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Abstract

Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved 

spatial resolution and noise properties over conventional filtered back-projection (FBP) 

reconstruction, along with other potential advantages such as reduced patient dose and artifacts. 

Conventional regularized image reconstruction leads to spatially variant spatial resolution and 

noise characteristics because of interactions between the system models and the regularization. 

Previous regularization design methods aiming to solve such issues mostly rely on circulant 

approximations of the Fisher information matrix that are very inaccurate for undersampled 

geometries like short-scan cone-beam CT. This paper extends the regularization method proposed 

in [1] to 3D cone-beam CT by introducing a hypothetical scanning geometry that helps address the 

sampling properties. The proposed regularization designs were compared with the original method 

in [1] with both phantom simulation and clinical reconstruction in 3D axial X-ray CT. The 

proposed regularization methods yield improved spatial resolution or noise uniformity in statistical 

image reconstruction for short-scan axial cone-beam CT.

Index Terms

regularization; model-based image reconstruction; cone-beam tomography; iterative 
reconstruction

I. Introduction

Statistical image reconstruction methods for X-ray computed tomography (CT) use realistic 

models that incorporate the statistical properties of the noise and the physics of the data 

acquisition system [2]. Compared to conventional filtered back-projection (FBP) 

reconstruction, statistical methods are more accurate and are more flexible for modeling 

different kinds of physical constraints. Potential advantages of statistical image 

reconstruction methods over FBP reconstruction have been demonstrated in terms of noise, 

resolution, and artifacts [3]–[5]. Such improvements in image quality become more apparent 

in low-dose scans where FBP reconstruction suffers from increased streak artifacts [6]. 

However, many factors need to be addressed to ensure the success of statistical methods in 
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clinical applications. Diagnostic readability of the reconstructed images depends on various 

characteristics such as texture, resolution, noise, and artifacts. In particular, uniformity of the 

resolution or noise characteristics throughout the reconstructed image is desirable. This 

paper proposes new space-variant regularization designs that yield reconstructed images 

with improved uniformity of resolution or noise.

Regularization is necessary to control noise since unregularized image reconstruction leads 

to excessively noisy images. By integrating a penalty term into the objective function, 

regularized image reconstruction methods, such as penalized-likelihood (PL) methods or 

penalized weighted least squares (PWLS) methods, provide controlled noise and resolution 

properties in the reconstructed image. However, interactions between the regularization, 

system models, and statistical weighting cause the reconstructed images to have object-

dependent nonuniform and anisotropic spatial resolution and noise properties, even for 

idealized shift-invariant imaging systems [1]. Nonuniformity becomes severe for short-scans 

in cone-beam CT (CBCT), having angular spans of π + 2γ where γ is the fan angle of the 

detector, compared to full scans, and also for undersampled voxels1 in 3D axial or helical 

scanning geometries. In [1], a regularizer based on the aggregated certainty was developed 

for 2D PET to yield images with approximately uniform spatial resolution, and that 

regularizer has been used for other geometries and modalities [9]–[13]. However, the 

aggregated certainty regularizer does not provide uniform resolution when applied to 

modalities such as 2D short-scan fan-beam CT or 3D cone beam CT because of asymmetric 

scan geometries caused by short-scan orbits or cone-angle effects or both. In [10] and [12], 

the original aggregated certainty regularizer was modified with a diagonal scaling factor for 

3D PET. Recently, it was also extended to both static and multi-frame reconstruction in 3D 

PET by considering spatially variant and frame-dependent sensitivity [14]. Since the term 

“aggregated certainty” is less apt for some imaging modalities such as CT, instead, we use 

the more general term “pre-tuned spatial strength”, which represents that the purpose of the 

function is to control the regularization strength at each voxel, before the reconstruction 

process, so that the reconstructed image is guided to have desired characteristics, i.e., 

uniform resolution.

Many previous regularization design methods focussed on choosing directional coefficients 

in the regularizer by matching local characteristics, such as impulse response or correlation 

function, of the estimator to target characteristics to achieve uniform and isotropic resolution 

[15]–[17] or noise characteristics [18], [19]. Since both the global regulation parameters) 

and the pre-tuned spatial strengths can be incorporated into directional regularizer 

coefficients, those regulation design methods are more general and flexible than simply 

adjusting the regulation strength at each voxel. However, such design methods require 

additional computations to design the coefficients for every voxel, and it is challenging to 

obtain both uniformity and isotropy at the same time for either spatial resolution or noise 

characteristics. Especially for the undersampled voxels in cone-beam CT, locally circulant 

approximations of the Fisher information matrix are very inaccurate, leading to imperfect 

1In this study, “full” sampling does not refer to the complete sampling conditions derived in [7], [8], but rather that the voxel is seen 
in every projection view. Thus, “undersampling” indicates the voxel is seen in only some of the projection views.
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coefficient designs at such locations. Furthermore, the memory requirement to store all 

directional coefficients for every voxel can be burdensome.

This paper extends [1] by proposing a modified pre-tuned spatial strength function for 3D 

CT that yields improved resolution uniformity throughout the reconstructed image including 

undersampled voxel locations. We also propose a shift-variant regularizer that provides 

approximately uniform noise characteristics in the reconstructed image. Section II reviews 

the system models for statistical image reconstruction and some fundamental concepts such 

as estimator local impulse response (LIR) and covariance. Section III proposes new 

regularizes by generalizing the system matrix using a hypothetical geometry concept. Two 

different regularizers are presented that yield improved uniform resolution or noise 

characteristics in the reconstructed image, respectively. Section IV presents results using 

both simulated and real clinical X-ray CT data. Section V concludes by summarizing the 

contributions of this study and suggesting potential future work.

II. Spatial Resolution and Noise Properties of Statistical Image 

Reconstruction

This section first reviews statistical image reconstruction in terms of the system models for a 

penalized weighted least squares (PWLS) formulation. The concept of local impulse 

response and estimator covariance is also reviewed, and metrics for analyzing spatial 

resolution and noise properties in the reconstructed image are discussed.

A. Statistical Image Reconstruction

Noisy CT sinogram measurements can be expressed as a discrete vector, y = (y1 …, ynd), 

where yi represents the ith line integral through the object for a given scanning geometry. 

These sinogram measurements are related to recorded detector measurements, I = (I1, …, 

Ind), by the Beer-Lambert law [20]. For simplicity, we use the following statistical model for 

the detector measurements under the mono-energetic assumption

where A is the system matrix, x = (x1, …, xnp) is the discrete vector of the imaged object, 

, bi is the X-ray source intensity for ith ray, and ri denotes the 

background contributions from factors such as scatter and crosstalk.

The measurement noise statistics can be modeled using a probability density function by 

relating the measurements yi to their mean values E[yi], and are mainly affected by physical 

processes in the data acquisition system. For integrating detectors, the statistics of X-ray 

measurements is a complicated mixture of compound Poisson photon distribution and 

Gaussian electronic noise [21], [22]. In practice, the following simple models have been 

used successfully. A Poisson model for pre-log data Ii can be written as [23]
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(1)

A quadratic approximation of the negative log-likelihood of (1) implies that the post-log 

data yi is a approximately Gaussian random variable [24], [25]

(2)

CT image reconstruction often is formulated as a minimization problem with a PWLS cost 

function of the form

(3)

(4)

where R(x) is a regularizer that controls the spatial resolution and noise characteristics in the 

reconstructed image typically by penalizing local differences between voxels, and W = 

D[wi] ≜ diag{wi} is a statistical weighting matrix. (We assume the measurements are 

independent so the data covariance is diagonal.) The coefficients {wi} of the statistical 

weighting matrix should be the reciprocal of the variances of the measurements by the 

Gauss-Markov theorem [26]:

In practice, the means of the measurements are unknown so typically the weights are 

estimated by a plug-in approach, i.e., wi ≈ 1/σ2(yi) for transmission tomography. The ideas 

in this paper generalize readily to other penalized-likelihood formulations [27].

We consider regularizers having the following form:

(5)

where N1, is the size of the neighborhood, jl denotes the offset of the lth neighbor in 

lexicographical order, βl is a regulation parameter that balances between the data-fitting term 

and the regularizer [28], κj is a user-defined value that controls local spatial resolution and 

noise in the reconstructed image [1, eqn. (35)], ψl is a potential function, * * * denotes 3-D 

convolution. We define a first-order differencing function that penalizes lth neighbor as
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where δ[n, m, z] is the Kronecker impulse at location [0, 0, 0], and nl, ml, zl denote the offset 

of the lth neighbor. The regulation parameter βl is usually determined based on data-

independent factors like voxel sizes, and a typical choice is βl = 1, ∀l. The parameter also 

can be selected more systematically as in [28].

The goal of this paper is to refine the regularizer R(x) by designing {κj} so that the 

reconstructed image has more uniform resolution or noise properties. We want to improve 

upon the design proposed in [1] which was

(6)

B. CRC and Ensemble Variance

The local impulse response describes the local spatial resolution properties. We used the 

following definition of local impulse response at the jth voxel [16]:

(7)

(8)

where δj is a Kronecker impulse at the jth voxel, and the gradient operations are matrices 

with the following elements:

For simplicity we focus on quadratic regularization, for which, from (8), the local impulse 

response of the PWLS estimator (4) is expressed as

(9)

where R is the Hessian of the regularizer R(x) [1].

One common metric for measuring the local resolution is the width of the local impulse 

response at the jth voxel, such as the full width half maximum (FWHM) [1]. Alternatively, 
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the peak amplitude of the local impulse response, called the contrast recovery coefficient 

(CRC) [9], can be used to quantify resolution

(10)

To measure isotropy of an impulse response, the width measure is more effective. On the 

other hand, uniformity of the impulse responses is easier to assess with the CRC. In this 

paper, we use the CRC of the local impulse response to quantify spatial resolution.

With a quadratic regularizer, the closed-form solution of (4) is given by

(11)

The covariance of the reconstructed image x̂ [26] is

(12)

If the weighting is chosen such that cov(y) = W−1, then the reconstructed image covariance 

simplifies to

(13)

However, in some cases, additional factors are applied to W. For instance, Parker weighting 

[29] is applied to sinogram measurements for short-scan FBP reconstruction. It may also be 

used in iterative reconstructions so that the temporal resolution of such reconstructions 

matches that of FBP reconstruction. Such modifications change the statistical characteristics 

of W and it no longer satisfies cov(y) = W−1 We can express the statistical weighting more 

generally as

(14)

where the weighting Ŵ is the conventional choice that satisfies ŵi = 1/Var{yi}, and {vi} 

denotes additional weighting elements. The reconstructed image covariance (12) with such 

statistical weighting can be expressed as follows

(15)

where .

The noise property of the estimator can be quantified with the ensemble variance at each 

voxel:
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(16)

The entire jth column of the covariance matrix (15) represents the noise correlation of the jth 

voxel in the reconstructed image with all other voxels

(17)

Our goal is to design regularizes for which lj or corr(x̂j) are approximately uniform over the 

3D object.

III. New Regularization Designs

This section reviews the aggregated certainty regularizer developed in [1], and then develops 

new regularization designs that provide approximately uniform resolution or noise 

properties by using an “ideal” system matrix factorization.

A. System matrix augmentation using a hypothetical geometry

The aggregated certainty regularizer in [1] was developed for shift-invariant systems like 2D 

PET. For shift-variant systems like CBCT, the formulation in [1] must be modified.

The Fisher information matrix A′W A is shift-variant for both emission and transmission 

tomography, causing nonuniform properties of the reconstructed image. Statistical weighting 

is only partially responsible for the nonuniformity; even in the unweighted case, the Fisher 

information matrix A′ A is also shift-variant for 3D PET and CT. In [1], the system matrix A 
was factored into three elements as follows

(18)

where {ci} denote ray-dependent factors, {sj} denote voxel-dependent factors, and G = [gij] 

represents the object-independent geometric portion of the tomographic system response. 

Ideally we would like to choose {ci} and {sj} and G such that G′G is shift-invariant. So it 

can be accurately approximated with a circulant matrix (implemented via a fast Fourier 

transform (FFT)), leading to improved regularizer designs. The matrix representation of (18) 

is

(19)

Since this representation is not unique, we can try to design each of the factors to make G′G 
“very shift-invariant”. The original design presented in [1] for PET assumed uniform voxel-

dependent factors, i.e., sj = 1, ∀j, and the ray-dependent part included only non-geometric 

aspects such as detector efficiency and dead time. In 2D PET, this leads to geometric factors 

{gij} for which G′G is nearly shift-invariant. However, this conventional choice of G leads 

to G′G that is highly shift-variant for 3D cone beam CT and even for 2D fan-beam CT for 

short-scan geometries.

Cho and Fessler Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 February 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Here, we present a new generalization of (18) that works in various geometries including 3D 

cone beam CT. First, we consider the geometric sampling properties of A and consider what 

rays are “missing” that cause A′ A to be shift-variant. For example, in a short-scan fan-beam 

geometry we are missing some of the views that would have been acquired with a full 360° 

scan. As another example, for a CBCT axial scan, we are missing the data that would have 

been acquired with a “step and shoot” set of axial scans. For axial CBCT with a full 360° 

scan, A′ A is approximately shift-invariant over the fully-sampled, so-called “football 

region”, so it is natural to define G to be a hypothetical system matrix having extra detector 

rows such that the entire reconstruction volume is contained in its corresponding football 

region2. In general, we define G to be some Ng × np system matrix corresponding to an 

“ideal”, fully sampled geometry, for which G′G is approximately shift-invariant. The matrix 

G has the same number of columns as A but has more rows (Ng > nd); the rows of A are a 

subset of the rows of G.

Second, we replace the usual diagonal matrix D[ci] in (19) with D[ci]P where P is a nd × Ng 

matrix that selects the rows of the hypothetical geometry G corresponding to those of the 

actual geometry A. Each row of P is entirely zero except for a single element that is unity. 

By ordering the rows of G appropriately, we can use P = [Ind 0nd ×(Ng −nd)]. An important 

property of the row selection matrix P is that P′WP is a Ng × Ng diagonal matrix where each 

diagonal element corresponds to a wi value for actual rays and is zero for the hypothetical 

rays.

With this generalization, we can rewrite the Fisher information matrix of the data fitting 

term as follows:

(20)

Since the Fisher information matrix is fairly concentrated near its diagonal elements [1, Fig. 

2], we approximate (20) as

(21)

where the following factors match the diagonals of (21):

(22)

(23)

2A hypothetical parallel-beam geometry is another option for G that may lead to G′G that is even more shift-invariant; that choice 
would require an additional cone-to-parallel rebinning process [30].
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(24)

Different choices of ci and sj will lead to various designs for G = {gij}. As an example, for 

axial cone-beam CT, assuming ci = 1, ∀i, and sj = 1, ∀j, will lead to G that corresponds to 

another axial cone-beam CT geometry with extended detector rows and full 360 degree 

orbit. For some other choices, we may not have a physical interpretation for the system 

represented by G.

Both the ray- and voxel-dependent factors need to be designed based on the modality, i.e., 

for SPECT, sj should be designed to properly model the nonuniform spatial sensitivity and, 

for PET, ci should represent detector characteristics.

B. Regularization with Uniform Resolution Property

Substituting (21) into (9) yields the following approximation for the local impulse response 

at the jth voxel:

(25)

Typically, the local impulse response lj is concentrated about voxel j and clearly Λδj = λjδj. 

Following [1, eqn. (34)], we approximate (25) as the following final expression for the local 

impulse response:

(26)

Having analyzed the local impulse response, we focus on designing the coefficients {κj} in 

the regularizer (5); these coefficients affect the Hessian R in (26) and thus control the spatial 

resolution. Our goal here is to choose {κj} to provide approximately uniform spatial 

resolution by matching the local impulse response at the jth voxel, lj, to a target local 

impulse response, lref, i.e., lj ≈ lref. Using (26), we write the target local impulse response at 

a reference point, such as the isocenter, as follows:

(27)

where R0 is the Hessian of a regularizer R0(x) that provides desirable spatial resolution 

properties at the reference point. R0(x) has the same form as (5) but possibly with a different 

set of {κj} values, e.g., κj = 1, ∀j.

Our design for G leads to G′Gδj being approximately locally shift invariant, and we assume 

Rδj is also approximately locally shift-invariant [10, eqn. (15)]. Taking the Fourier transform 

of (26) yields the following expression for the local frequency response
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(28)

where F(·) denotes 3-D DFT centered at voxel j. We want to match the local frequency 

response of jth voxel to the target frequency response, i.e.,

(29)

Cross multiplying and simplifying yields

(30)

We design {κj} by minimizing the least squares difference between both sides of (30)

where ℝ+ denotes nonnegative reals. For the quadratic potential function, the local 

frequency response of the regularizer Hessian is [16, eqn. (16)]

(32)

(33)

using the usual approximation κj ≈ κl for l within the neighborhood of j, where Cl denotes 

the discrete-space Fourier transform of Cl[n, m, z] and ω denotes the digital frequency. 

Without loss of generality, we choose R0(x) such that

(34)

Substituting (32) and (34) into (31) yields the following simplified expression:

(35)

Solving (35), we obtain
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(36)

where 〈·, ·〉 denotes the inner product for 3D DFT space, and ℜ+(·) denotes the nonnegative 

real part.

When G′G is approximately shift-invariant, we have

(37)

and the ratio in (36) becomes unity and (36) simplifies to κ̂
j = λj.

The presented design process can address more general purposes besides obtaining 

resolution uniformity. For instance, one may want to match a spatially varying target 

response that depends on certain characteristics, such as the sampling at each voxel, so that 

each voxel would have different resolution properties for specific purposes.

Our new regularizer for uniform resolution properties in the reconstructed image (hereafter 

R-REG) is given by (5) with

(38)

This new pre-tuned spatial strength function (38) has a very similar form to that of the 

original certainty (6) proposed in [1], but with a different denominator. This new 

denominator takes effect when voxel j is at an undersampled location. When it is fully-

sampled, the new pre-tuned spatial strength is exactly the same as the original certainty since 

 for such locations. For undersampled region, this new denominator 

decreases the regularization strength, leading to sharper and possibly noisier reconstructed 

images compared to using the original aggregated certainty (6).

To simplify implementation, we approximate (38) as follows

(39)

Unlike the back-projection of the statistical weighting, , calculating the sum of 

rows of the Hessian A′W A, , is sometimes not available or easily 

implementable. Empirical results in the supplement verify that (39) closely approximates 

(38).
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Even though the new regularizer design was derived for quadratic regularization, it can be 

also applied to regularizes with non-quadratic potential functions, following the spirit of 

[31]. Of course edge-preserving regularization always leads to non-uniform spatial 

resolution near image edges, and this important characteristic will be retained.

The proposed regularizer (38) attempts to address non-uniformities caused by both shift-

variant scanning geometries and by interactions between the regularization and the statistical 

weights. The derivation assumed that κj changes very slowly within its neighborhood. 

However, this assumption may fail for certain regions such as near the edges of a structure. 

Furthermore, since we are only adjusting the “overall strength” of the regularization at each 

voxel and not its “directional strength” for each neighboring voxel, the proposed regulariza 

tion cannot correct for asymmetry in local impulse responses. The proposed regularization is 

designed to generate uniform spatial resolution in terms of CRC. To obtain isotropic local 

impulse response, one would need to design the directional coefficients, βl, at each location 

[17].

C. Regularization with Uniform Noise Property

Using the Fisher information matrix approximation (21), we approximate the local noise 

correlation corr(x̂) as follows

(40)

where, using vi and ŵi from (14):

(41)

(42)

We further approximate (40) as

(43)

using the usual assumption that the local noise correlation corr(x̂) is concentrated about 

voxel j. From (43), the local noise power spectrum (NPS) of voxel j is approximately

(44)
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To obtain uniform noise properties, we want to match the local NPS at the jth voxel to a 

target NPS, i.e., Sj ≈ Sref. For the target, we use the local NPS at a reference point and 

assume that the regularizer R0(x) was chosen to provide a suitable NPS at that location. Our 

design goal becomes:

(45)

Cross multiplying leads to

(46)

Using (32) and (34), we simplify (46) to

(47)

By defining  and , can be rewritten as follows:

(48)

We design {κj} by solving the following least squares problem

(49)

The solution to (49) is given by

(50)

Using (37), we simplify (50) as follows

(51)

Where .
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Regularizer (5) with (51) (hereafter N-REG) provides approximately uniform noise 

properties in the reconstructed image. The new {κj} factors (51) consist of two terms within 

a square root. If we ignore the second term, then (51) is approximately the square root of the 

modified pre-tuned spatial strength (38) of R-REG. This suggests that N-REG has decreased 

regularization strength at undersampled region compared to A-REG, but with less spatial 

variation than R-REG. The second term of (51) is an “adjustment” that is usually smaller 

than the first term.

IV. Results

This section investigates the effect of the proposed regularizers (see Table I for acronyms) 

for PWLS image reconstruction of 3D short-scan axial CT using both phantom and clinical 

data. For the hypothetical geometry G, we assumed ci = 1, ∀i, and sj = 1, ∀j, in (20) and used 

a full 360° scan with increased number of detector rows,  (see the supplement for a 

different choice of G).

A. Resolution Uniformity

1) Phantom Simulation—An anthropomorphic phantom simulation was used to 

demonstrate the improved spatial resolution uniformity induced by the regularizer with the 

modified pre-tuned spatial strength (38). We used 512 × 512 × 122 XCAT phantom [32] 

with voxel size Δx = Δy = 0.9766 mm and Δz = 0.625 mm as our true image, xtrue (Fig. 1).

We used the separable footprint projector [33] to simulate a monoenergetic, noiseless 

sinogram for a 3rd-generation axial cone-beam CT system having Ns = 888 channels and Nt 

= 64 detector rows with spacings Δs = 1.0239 mm and Δt = 1.09878 mm. We assumed a 

short-scan protocol that covers an angular range of 227.6° with Na = 622 evenly spaced 

views. We selected the hypothetical geometry G to have both extended views, 

over 360°, and detector rows, . The statistical weights were wi = b0 exp(−[Ax]i) 

where the X-ray intensity was b0 = 106.

To obtain local impulse responses at various locations, we added impulses with amplitude ε 

= 2.5 × 10−4 mm−1, corresponding to approximately 14 HU, to 6 different locations in each 

of the selected 9 slices (see Fig. 1 for impulse locations in xy plane). Selected slices were 

evenly spaced through z-dimension including isoplane, end slices of region-of-interest 

(ROI), and slices outside ROI. Axial ROI was selected as 5th to 60th slices (out of 64) to 

focus on slices with less short-scan artifacts due to insufficient sampling [34]. We used (8) 

to evaluate the local impulse response at each location for regularizer designs with both the 

original aggregated certainty (6) (hereafter A-REG) and the modified pre-tuned spatial 

strength function (38) (R-REG). Both quadratic and edge-preserving regularizations were 

investigated to show that the proposed regularizer design R-REG is applicable to both cases. 

Image reconstruction was done on the same grid as the true image. For this experiment, we 

set the regularization parameter A βl as βl = β, ∀l, where β was selected based on the full-

width at half-maximum (FWHM) of the local impulse response at the isocenter. To visualize 

the shape of the local impulse response more clearly, we selected a somewhat large β value 

for which the FWHM was approximately 3 times the voxel size. Image reconstruction used 
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the ordered-subsets with double surrogates (OSDS) method [35]. The number of iterations 

was 20 with 41 subsets.

First, we present the results for regularization with a quadratic potential function. Fig. 2 

illustrates that the proposed regularizer (38) leads to local impulse response functions having 

more uniform CRC values than the “conventional” aggregated certainty design (6), 

particularly for off-center slices. CRC values of local impulse responses at different 

locations become nonuniform when using A-REG (6). This nonuniformity becomes severe 

as we move away from center slices. Using the proposed regularizer R-REG (38), the CRC 

values become much more uniform regardless of the location or the amount of sampling. R-

REG (38) corrects only the nonuniformity of peak values of local impulse responses. 

Anisotropy in the shape of the impulse response could be improved by designing directional 

coefficients [17].

Fig. 3 shows x profiles through the center of all local impulse responses to compare CRC 

values more closely. Using A-REG (6) leads to resolution nonuniformity even in the center 

slice, primarily due to short-scan geometry. Nonuniformity in resolution becomes most 

severe for locations 2 to 4 that have much worse sampling compared to the isocenter due to 

the axial cone-beam geometry and the short-scan orbit.

Table II compares the average “mismatch” of the CRC values for the given 6 locations 

across slices and within each slice. We used the following definition of CRC mismatch

(52)

The proposed regularizer R-REG improved the uniformity of CRC values throughout the 

reconstruction volume. The average CRC mismatch was significantly improved for all 

locations and slices, and undersampled voxels were most improved by the proposed 

regularizer, as designed. The overall improvement of CRC mismatch was from 34.5% to 

9.9%.

We obtained similar results for edge-preserving regularization with a hyperbola potential 

function [36] given by

(53)

Shape of the local impulse responses does not change much compared to the quadratic 

regularization, but CRC values become slightly higher. As in the quadratic case, the original 

certainty function (6) yields non-uniform CRC values across multiple voxel locations, and 

proposed regularization (38) leads to more uniform CRC values. Due to their similarity to 

the quadratic case, results for edge-preserving regularization are presented in the 

supplementary material.

Even though proposed designs were based on approximations, such as (26), the local 

impulse response calculated by (8) yields CRC values that closely match the target CRC. 
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For both quadratic and edge-preserving regularizers, the proposed designs provide improved 

CRC uniformity (see also Table II).

2) Real Clinical Data—We reconstructed a clinical cardiac CT scan as a 1024 × 1024 × 

122 image with 70 cm field-of-view (FOV). Measurements were obtained from a 64 row 

axial CT scanner with a short-scan protocol and 480 mAs tube current. The sinogram 

dimension was [Ns, Nt, Na] = [888, 64, 642]. We selected the hypothetical geometry G to 

have both extended views,  and detector rows, . For this experiment, we 

set βl in (5) using [28]. We used ICD with spatially non-homogeneous updates [37] for 

reconstruction. We show results from both quadratic and edge-preserving regularization 

using the q-generalized Gaussian potential function with p = 2, q = 1.2, and c = 10, [3]

(54)

Fig. 4 compares the reconstructed images with a quadratic potential function and the 

following different regularizers: Uniform, A-REG, and R-REG When uniform regularization 

is used, i.e., κj = 1, ∀j, the reconstructed image becomes over-smoothed even for some 

locations in the center slice, illustrating the importance of the pre-tuned spatial strength 

function in the regularization. Reconstructed image using A-REG (6) shows less blurring 

and sharper spatial resolution compared to that of the uniform regularizer. However, even in 

the center slice, both left and right sides of the reconstructed image have different resolution. 

This is consistent with the result in Fig. 3 (a) where the CRC values were nonuniform even 

in the center slice due to short-scan orbit. The proposed regularizer R-REG (38) improved 

resolution uniformity in the center slice. In the end slices of the ROI, the resolution 

nonuniformity becomes more apparent. A-REG (6) fails to provide resolution uniformity at 

under-sampled locations, leading to visible differences in smoothness between left and right 

side of the reconstructed images. On the other hand, the reconstucted image using R-REG 

(38) has more uniform resolution properties even in these undersampled region, causing the 

structures in the region to have sharper boundaries.

Fig. 6 and Fig. 7 show reconstructed images for edge-preserving regularization. Clearly, the 

edge-preserving regularization preserves fine structures, leading to better image quality in 

terms of spatial resolution compared to the quadratic regularization. However, the choice of 

{κj} still affects the resolution uniformity in the reconstructed image. The results show 

similar tendencies as in the quadratic case: non-uniform resolution and over-regularization 

in the undersampled region for uniform regularizer and A-REG. On the other hand, the 

proposed R-REG achieves sharper and more uniform spatial resolution. This suggests that 

even though the proposed regularizer was derived for a quadratic regularization, it is also 

suitable for non-quadratic regularization.

B. Noise Uniformity

Reconstructed images using R-REG (38) have better resolution uniformity throughout the 

entire volume, however, this improvement comes at the expense of the noise properties. As 

shown in Fig. 7, the proposed R-REG slightly increases the noise level in the reconstructed 
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image when edge-preserving regularization is used. This trade-off is inevitable; thus we also 

investigated a regularizer that focuses on noise uniformity (N-REG, (51)).

1) Phantom Experiment—To compare the regularizes quantitativly, we used the GE 

performance phantom (GEPP) [20]. The phantom consists of a Plexiglas™ insert with 

resolution bars, and tungsten wires in water. The phantom was scanned with a 64 row axial 

CT scanner in short-scan mode and 70 mAs tube current, corresponding to a very low dose 

scan, and reconstructed to a grid of 1024 × 1024 × 90 with the following voxel size: Δx = Δy 

= 0.2246 mm and Δz = 0.625. We selected the hypothetical geometry G to have both 

extended views, , and detector rows, . Edge-preserving regularization 

with q-generalized Gaussian potential function (54) was used.

Fig. 8 shows the reconstructed image of the GEPP with A-REG. Due to small FOV (= 23 

cm), the end slices of the ROI did not suffer much from under-sampling. However, the 

choice of regularization still leads to different image qualities in the reconstructed images 

even in the center slice. To compare different regularizations fairly, we chose the 

regularization parameter β such that the noise standard deviation near the isocenter is similar 

for all reconstructed images (≈ 13.7 HU). We selected 7 different homogeneous regions in 

the center slice to compare the noise standard deviation (see Fig. 8 for their locations). Table 

III illustrates that the proposed N-REG shows the best noise uniformity, i.e., the average 

standard deviation of the noise is reasonably close to that of the region near the isocenter. 

Since the FOV is small, the noise standard deviation does not vary much within the 

Plexiglas™ insert. However, the standard deviation in the wall depends significantly on the 

regularization method. Due to the symmetrical shape of the GEPP and thickness of its wall, 

the statistical weighting varies mostly only in the channel dimension (except for the views 

affected by an additional weighting such as Parker weighting) and is “U” shaped. As a 

result, the uniform regularizer generally increased noise in the reconstructed image, and both 

A-REG and R-REG over-regularized the region far away from the isocenter, i.e., the walls 

in this case. Both A-REG and R-REG showed similar performance as expected, and N-REG 

improved noise uniformity in the reconstructed image.

2) Real Clinical Data—Fig. 4 to Fig. 7 compare the reconstructed images obtained using 

various regularizers. For both quadratic and edge-preserving regularizers, the proposed N-

REG provides improved noise uniformity in the reconstructed image. The uniform 

regularizer tends to over-smooth the reconstructed image, and A-REG shows nonuniform 

noise properties even in the center slice. Both proposed R-REG and N-REG show improved 

image qualities in terms of resolution and noise, respectively. R-REG shows somewhat 

sharper reconstructed image compared to N-REG on end slices for both regularizers, but has 

slightly higher and nonuniform noise variance.

Fig. 5 and Fig. 7 zoom into the reconstructed images at the last slice of ROI, which has 

nonuniform sampling over the slice. A reconstructed image from full scan measurements 

with A-REG was used as a reference with desirable image quality. Since the image quality 

of the reference image is also affected by the choice of regularization, it may not be the 

optimal image for clinical diagnosis. However, the under-sampling from short-scan 

measurements is a more dominant factor for the image quality in the displayed region, so the 
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chosen reference image shows better image characteristics compared to the other 

reconstructed images from short-scan measurements. For each case, the region on the right 

side of the reconstructed image (bottom row) was compared to the left side of the image that 

has less sampling (top row). Uniform regularization clearly leads to over-regularization in 

the undersampled region, causing severe noise nonuniformity within the slice. Even though 

less severe, A-REG also suffers from the same issue. Proposed regularization N-REG 

generated a reconstructed image with better noise uniformity, improving visibility of 

structures in the undersampled region.

For both examples, the proposed N-REG (51) provides more uniform noise characteristics in 

the reconstructed image compared to other regularization methods.

V. Discussion

We proposed new regularization methods by modifying the aggregated certainty presented 

in [1] using the hypothetical geometry concept. Proposed regularizer R-REG in (38) 

improved the spatial resolution uniformity in the reconstructed images, and N-REG in (51) 

provided more uniform noise characteristics compared to the uniform and aggregated 

certainty regularizers.

The proposed methods, R-REG and N-REG, showed improved spatial resolution or noise 

uniformity compared to the conventional uniform regularizer and A-REG in both quadratic 

and edge-preserving regularizations and for both simulated and clinical scans. Even though 

the proposed regularizers were targeted to improve the uniformity of either the spatial 

resolution or noise, they yielded reconstructed images with qualitatively improved image 

quality in terms of resolution or noise compared to that from the uniform and the aggregated 

certainty regularizers. For quadratic regularization, the noise characteristics have less effect 

on the visual image quality than the spatial resolution, suggesting the use of R-REG to 

improve spatial resolution uniformity. On the other hand, since edge-preserving 

regularization provides improved resolution near edges, the noise uniformity primarily 

affects the readability of the reconstructed image. Thus, N-REG may be preferable for edge-

preserving regularization. However, there are tradeoffs between spatial resolution and noise 

characteristics. Using either regularizer may not provide an optimal reconstructed image in 

terms of both resolution and noise. Furthermore, it is unknown which feature is more 

desirable for diagnosis. Diagnostic readability for the reconstructed images obtained from 

both methods needs to be investigated to determine the best regularizer, and possibly some 

combination of methods may be desirable. A compromise approach that balances spatial 

resolution and noise characteristics is explored in the supplement as a starting point for 

further research.

For experiments in this paper, we used the hypothetical scanning geometry obtained 

intuitively by extending both rows and views from given axial cone-beam CT geometry. 

Another option would be to use a step-and-shoot set of axial scans. For some other 

geometries, determining the appropriate hypothetical geometry may be harder. For example, 

in helical CT, simply extending views would not suffice, and since the actual scanning 

geometry must be a subset of the hypothetical geometry, we cannot use a very small pitch 
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for G. Multiple intertwined helical geometries is a possible choice. Careful consideration is 

required to properly extend the proposed regularization designs to other scanning 

geometries.

One minor drawback of using the generalized geometry is the increased computation for 

(23). For a geometry having extended views or rows, since (23) is calculated only once prior 

to iterating, the increased computation is insignificant compared to the computation required 

for the actual reconstruction. However, using a step-and-shoot set of axial scans or 

intertwined multiple helical scans may require considerable computations. Fortunately, since 

calculating (23) only requires the hypothetical geometry, one could tabulate the denominator 

of (23).

The proposed regularizers improve the uniformity of spatial resolution or noise by 

controlling a scaling factor at each voxel. Even though the design process attempts to match 

the entire local impulse responses or NPS functions, they are primarily matching CRC 

values and variances at each location due to approximations (26) and (43). Thus, the 

proposed regularizers do not correct anisotropy of these characteristics. Designing 

directional coefficients in the regularizer may correct for such anisotropy, and has shown 

promising results for the well-sampled regions [16], [18]. However, the anisotropy of the 

image characteristics in the under-sampled region is hard to correct, especially since these 

methods use locally circulant approximations of the Fisher information matrix. One possible 

future work is to extend the methods in this paper to directional coefficient design.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
XCAT phantom used in the simulation. Middle 3 planes (xy, xz, and yz planes through the 

isocenter) are shown. Red and blue dots indicate locations of the added impulses and the 

isocenter, respectively. Red lines indicate our axial ROI, which is from 5th to 60th slices 

(out of 64). Blue line displays the location of the center slice. Finally, green lines show the 

detector coverage.
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Fig. 2. 
Comparison of xy plane through the center of each local impulse response at selected 

location (see Fig. 1 for the index of locations). Quadratic potential function was used. Top 

row is from a center slice (blue line in Fig. 1), middle row is from 1st slice of ROI (red line 

in Fig. 1), and bottom row is from outside ROI (green line in Fig. 1). (a) Regularization with 

original aggregated certainty (6) (A-REG) (b) Regularization with proposed pre-tuned 

spatial strength (38) (R-REG).
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Fig. 3. 
Comparison of x profiles through the center of each impulse response in Fig. 2. Left column 

is from a center slice, middle column is from 1st slice of ROI, and right column is from 

outside of ROI. Top and bottom rows represent the regularizers A-REG (6) and the proposed 

R-REG (38), respectively. (a) A-REG, center slice (b) A-REG, 1st slice of ROI (c) A-REG, 

outside ROI (d) R-REG, center slice (e) R-REG, 1st slice of ROI (f) R-REG, outside ROI.
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Fig. 4. 
Reconstructed images using uniform regularizer (1st column), A-REG (2nd column), R-

REG (3rd column), and N-REG (last column). Quadratic potential function was used. Top 

row: center slice; bottom row: the last slice of ROI. Display range is [800 1200] (HU).
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Fig. 5. 
Comparison of reconstructed images in Fig. 4 at the last slice of ROI. From left to right, the 

images are from full scan measurements with A-REG, uniform regularizer, A-REG, R-REG, 

and N-REG, respectively. Top row is from a region on the left side where sampling is lower 

than a region on the right side (bottom row). Display range is [800 1200] (HU).
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Fig. 6. 
Reconstructed images using uniform regularizer (1st column), A-REG (2nd column), R-

REG (3rd column), and N-REG (last column). Edge-preserving potential function (54) was 

used. Top row: center slice; bottom row: the last slice of ROI. Display range is [800 1200] 

(HU).
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Fig. 7. 
Comparison of reconstructed images in Fig. 6 at the last slice of ROI. From left to right, the 

images are from full scan measurements with A-REG, uniform regularizer, A-REG, R-REG, 

and N-REG, respectively. Top row is from a region on the left side where sampling is lower 

than a region on the right side (bottom row). Display range is [800 1200] (HU).
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Fig. 8. 
The GEPP used for quantitative comparison of regularizations. Red boxes indicate the 

regions selected for noise variance comparison.
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Table I
Acronyms for regularizers

Acronym Description

A-REG aggregated certainty (AC) regularizer (6)

R-REG regularizer for spatial resolution uniformity (38)

N-REG regularizer for noise uniformity (51)
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Table III

Comparison of the noise standard deviation for different regularizers method. All values are in Hounsfield 

units (HU).

Uniform A-REG R-REG (38) N-REG (51)

Plexiglas™ Insert (center) 14.0 13.7 13.7 13.6

Plexiglas™ Insert (right) 18.8 16.0 16.2 16.4

Plexiglas™ Insert (left) 15.1 14.4 14.5 14.9

Phantom Wall (left) 15.4 9.3 9.5 11.8

Phantom Wall (right) 16.9 8.8 6.8 10.1

Phantom Wall (top) 17.4 8.7 8.8 10.7

Phantom Wall (bottom) 16.1 7.7 8.8 10.9

Average 16.2±1.6 11.2±3.4 11.2 ±3.6 12.6 ±2.4
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