergic antipsychotic 
drug treatment [Egerton et  al. 2012; Demjaha 
et al. 2014; Szulc et al. 2013].

It should be noted that studies using 1H-MRS are 
still somewhat conflicting in terms of the metabo-
lites affected in the medial prefrontal cortex – 
studies investigating response to antipsychotic 
drugs have generally reported associations with 
glutamate levels, which may represent a total pool 
of glutamate (both metabolic and neurotransmit-
ter), whereas early psychosis has been associated 
with increased glutamine levels in the same brain 
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region. Furthermore, in one study in healthy vol-
unteers ketamine was reported to increase medial 
prefrontal glutamine levels acutely [Rowland 
et al. 2005], whereas in a second study, ketamine 
increased glutamate levels subacutely [Stone et al. 
2012a]. It is possible that estimated glutamine 
levels (generated following the release of gluta-
mate as a neurotransmitter) may reflect a higher 
active turnover of glutamate through neurotrans-
mission, with increased estimated glutamate con-
centration occurring as a downstream 
consequence (possibly due to more glutamate 
being generated secondary to the increased turn-
over). The only way to study this directly in 
humans at present is with 13C MRS, which, 
although a powerful approach, is costly and lim-
ited in resolution [Rothman et al. 2011; Ramadan 
et al. 2013].

Conclusion
Dopaminergic psychostimulants provide a good 
model of the paranoid psychosis of schizophrenia 
but do not accurately mimic the cognitive or neg-
ative symptom domains [Pratt et al. 2012]. Use of 
dopaminergic models to predict the efficacy of 
novel therapeutics is likely to select only the medi-
cations that primarily act on dopamine transmis-
sion. In contrast, NMDA receptor antagonists 
and THC both generate a more complete model 
of schizophrenia, including aspects of the positive, 
negative and frontal cognitive symptoms [Krystal 
et al. 1994; Morrison et al. 2009; Morrison and 
Stone, 2011; D’Souza et  al. 2004]. Chronic 
administration of THC and NMDA receptor 
antagonists in animal models also induce neuro-
biological changes similar to those seen in schizo-
phrenia and their action on several overlapping 
neurotransmitter systems means that these drugs 
could give more insight into the complex clinical 
condition.

While much research has been done into the role 
of dopamine, glutamate and cannabis in schizo-
phrenia, other models may also have value with 
further investigation. Serotonergic hallucinogens 
model some aspects of prodromal and first epi-
sode psychosis in humans and chronic low doses 
in animal models seem to be able to mimic more 
symptom domains [Marona-Lewicka et al. 2011]. 
Furthermore, although drugs affecting 
GABAergic and cholinergic receptors are less 
likely to directly induce psychosis-like effects in 
healthy volunteers, there is a substantial amount 
of evidence for these neurotransmitter systems 

being altered in patients with schizophrenia. 
Drugs targeting GABA and acetylcholine recep-
tors may still prove to be a promising avenue for 
novel treatments in schizophrenia [Rudolph and 
Knoflach, 2011; Foster et al. 2012].

The development of translational animal models 
based on findings from human studies is impor-
tant for the rapid testing of novel antipsychotic 
agents. Objective measurements for different 
symptoms have already begun to show promise in 
being able to predict the therapeutic efficacy of 
new antipsychotics and could give key insight into 
the effects of abnormalities in specific brain cir-
cuitry in schizophrenia [Curran et al. 2009].

While pharmacological models may never be able 
to accurately mimic all aspects of such a complex 
condition as schizophrenia, they may still be able 
to provide valuable insight into the neurobiologi-
cal mechanisms underlying specific symptom 
domains [Curran et al. 2009]. Targeting individ-
ual neurotransmitter systems has highlighted the 
extent to which these systems interact and under-
standing these links will be an important step 
towards building a single coherent hypothesis for 
the pathogenesis of schizophrenia [Japha and 
Koch, 1999]. It is hoped that new developments 
in this field will generate new understanding of 
the biological underpinnings of schizophrenia 
and so facilitate the development of improved 
therapeutics [Abbott, 2010; Curran et al. 2009].
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