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Abstract

Alzheimer’s disease (AD) is characterized by deficits in cerebral metabolic rates of glucose in the 

posterior cingulate (PC) and precuneus in AD subjects, and in APOEε4 carriers, decades prior to 

the onset of measureable cognitive deficits. However, the cellular and molecular basis of this 

phenotype remains to be clarified. Given the roles of astrocytes in energy storage and brain 

immunity, we sought to characterize the transcriptome of AD PC astrocytes. Cells were laser 

capture microdissected from AD (n=10) and healthy elderly control (n=10) subjects for RNA 

sequencing. We generated >5.22 billion reads and compared sequencing data between controls 

and AD patients. We identified differentially expressed mitochondria-related genes including 

TRMT61B, FASTKD2, and NDUFA4L2, and using pathway and weighted gene co-expression 

analyses, we identified differentially expressed immune response genes. A number of these genes, 

including CLU, C3, and CD74, have been implicated in Abeta generation or clearance. This data 

provides key insights into astrocyte-specific contributions to AD and we present this data set as a 

publicly available resource.
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1. Introduction

With the rapidly growing prevalence of Alzheimer’s disease (AD), improved understanding 

of the molecular and cellular basis of the disease is needed in order to identify and develop 

improved diagnostics and treatments. Numerous imaging studies have set the stage for 

characterizing AD in live subjects. Using FDG-PET (fluorodeoxyglucose position emission 

tomography), researchers have characterized an association between AD and progressive 

reductions of CMRgI (cerebral metabolic rates of glucose) in both AD patients (1–4) and 

young adult APOEε4 carriers four decades before the expected onset of cognitive deficits 

(2). Affected brain regions include the posterior cingulate (PC), and parietal, temporal, and 

frontal cortices (1, 5–7), with the PC and precuneus demonstrating the earliest metabolic 

deficits in AD [1,2]. Such deficits may be associated with metabolic dysfunctions in neurons 

or glial cells (8, 9), reductions in the density or activity of terminal neuronal fields or 

perisynaptic glial cells (10, 11), or a combination of both, and additionally highlights a 

metabolic role of the PC in AD.

In previous work, we identified widespread down-regulated expression of electron transport 

and mitochondrial translocase genes in non-tangle bearing neurons microdissected from the 

PC of AD subjects (12). In a separate study, decreased cytochrome c oxidase activity was 

also identified across all six layers of the PC cortex in AD subjects (13). While these 

findings provide evidence that mitochondrial dysfunction may play a role in characteristic 

CMRgI deficits in AD, it is unclear as to what pathogenic contributions may be derived 

from astrocytes in the PC. Importantly, previous studies have shown that astrocytes 

demonstrate changes with respect to aging and AD. Examples include the occurrence of 

structural changes in astrocytes in the dentate gyrus of aged rats (14), distinct clustering of 

astrocytes and astroglial hypertrophy in the hippocampi of aged rats (15), release of 

proinflammatory factors from astrocytes in AD (16) and buildup of Abeta molecules within 

astrocytes (16) that may result from deficits in the ability of the cell to degrade Abeta, and 

recent work suggesting that activation of glial cells may have a primary role in impacting the 

health of neurons in AD (17). Given this previous research and astrocytes’ roles in energy 

storage and metabolism (18, 19), immunity (20), and the greater than two-fold increase in 

the number of astrocytes compared to neurons in the human brain (20–23), we hypothesized 

that PC astrocytes demonstrate significant expression changes in AD. With the role of 

astrocytes in energy storage and metabolism, we further hypothesize that genes involved in 

mitochondrial processes are also dysregulated in AD PC astrocytes.

A number of studies have evaluated human and murine astrocyte transcriptomes using 

microarray technology (24–27) or focused approaches such as Northern blotting (28) or real 

time PCR (polymerase chain reaction) (29). Simpson et al. (25) expression profiled GFAP 

(glial fibrillary acidic protein) positive astrocytes microdissected from the temporal cortex of 

elderly subjects and identified differentially expressed genes with respect to Braak stage and 

APOE (apolipoprotein) ε4 carrier status. In a separate study, cortical astrocytes were 

collected from young and old mice and expression profiled to reveal altered expression of 

key genes involved in neuronal signaling (30). In this study, we used laser capture 

microdissection (LCM) to collect ALDH1L1- (aldehyde dehydrogenase 1 family, member 
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L1) positive astrocytes from PC cortex in both AD subjects (n=10) and healthy elderly 

controls (n=10). GFAP was not used in our study due to a number of caveats with this 

marker including: (1) GFAP demonstrates varying levels of expression across different cell 

types and regions (21, 31, 32), is expressed in other glial cells outside of astrocytes (21), is 

highly expressed in reactive astrocytes (21, 33–35), and is often not identifiable in healthy 

tissue (21). However, ALDH1L1 is more specific to astrocytes than GFAP, does not 

preferentially mark reactive astrocytes, is expressed in mature astrocytes, and demonstrates a 

wider pattern of expression compared to GFAP such that GFAP-positive cells make up a 

subset of ALDH1L1-positive cells (21, 33–35). It is also important to note that our previous 

analysis of PC neurons was limited by the use of microarrays that used pre-defined probes to 

target only nuclear-encoded, and not mitochondrially-encoded, genes. However, in our study 

here we capitalize on current genomic technologies to perform an unbiased evaluation of all 

transcripts present in each sample and to take advantage of the increased analytical 

sensitivity and wide dynamic range associated with next generation sequencing. We thus 

performed next generation RNA sequencing (RNAseq) of astrocyte total RNA and describe 

here the first reported sequencing data set of PC astrocytes in AD.

2. Materials and Methods

2.1 Sample acquisition

Post-mortem brain samples were collected at the Banner Sun Health Research Institute’s 

Brain and Body Donation Program from 10 clinically classified late-onset AD subjects (4 

males and 6 females; 5 APOEε3/4 subjects and 5 APOEε4/4 subjects) with a mean age at 

death of 83.9 and 10 ND (no disease) healthy elderly control subjects (6 males and 4 

females; 5 APOEε3/4 subjects and 5 APOEε4/4 subjects) with a mean age of death of 85.1. 

Clinically confirmed AD subjects had Braak stages ranging from IV to VI (36) and neuritic 

plaque densities of frequent (37). Control subjects had Braak stages ranging from I to IV, 

plaque densities ranging from zero to moderate, and were clinically confirmed to not 

demonstrate dementia. Samples were collected with a mean post-mortem interval (PMI) of 

2.42 hours from the PC cortex (Brodmann’s areas 23 and 31). Following dissection, samples 

were flash frozen, sectioned (10 µm), and mounted on glass or PEN membrane slides (Carl 

Zeiss Microscopy; Thornwood, NY). Information for each subject is shown in Table 1. Total 

RNA was isolated from a single section from each subject using the Qiagen RNeasy kit to 

evaluate RNA integrity. Samples demonstrated Agilent Bioanalyzer RINs (RNA Integrity 

Number) between 7.4 and 9.4 such that all samples were used for downstream analyses.

2.2 Staining and laser capture microdissection

PC brain sections were rapidly stained with Alexa Fluor 350 conjugated ALDH1L1 (anti-

Aldehyde Dehydrogenase 1 Family, Member L1) rabbit polyclonal antibody (ABIN882166; 

antibodies-online; Atlanta, GA) to identify astrocytes. For each section, antibody was 

diluted 1:100 in PBS (phosphate buffered saline) with ProtectRNA RNase inhibitor (Sigma-

Aldrich; St. Louis, MO). For staining, each section was first fixed in ice cold acetone for 3 

minutes, washed 3X with PBS with RNase inhibitor, and diluted ALDH1L1 antibody was 

applied and incubated in the dark on ice for 10 minutes. The section was then washed 3X 

with PBS with RNase inhibitor, followed by consecutive washes with molecular water, 70% 
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ethanol, 95% ethanol, and 100% ethanol. The section was then allowed to dry at room 

temperature. For each subject, approximately 300 astrocytes were LCMed from PC cortex 

onto the caps of AdhesiveCap opaque tubes (Carl Zeiss Microscopy) using the PALM LCM 

System (Carl Zeiss Microscopy; Thornwood, NY). Examples of ALDH1L1+ astrocytes, as 

well as a pre- and post-LCMed astrocyte, are shown in Supplementary Figure 1. 10 µL of 

Extraction buffer from the Arcturus PicoPure RNA Isolation Kit (Life Technologies; Grand 

Island, NY) was pipetted directly onto the cap and incubated at 42°C for 30 minutes to 

create cell lysate. Lysates were collected by centrifugation at 800×g for 2 minutes and stored 

at −80°C until all samples were microdissected.

2.3 RNA isolation

Total RNA was isolated from all cell lysates using the Arcturus PicoPure RNA Isolation Kit 

(Life Technologies; Grand Island, NY) following the manufacturer’s protocol. DNase 

treatment was additionally performed during RNA isolation using the RNase-free DNase set 

(Qiagen; Valencia, CA) following Appendix A of the Arcturus PicoPure manufacturer’s 

protocol.

2.4 Library preparation

All isolated total RNA from each LCM collection was used to generate and linearly amplify 

cDNA using the Ovation RNAseq System v2 (Nugen; San Carlos, CA) following the 

manufacturer’s protocol. This system uses a primer mix to initiate amplification from the 3’ 

end of genes as well as throughout the entire transcriptome. Amplified cDNA was input into 

the TruSeq DNA Sample Preparation Kit v2 (Illumina; San Diego, CA) and sequencing 

libraries were generated following the manufacturer’s protocol with the exception that 10 

cycles of PCR was used for library enrichment. Final libraries were analyzed on a 

Bioanalyzer DNA 1000 chip (Agilent Technologies; Santa Clara, CA). Equimolar pools of 

libraries were created for sequencing and re-assessed on the Bioanalyzer prior to 

sequencing.

2.5 Paired end sequencing

Library pools were clustered onto Illumina v3 flowcells using the Illumina Truseq PE 

Cluster Kit v3 on the Illumina cBot. Clustered flowcells were sequenced by synthesis on the 

Illumina HiSeq2000 using Illumina’s Truseq PE Cluster Kit v3 and Illumina’s TruSeq SBS 

Kits v3 for paired 83 base pair read lengths.

2.6 Sequencing data analysis

Raw sequencing data in the form of BCL files were converted to FASTQ files using 

Illumina’s BCLConverter software. Data was aligned against the human reference genome 

(build 37) using TopHat1.2 (38, 39) and Cufflinks (38) was used to assemble aligned reads 

into transcripts. HTSeq (http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html) 

was used to generate a counts table from Cufflinks output and DESeq2 v1.4.0 (40)(http://

www.bioconductor.org/packages/devel/bioc/html/DESeq2.html) was used to calculate 

normalized read counts for each gene/transcript and to perform expression analysis. To 

evaluate inter-sample variability, we performed Pearson’s correlation analyses in R using 
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normalized counts across all samples to identify any outliers. DESeq2 uses a generalized 

linear model to evaluate differential expression while accounting for biological variance and 

uses a Wald test statistic to evaluate significance. A DESeqDataSet object is created using 

HTSeq counts and the DESeq() wrapper function is called to perform differential analyses. 

The fold change is determined by dividing the average normalized read counts of AD 

samples over control samples for each transcript. Independent filtering and Cook cut-off 

parameters were set to ON to remove outliers and genes with low normalized read counts. P-

values were corrected using the Benjamini and Hochberg False Discovery Rate and results 

were annotated using the Biomart online portal (http://www.ensembl.org/biomart/martview).

MetaCore from Thompson Reuters (v6.10 build 40284) was used for GeneGo pathway 

analysis. Weighted gene co-expression network analysis (WGCNA) (41, 42) was performed 

on differentially expressed genes (corrected P<0.05). Gene sets were loaded into the 

WGCNA R package and annotation of generated modules was performed using DAVID 

(43).

All data generated through this study is accessible through NCBI’s (National Center for 

Biotechnology Information) dbGaP (database of Genotypes and Phenotypes; accession 

phs000745.v1.p1).

2.7 qPCR (quantitative polymerase chain reaction) validation

qPCR was performed to experimentally validate differentially expressed transcripts in two 

phases: first, qPCR was performed on total RNA from astrocytes microdissected from 3 

control subjects and 3 AD subjects and second, across total RNA isolated from whole PC 

sections from all 20 sequenced subjects (during initial sample quality control analyses 

described in section 2.1). For the first phase, validation was performed on cDNA 

synthesized and linearly amplified from LCMed astrocyte pools using the Nugen Ovation 

RNA-Seq System V2 kit. Additional remaining cDNA from original collections used for 

sequencing were used for validations for AD4, AD6, and ND9. Based on sample 

availability, newly microdissected astrocyte pools were collected for AD8, ND1, and ND2. 

Total RNA was isolated using the PicoPure RNA isolation kit and was used to generate 

cDNA for validation using the Nugen Ovation RNA-Seq System V2 kit. REV3L (REV3-

like, polymerase (DNA directed), zeta, catalytic subunit) was selected as a reference gene 

because it demonstrated consistent high expression (greater than 1000 normalized read 

counts in each of all 20 samples) in RNAseq data and also demonstrated the lowest variance 

across all 20 samples. For the second phase, remaining total RNA from initial sample 

quality control analyses (section 2.1) was used and cDNA was generated using Qiagen’s 

QuantiTect Reverse Transcription Assay. Primers were designed using Primer3 and 

validated by performing a dilution series using Clontech Human RNA from Takara Bio Inc. 

(Kyoto, Japan) which was also reverse transcribed using the QuantiTect Reverse 

Transcription assay. Cq values were plotted against the log of the input to determine binding 

efficiency of each primer. QPCR reactions were performed in 10uL reactions using 

QuantiFast SYBR Green RT-PCR kit (Hilden, Germany) per the manufacturer’s instructions 

on the Roche Lightcycler 480 system (Basel, Switzerland), with the exception that the initial 
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reverse transcription step was omitted. Reactions were performed in triplicate with one non-

template control.

3. Result and Discussion

3.1 RNA sequencing

We sequenced 10 AD PC astrocyte pools and 10 ND (control) PC astrocyte pools to 

generate over 5.22 billion total reads and over 295 Gb of Q30 sequencing data. Both AD and 

ND groups were controlled for APOE genotype. We sequenced an average of 123,214,013 

mapped reads per sample. Pearson’s correlation analyses on normalized read counts across 

all samples resulted in r values all greater than 0.88. All samples were thus included for 

differential expression analyses.

3.2 Differentially expressed genes in AD PC astrocytes

Comparison of AD samples to controls led to the identification of 226 differentially 

expressed genes (corrected P<0.05; Supplementary Table 1). Genes demonstrating the 

greatest log2 fold changes are shown in Figure 1. 55.8% of significant genes demonstrated 

up-regulated expression.

Differentially expressed genes include mitochondrial genes, defined as mitochondrially-

encoded genes or MitoCarta genes (44) (Table 2). These genes include FASTKD2 (Fas-

activated serine/threonine phosphoprotein kinase domains 2; log2 ratio=−3.50), TRMT61B 

(tRNA methyltransferase 61 homolog B; log2 ratio=−2.81), PITRM1-AS1 (PREP/MP1; 

pitrilysin metalloproteinase 1 antisense RNA 1; log2 ratio=−3.20), NDUFA4L2 (NADH 

dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2; log2 ratio=3.23), and 

MTND1P22 (mitochondrially-encoded NADH dehydrogenase 1 pseudogene 22; log2 

ratio=6.71). FASTKD2, which localizes to the mitochondrial matrix, has been predicted to 

be involved in regulating apoptosis in breast cancer such that knockdown of the gene 

resulted in inhibition of apoptosis (45). Homozygous nonsense mutations in FASTKD2 have 

also been previously reported in mitochondrial encephalomyopathy, a condition associated 

with decreased cytochrome c oxidase activity (46). Decreased expression of FASTKD2 in 

AD PC astrocytes thus suggests perturbation of apoptosis regulation in these cells. 

TRMT61B, which also localizes to mitochondria, methylates adenosine at position 58 of 

cytoplasmic mitochondrial transport RNAs (tRNAs) and is hypothesized to improve 

processing, stability, or function of tRNAs required for translation of respiratory factors 

(47).

PITRM1/PREP/MP1 encodes an enzyme that is localized to the mitochondrial matrix (48) 

and that has been shown to degrade Abeta (49). Activity of this enzyme has also been 

reported to be decreased in the temporal lobe of AD subjects and transgenic AD murine 

brains (50). Decreased expression of a transcript antisense to PITRM1 may be associated 

with changes in regulation of PITRM1 expression. NDUFA4L2 has been reported to inhibit 

activity of complex I under hypoxic conditions through HIF-1 (hypoxia-inducible 

transcription factor-1) (51) such that its increased expression in AD PC astrocytes may 

impact complex I activity. Lastly, we identified altered expression of a mitochondrially-
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encoded pseudogene, MTND1P22. Pseudogenes, represented by DNA sequences that are 

similar to protein-coding genes but do not generate functional proteins, have historically 

been assumed to be non-functional but more recent research suggests that pseudogene 

transcripts may represent regulatory long non-coding RNAs (52). The differentially 

expressed mitochondrial pseudogene identified here is an unprocessed pseudogene, resulting 

from gene duplication, whereas processed pseudogenes result from a retrotransposition 

event (52). To date, there have been no reports of biological evidence of mitochondrially-

encoded pseudogenes, although nuclear-encoded mitochondrial pseudogenes are known 

(53). Our understanding of these pseudogenes remains limited. However, given our current 

understanding of pseudogenes and the sequence similarity of this transcript with the NADH 

dehydrogenase 1 gene, MTND1P22 may have a role in transcription regulation. Additional 

differentially expressed mitochondrial genes include CTPS2 (CTP synthase 2; log2 

ratio=3.15), MRPS2 (mitochondrial ribosomal protein S2; log2 ratio=2.88), MTHFD2 

(methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate 

cyclohydrolase; log2 ratio=−3.18), and TAP1 (transporter 1, ATP-binding cassette, 

subfamily B; log2 ratio=2.83).

Pathway analysis of differentially expressed genes revealed that the most significantly 

impacted pathway in AD PC astrocytes is immune system response (Table 3) with 82.4% of 

significant genes in this pathway demonstrating up-regulated expression in AD PC 

astrocytes. Furthermore, WGCNA, which performs functional organization of genes based 

on co-expression, on differentially expressed genes in AD astrocytes generated 7 

coexpression modules, whereby the largest module (Figure 2A; turquoise module) 

demonstrated the highest DAVID enrichment scores for immune response and immune 

processes, including antigen processing and presentation and lymphocyte activation. Genes 

in each module are shown in Figure 2B. Given the role of astrocytes in central nervous 

system immunity under circumstances when insults are present (20), identification that 

immune system response processes are the most heavily perturbed pathways in AD PC 

astrocytes correlates with known astrocyte functions. These changes may be associated with 

activation of astrocytes in response to one or all of the following: the presence of beta-

amyloid, weakening of the blood brain barrier (BBB), and exposure of sequenced cells to 

inflammatory cytokines.

Differentially expressed immune system response genes include CLU (clusterin, 

apolipoprotein J (APOJ); log2 ratio=1.97), C3 (complement component 3; log2 ratio=2.82), 

and CD74 (cluster of differentiation 74 molecule, major histocompatibility complex, class II 

invariant chain; log2 ratio=3.52). Two large genome wide association studies that evaluated 

over 23,000 individuals implicated a SNP, rs11136000, in CLU that is associated with late-

onset AD (54, 55). CLU encodes a heterodimeric chaperone that has been found to inhibit 

Abeta oligomer uptake in human astrocytes (56) such that increased expression of this gene 

in AD PC astrocytes may affect Abeta clearance. C3 encodes a member of the complement 

system and this gene has been reported to demonstrate an age-related increase in expression 

in control (C57BL/6) mice with more significant increases in transgenic APP (amyloid 

precursor protein) mice during formation of Abeta (57). Lastly, we identified up-regulated 

expression of CD74 in AD PC astrocytes. CD74, which is involved in antigen presentation 
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to T cells during an immune response, has also been found to interact with Abeta and 

obstruct Abeta production in HeLa cells (58). Up-regulated expression of CD74 in AD PC 

astrocytes may thus represent an effect resulting from multiple causes encompassing both 

immune system and Abeta responses. Notably, the immune system response genes described 

here have all been shown to be associated with APP/Abeta such that APP/Abeta may be a 

key initiating factor in immune response pathways. Of relevance, the proximity of LCMed 

astrocytes to Abeta plaques was not captured during microdissection but the findings 

reported here may be influenced by the higher plaque load in the AD subjects.

3.3 Experimental validation of differentially expressed genes

Based on sample availability, qPCR experiments were performed to validate expression 

changes. qPCR was first performed across 3 control and 3 AD subjects using cDNA 

generated from total RNA isolated from microdissected PC astrocytes to validate gene 

expression changes of 7 selected differentially expressed genes, or transcripts, identified 

through the AD versus ND comparison (Supplementary Figure 2A and 2B). These genes/

transcripts include RP11-488L18.10, RP11-797H7.1, TRMT61B, PPP5C, C3, TBP, and 

CLU. Due to limited availability of these samples, we also performed qPCR validation on 

total RNA that was isolated from an entire PC section from each subject during initial 

sample quality control analyses (n=20; Supplementary Figure 2A and 2C). These analyses 

were performed on 6 selected differentially expressed genes including TRMT61B, CTPS2, 

NDUF4AL2, CD74, CLU, and C3. Overall, the directionality of expression changes was 

validated across all genes. Notably, CLU and C3, both of which were evaluated by qPCR in 

microdissected astrocytes and whole PC sections, demonstrated larger increases in the 

astrocyte-specific data and lower increases in whole PC sections to show that the astrocyte-

specific signal is diluted in whole PC sections.

4. Conclusions

In this study, we identified altered expression of mitochondrial and immune system response 

genes in PC astrocytes in the context of AD. Based on WGCNA and pathway analyses, 

immune response processes appear to be most heavily impacted in PC astrocytes in AD 

subjects. These results provide evidence that brain immunity and mitochondrial functions in 

PC astrocytes are perturbed in AD.

Given the role of astrocytes as immune sensors in the brain (20), these cells may represent a 

first line of defense in response to insults, which may include inflammation, injury, or 

infection. Differentially expressed immune response genes in AD subjects include numerous 

genes that have been previously implicated as having key roles associated with Abeta 

production and clearance. However, it remains to be clarified if alterations in immunity 

pathways parallel, overlap, or potentially precede, Abeta formation. Deeper investigations 

into young pre-AD and MCI subjects will be needed to determine if immune response 

processes are similarly affected prior to onset of AD, and if perturbation of immune 

response pathways coincides with CMRgI deficits seen in young APOEε4 carriers. 

Likewise, additional regional analyses are needed to evaluate if immune response pathways 

are also heavily impacted in brain regions differentially affected by AD.
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While this study lends new insight into astrocytic changes in AD, we are limited by a few 

caveats. Although microdissection was used to collect astrocytes for sequencing, it is 

possible that fragments of adjacent endothelial cells or neurons may have also been 

collected. To mitigate this possibility, astrocytes were individually collected, but it is 

possible that astrocytic end feet may have been missed. As a secondary confirmation, we 

evaluated GFAP expression and identified increased expression in AD subjects (uncorrected 

P=1.63E-03, log2 fold=2.49), as expected due to up-regulation of GFAP in reactive 

astrocytes in AD (21, 33, 59), although we did not specifically collect GFAP-positive cells. 

Another limitation is that we do not know the mitochondrial content of the microdissected 

cells, whereby differential expression of mitochondrial genes may reflect differential 

mitochondrial loads. Differences in mitochondrial content in both astrocytes and neurons in 

the context of AD have yet to be investigated. Thirdly, it is not known if increased 

expression of mitochondrial genes directly translates to activation of energy metabolism 

pathways.

This study is also prefaced by significant region-specific transcriptional analyses in AD that 

have demonstrated discrete alterations in different areas of the brain. Key upregulated and 

downregulated genes have been identified in the amygdala and cingulate cortex of post-

mortem AD brains, correlating to processes including inflammation and energy metabolism, 

respectively (60). Although analyses were performed on whole tissue, upregulation of 

inflammation genes and downregulation of energy metabolism genes parallel our findings 

here, in addition to our previous report of decreased expression of electron transport genes in 

PC neurons (12). In a separate study, microarray analysis of LCMed CA1 hippocampal gray 

matter from FFPE (formalin fixed paraffin embedded) sections of AD brains suggests that 

increased expression of glial transcription factors genes, among others, may be concentrated 

in white, and not gray, matter (61). Although transcriptional analysis of FFPE samples may 

be associated with decreased specificity, this study provides evidence of divergent 

expression changes also at the level of gray and white matter. In neuron-specific 

transcriptomic studies in AD, key expression alterations were also identified across multiple 

brain regions, including the PC, hippocampal CA1, middle temporal gyrus, in layer III 

cortical neurons (62, 63).

Such findings emphasize the need to consider cell-specific responses, roles, and 

contributions to AD pathogenesis. The benefits of RNAseq support our ability to perform 

cell-specific analyses by widening the dynamic range for transcript detection and by 

supporting an unbiased evaluation of all transcripts in a sample. Furthermore, identification 

of differentially expressed mitochondrial and immune response genes, and the respective 

roles of these genes in Abeta generation and clearance, lends valuable insight into 

previously uncharacterized cells in the PC. As we continue to improve our understanding of 

the discrete molecular events that occur in the PC in AD, we will strengthen our ability to 

identify potential targets for slowing and arresting disease progression at earlier stages of 

AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. We performed RNAseq on posterior cingulate astrocytes from controls and 

Alzheimer’s subjects.

2. Differentially expressed immune response and mitochondrial genes were 

identified.

3. Cell-specific analyses are needed to understand cellular roles in AD 

pathogenesis.
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Figure 1. Differentially expressed genes in AD PC astrocytes
Differentially expressed genes (corrected P<0.05) with the highest log2 fold changes are 

shown. *mitochondrial gene; **immune response gene
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Figure 2. WGCNA dendrogram of differentially expressed genes in AD PC astrocytes
226 differentially expressed genes (corrected P<0.05) were used for WGCNA. (A) Seven 

coexpression modules were generated and the total genes for each module are as follows: 

blue=26, brown=22, green=14, gray=53, red=12, turquoise=83, yellow=16. Each open 

ended arm in the dendrogram represents a separate gene. (B) Genes falling within each 

module are listed.
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