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Red Blood Cells Induce Necroptosis of Lung Endothelial
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Abstract

Rationale: Red blood cell (RBC) transfusions are associated with
increased risk of acute respiratory distress syndrome (ARDS) in
the critically ill, yet the mechanisms for enhanced susceptibility
to ARDS conferred by RBC transfusions remain unknown.

Objectives: To determine the mechanisms of lung endothelial
cell (EC) High Mobility Group Box 1 (HMGB1) release following
exposure to RBCs and to determine whether RBC transfusion
increases susceptibility to lung inflammation in vivo through release
of the danger signal HMGB1.

Methods: In vitro studies examining human lung EC viability
and HMGB1 release following exposure to allogenic RBCs were
conducted under static conditions and using a microengineered
model of RBC perfusion. The plasma from transfused and
nontransfused patients with severe sepsis was examined for markers
of cellular injury. A murine model of RBC transfusion followed by

LPS administration was used to determine the effects of RBC
transfusion andHMGB1 release on LPS-induced lung inflammation.

Measurements and Main Results: After incubation with RBCs,
lung ECs underwent regulated necrotic cell death (necroptosis) and
released the essential mediator of necroptosis, receptor-interacting
serine/threonine-protein kinase 3 (RIP3), and HMGB1. RIP3 was
detectable in the plasma of patients with severe sepsis, and was
increased with blood transfusion and among nonsurvivors of sepsis.
RBC transfusion sensitized mice to LPS-induced lung inflammation
through release of the danger signal HMGB1.

Conclusions: RBC transfusion enhances susceptibility to lung
inflammation through release of HMGB1 and induces necroptosis of
lung EC. Necroptosis and subsequent danger signal release is a novel
mechanism of injury following transfusion that may account for the
increased risk of ARDS in critically ill transfused patients.
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Critically ill patients seem to be most
vulnerable to the deleterious effects of red
blood cell (RBC) transfusates, because
studies have demonstrated increased
morbidity and mortality associated with
RBC transfusions in this population (1–4).
Although epidemiologic studies have

shown an association between the duration
of red cell storage and adverse outcomes,
it remains unclear whether the red cell
storage lesion contributes to injury in
susceptible hosts (5–7). Despite uncertainty
whether the duration of storage contributes
to the adverse effects of transfusates, it is

well established that RBC transfusions
are associated with increased risk of acute
respiratory distress syndrome (ARDS).
Multiple studies have demonstrated
incremental risk with each RBC unit
transfused, suggesting a possible causal
relationship between RBC transfusion and
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ARDS in susceptible populations (2, 3,
8–10).

We previously investigated the
interactions between allogenic RBCs and
lung microvascular endothelial cells (ECs)
and have found that banked human RBCs
induce lung EC dysfunction marked by
increased reactive oxygen species (ROS)
generation (11). In vivo, syngeneic
RBC transfusion led to increased lung
endothelial activation and elevated levels of
the proinflammatory danger signal high-
mobility group box 1 (HMGB1) in the lung
(12). HMGB1 is referred to as a classic
damage-associated molecular pattern
(DAMP) because intracellular HMGB1 is
present in all nucleated cells and is critical
in the homeostasis of most living cells,
whereas extracellular HMGB1 possesses
immunomodulatory capabilities.
Extracellular HMGB1 can initiate and
sustain the inflammatory response through
ligation of pattern recognition receptors,

including receptor for advanced glycation
endproducts and toll-like receptor (TLR) 2
and TLR4 (13–17). Although HMGB1 can
be secreted by immune cells, it is also
released by necrotic cells (13, 15). Recently
the release of DAMPs following regulated
necrotic cell death (necroptosis) has
garnered significant interest because it is
increasingly appreciated that the form
of cell death may alter the immunologic
properties of DAMPs and modify the host
response to injury (18, 19).

Based on our previous findings of
vascular activation and increased lung
HMGB1 expression following RBC
transfusion we hypothesized that RBC
transfusions enhance susceptibility to lung
inflammation though HMGB1 release (12).
We asked whether human lung EC released
HMGB1 following interaction with RBCs and
examined the role of regulated necrotic death
as a mechanism of HMGB1 release from
lung endothelium (11). Lastly, we determined
the association of plasma levels of Receptor
interacting serine/threonine-protein kinase 3
(RIP3), a critical regulator of necroptosis,
with RBC transfusions and mortality in
patients with severe sepsis. Some of the
results of these studies have been previously
reported in the form of an abstract (20).

Methods

A detailed description of the materials
and methods can be found in the online
supplement.

Preparation of Human RBCs
Studies involving human subjects were
approved by the University of Pennsylvania
Institutional ReviewBoard. Leukoreduced RBC
units were obtained from the blood bank at the
Hospital of the University of Pennsylvania and
used after 21 days of storage.

Detection of HMGB1 Release
from ECs
Human lung microvascular ECs (HMVEC-
L; Lonza) were grown to confluence and
incubated with 13 108 RBCs in endothelial
growth medium (Lonza, Basel, Switzerland)
for 4 hours at 378C. For select studies, cells
were pretreated with 50 mM necrostatin-1
(Nec-1; Sigma Aldrich, St. Louis, MO) or
20 mM Z-VAD-FMK (Promega, Madison,
WI) for 1 hour at 378C. Supernatants and
RBC lysates were collected and HMGB1
concentrations were assayed by ELISA

(Chondrex, Redmond, WA) and reported
as total HMGB1 per 106 EC.

Detection of Necrosome Formation in
Lung EC

Immunoprecipitation. HMVEC-L were
treated with RBCs as described previously.
Mouse monoclonal anti-RIP1 Ab
(Abcam, Cambridge, MA) was used for
immunoprecipitation and immunoblotting was
performed using rabbit polyclonal anti-RIP3
and mouse monoclonal anti-RIP1 (Abcam).

Proximity ligation assay. RIP1 and
RIP3 interactions were detected using the
proximity ligation assay (Duolink; Sigma
Aldrich). Quantification of proximity
ligation assay puncta was performed using
ImageJ (NIH) software.

Detection of RIP3 in Human Subjects
Subjects were selected from the Molecular
Epidemiology of Severe Sepsis in the
ICU cohort study at the University of
Pennsylvania (21, 22) if they had plasma
available from the date of admission to the
medical intensive care unit and repeat
plasma 2 days later. Details on the cohort
can be found in the online supplement.

Plasma RIP3 levels were measured by
ELISA (CUSABIO, Wuhan, China) and
compared between categorical groups by
Wilcoxon rank sum test.

Experimental Animals
C57Bl/6 animals were purchased from
the Charles River Laboratories Inc.
(Wilmington, MA). Experimental procedures
were performed on 8- to 12-week-old male
mice, 25–30 g in weight. Animal studies were
conducted in accordance with the
Institutional Animal Care and Use
Committee at the University of Pennsylvania.
Details of the in vivo transfusion model can
be found in the online supplement.

Results

RBCs Induce HMGB1 Release from
Human Lung ECs
Because we have previously observed
increased lung HMGB1 expression
following RBC transfusion and increased
lung endothelial dysfunction following
interaction with banked RBCs, we asked
whether lung ECs were a potential source of
HMGB1. We first tested the ability of
multiple RBC units to induce HMGB1

At a Glance Commentary

Scientific Knowledge on the
Subject: In critically ill subjects red
blood cell (RBC) transfusions are
associated with increased risk of the
acute respiratory distress syndrome.
However, whether RBC transfusions
increase host susceptibility to injury
and how this occurs remain unknown.

What This Study Adds to the
Field: We demonstrate that banked
RBCs induce regulated necrotic cell
death (necroptosis) of human lung
endothelial cells and subsequent
release of the danger signal high-
mobility group box 1 (HMGB1) and
the mediator of necroptosis, receptor-
interacting serine/threonine-protein
kinase 3 (RIP3). RIP3 was elevated in
nonsurvivors and transfused subjects
with sepsis. Furthermore, we
demonstrate that RBC transfusion
enhances susceptibility to lung
inflammation in vivo through HMGB1
release, confirming the notion that
RBC transfusions confer increased
risk of lung injury in susceptible
populations. Collectively, our findings
identify lung endothelial necroptosis
as a novel mechanism of injury
following transfusion.
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release from HMVEC-L. Although there
was significant heterogeneity in the ability of
the RBCs to release HMGB1, we observed
an increase in HMGB1 release in RBC-
stimulated EC when compared with naive
EC (P, 0.001) (Figure 1A). To examine
the cellular localization of HMGB1, we

performed imaging of naive and RBC-
stimulated HMVEC-L. Although most
naive ECs displayed nuclear HMGB1
staining, several RBC-stimulated ECs
demonstrated no HMGB1 staining 4 hours
following RBC stimulation (Figures 1B and
1C). Strikingly, RBC-treated ECs also

displayed marked plasma membrane loss
and nuclear swelling.

Stored RBCs Decrease
Lung EC Viability
The appearance of the RBC-treated ECs
suggested that many of them had undergone
regulated necrotic cell death, or necroptosis.
Necroptosis is a recently described alternate
cell death pathway that is critical in host
defense, particularly in the setting of
viral infections (23–25). In contrast to
apoptosis, necroptosis is morphologically
characterized by organelle swelling, lack
of nuclear fragmentation, and ultimately
plasma membrane rupture with consequent
DAMP release. We first tested the effects
of several different RBC units on lung
EC viability as measured by counting the
number of ECs following stimulation with
RBC concentrates. The addition of red
cell concentrates to lung ECs decreased
recoverable lung ECs by a small (14%) but
statistically significant amount (P = 0.009)
(Figure 2A). We also measured lactate
dehydrogenase release by lung EC as
a marker of cell death. RBCs led to
a significant increase in lactate
dehydrogenase release (P, 0.01) (Figure 2B)
that correlated with HMGB1 release
(Spearman rank order correlation coefficient,
r = 0.92; P, 0.001) (Figure 2C).

RBC-induced Necroptosis of Lung EC
Mediates HMGB1 Release
Regulated necrotic cell death can be induced
through the addition of noxious stimuli
and through the engagement of pathogen-
sensing receptors, such as the TLRs,
particularly when caspases are inhibited
(23, 26). The assembly of intracellular RIP
kinase–containing complexes is necessary
for programmed necrotic cell death.
Although RIP1 is dispensable in some
forms of necroptosis, an essential role of
RIP3 and the downstream pseudokinase,
mixed lineage kinase domain-like, in
necroptosis is emerging (23–25, 27–29).
To determine whether stored RBC units
induced programmed cell death in lung
EC, we measured the presence of RIP1-
RIP3–containing death complexes in naive
and RBC-treated ECs. One distinguishing
feature of necroptosis is the formation of
RIP1-RIP3–containing punctate structures
(25). HMVEC-L stimulated with RBCs
demonstrated colocalization of RIP1 and
RIP3 and discrete puncta (Figure 3A) that
were not observed in naive HMVEC-L
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Figure 1. Red blood cells (RBCs) induce high-mobility group box 1 (HMGB1) release from lung
endothelial cells (ECs). (A) HMGB1 release following stimulation of human lung microvascular ECs with
RBCs for 4 hours, *P, 0.001. Data represents two independent studies, eight different RBC units tested.
(B) HMGB1 staining in lung EC 4 hours after RBC treatment. red = HMGB1; blue = DAPI; green = F-actin.
(C) Quantification of cells displaying abnormal F-actin organization, RBC-treated ECs display a greater
percentage of cells with cytoskeletal rearrangement, *P=0.02. Images are representative of three
independent experiments. Original magnification 340. DAPI = 49,6-diamidino-2-phenylindole.
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(Figures 3A and 3B) (P = 0.015). We
next tested the ability of multiple
banked RBC units to increase RIP1
and RIP3 interactions. We performed
immunoprecipitation of RIP1-containing
complexes in naive and RBC-stimulated

HMVEC-L under serum-free conditions
and found increased RIP3 expression in
RIP1-containing complexes isolated from
RBC-treated HMVEC-L (Figures 3C and
3D) (P, 0.01). Enhanced RIP1-RIP3
interaction following RBC treatment was

confirmed using the proximity ligation
assay (Figures 3E and 3F).

To confirm that RBC-induced death of
lung EC was secondary to necroptosis, we
tested the ability of RBC units to induce
EC death in the presence of the pancaspase
inhibitor ZVAD-FMK, which would block
apoptosis, prevent cleavage of RIP kinases,
and allow for the initiation of necroptosis (26,
30). Although we observed significant
heterogeneity in the ability of RBC units
to induce necroptosis, 5 out of 10 RBC
preparations tested induced caspase-
independent cell death of HMVEC-L
(Figure 4A). We next asked whether
induction of lung EC necroptosis by RBC
was a mechanism of HMGB1 release
following RBC stimulation by using
the chemical inhibitor Nec-1, which
interferes with RIP1 activity and
blocks necroptosis (31). Inhibition of
necroptosis attenuated RBC-induced EC
HMGB1 release (Figures 4B and 4C).
Collectively, these data demonstrate
that banked RBCs induce programmed
necrotic death of lung EC and
subsequent release of HMGB1.

Human ECs Lose HMGB1 after
RBC Perfusion
Although previous studies have examined
endothelial responses to RBC perfusion in
murine isolated lung perfusion models,
it remains unclear how allogeneic human
RBCs affect the lung endothelium under
physiologically relevant conditions that
recapitulate dynamic blood flow (32). We
therefore used a microengineered model
that allowed for long-term microfluidic
cell culture to produce intact human
pulmonary microvascular endothelium (33,
34). To simulate physiologically relevant
flow conditions during RBC transfusion, we
integrated a programmable fluid pumping
system in the microdevice. Although
perfusion with media alone did not alter
HMGB1 expression, introduction of RBCs
led to loss of nuclear HMGB1 from
multiple cells (see Figure E1 in the online
supplement) (P, 0.001). These data
confirm our previous observations of RBC-
induced EC necroptosis and HMGB1
release.

RIP3 Is Released Extracellularly and
Is Elevated in the Plasma of
Transfused Patients
Although HMGB1 is released secondary to
programmed necrosis, HMGB1 is not
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Figure 2. Red blood cells (RBCs) induce lung endothelial cell (EC) death. (A) Following stimulation
with RBCs, there is decreased recovery of lung EC, *P = 0.009. Eleven RBC units tested. Each open

circle represents a different RBC unit, data representative of four independent studies. (B) RBC
treatment increases lactate dehydrogenase (LDH) release, *P, 0.01. (C) Correlation between high-
mobility group box 1 (HMGB1) release and LDH, Spearman rank sum correlation coefficient = 0.92,
P, 0.001.
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a specific marker of cellular necroptosis
because HMGB1 can also be released from
activated immune cells during inflammatory
states including both sterile and pathogen-

induced inflammation. Furthermore,
apoptotic cells that were previously thought
to be immunologically silent can release
HMGB1 through various mechanisms (35,

36). Because it has previously been reported
that RIP1-RIP3 proteins can form an
ultrastable complex and others have
detected extracellular release of RIP3 from
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cultured cells, we sought to determine if
RIP3 is released extracellularly and could
potentially serve as a marker of necrosis
and cellular injury (23, 24, 37). We first
examined supernatant RIP3 levels by
immunoblot in naive ECs and ECs treated
with RBCs. Under basal conditions, we
detected minimal supernatant RIP3.
However, following RBC stimulation, we
were able to detect RIP3 in the supernatant
(P = 0.021) (Figures 5A and 5B). Notably
there was heterogeneity in the ability of the
RBCs to induce RIP3 release. We next
asked whether RIP3 release was dependent
on necroptosis. ECs treated with RBCs
demonstrated marked loss of RIP3, which
was attenuated with the addition of Nec-1
(Figure 5C). These results were confirmed
by ELISA because EC supernatant
demonstrated increased RIP3 following
incubation with RBCs that was attenuated
with necroptosis inhibition (Figure 5D).

To determine the clinical significance
of our findings we asked whether RIP3 was
detectable in the plasma of patients with
severe sepsis. Plasma RIP3 was measured in
37 subjects on Day 0 and Day 2 following
intensive care unit admission. Clinical
characteristics of subjects are shown in
Table 1. Compared with subjects who were
never transfused, subjects who received
blood transfusions had higher RIP3 on
Day 2, median (interquartile range)
was 358.7 (15–4,102.7) versus 2,692.0
(1,034.5–4,226.0) pg/ml, nontransfused
versus transfused (P = 0.046) (Figure 6A).
In addition, we tested for an association
between plasma RIP3 and blood transfusion
by quantile regression of Day 2 RIP3
levels by the volume of red cells
transfused between Day 0 and Day 2.
Plasma RIP3 levels increased with each
additional milliliter of RBCs, with
a coefficient of 1.27 (95% confidence

interval, 0.11–2.42; P = 0.033) (see Figure
E2). Furthermore, subjects who died
had higher plasma RIP3 on Day 2 than
survivors (2,962.0 [398.9–4,815.5] vs. 650.8
[50.8–1,129.1] pg/ml; nonsurvivors vs.
survivors, P = 0.039), although their Day
0 levels were equivalent (Figures 6B and
6C). Although volume of blood transfused
and incident ARDS were both associated
with mortality in the parent cohort as
described (22), RIP3 levels did not vary
significantly by ARDS status in this small
sample. Thus RIP3 is detectable in the
plasma of patients and is associated with
both RBC transfusion and mortality.

RBC Transfusion Increases RIP1-RIP3
Interactions in the Lung of Transfused
Mice and Plasma HMGB1 and RIP3 Is
Increased after Transfusion
We next asked whether we could detect
necrosome formation in murine lung
following RBC transfusion. Naive mice were
transfused with syngeneic RBCs as
previously described (12). As depicted
in Figure 7A, RBC transfusion led to
enhanced RIP1-RIP3 interactions in
murine lung. Because we detected both
HMGB1 and RIP3 release from RBC-
treated human ECs, we next measured
plasma levels of HMGB1 and RIP3
following RBC transfusion. Plasma HMGB1
and RIP3 were significantly increased
following RBC transfusion (35.26 10.6 ng/ml
vs. 82.3 6 16.7 ng/ml, P = 0.027
for HMGB1; 40.8 6 34.86 ng/ml vs.
469.4 6 192.2 ng/ml, P = 0.034 for RIP3)
(Figures 7C and 7D). We also observed
a significant correlation between plasma
HMGB1 and RIP3 (Pearson correlation
coefficient, 0.70; P = 0.004, data not shown).
Despite these observations and consistent
with our previous findings, transfusion
of stored RBCs to naive mice did not lead
to increased lung or systemic chemokine
release (Figure 8A; see Figure E3) (38).

RBC Transfusions Increase the Lung
Inflammatory Response to LPS and
Blockade of HMGB1 Attenuates
Enhanced Lung Inflammatory
Responses in RBC Transfused Mice
Previous studies have demonstrated
augmentation of LPS-mediated
inflammatory responses by HMGB1 (39,
40). We asked whether HMGB1 release
following transfusion could augment
LPS-induced lung inflammation. We first
determined whether pretransfusion with

A

C

B

40

20

0

100

80

60

%
 V

ia
bi

lit
y

*

EC ZVAD

HMGB1 + DAPI MERGE + F actin

EC RBC
ZVAD

15

10

5

0

30

25

20

H
M

G
B

1 
(t

ot
al

 n
g)

EC EC RBC EC RBC
Nec-1 ZVAD

Figure 4. Red blood cells (RBCs) induce necroptosis of lung endothelial cells (ECs) and inhibition of
necroptosis attenuates lung EC high-mobility group box 1 (HMGB1) release. (A) Viability of human
lung microvascular ECs following RBC treatment, *P = 0.054. (B) HMGB1 release following RBC
treatment, P = 0.03. necrostatin (Nec)-1–ZVAD significantly attenuates HMGB1 release with three
of the six units tested, P< 0.01. Data representative of three independent studies. (C) HMGB1
staining in lung EC 4 hours after RBC treatment or RBC treatment in the presence of Nec-1 (50 mM).
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RBCs augmented LPS-induced
inflammatory responses in vivo, using
a model of syngeneic RBC transfusion
followed by low-dose endotoxin. Two hours
following RBC transfusion, LPS was
administered via tail vein. Plasma and lung
chemokines were measured 4 hours
later. Low-dose tail vein endotoxin
administration to naive mice led to
a predictable increase in bronchoalveolar
lavage (BAL) chemokines 4 hours following
LPS administration (Figure 8B). Transfusion
of stored RBCs before LPS resulted in
increased lung inflammation marked by
BAL keratinocyte chemoattractant (KC)
elevation compared with nontransfused
LPS-treated mice (P = 0.01 and P = 0.35 for
KC and macrophage inflammatory protein 2
[MIP2]) (Figure 8C). Transfusion of fresh
blood did not significantly increase LPS-
induced inflammatory responses (see Figure
E4). Thus, transfusion with stored RBCs
increases susceptibility to endotoxin-induced
lung inflammation. HMGB1 was important
functionally because administration of the
HMGB1 neutralizing antibody significantly
attenuated BAL chemokine release (P =
0.045 and P = 0.037 for KC and MIP-2 for
RBC-LPS control antibody vs. RBC-LPS-
HMGB1 blocking Ab) (Figure 8D). Thus,

HMGB1 is released following transfusion
and sensitizes the lung to subsequent injury.

Discussion

Multiple epidemiologic studies have
demonstrated an association between RBC
transfusion and the development of lung

injury in susceptible hosts. In vitro, we
demonstrate that lung ECs undergo
regulated necrotic cell death and release
HMGB1 and the critical regulator of
necroptosis, RIP3, following incubation
with banked RBCs. In transfused patients
with sepsis and nonsurvivors of sepsis we
demonstrate elevated plasma levels of RIP3.
Furthermore, RBC transfusion led to
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Table 1. Clinical Characteristics of Subjects with Sepsis in Whom Plasma RIP3
Was Measured

Transfused (n = 19) Not Transfused (n = 18) P Value

Age 56.5 6 17.1 60.5 6 17.3 0.48
Race
African American 7 (36.8%) 3 (18.8%) 0.18
White 12 (63.2%) 12 (75.0%)
Asian 1 (6.3%)

APACHE 3 60 (43–93) 60 (44–67) 0.28
Red blood cells, ml 600 (600–900) 0 (0–0) ,0.001
ARDS by Day 5 14 (73.7%) 10 (55.6%) 0.25
Hospital mortality 12 (63.2%) 13 (72.2%) 0.56

Definition of abbreviations: APACHE = Acute Physiology and Chronic Health Evaluation; ARDS =
acute respiratory distress syndrome; RIP3 = receptor-interacting serine/threonine-protein kinase 3.
The volume of packed red cells transfused over the first 3 days is shown in milliliters. ARDS was
diagnosed in accordance with Berlin criteria. Variables are reported as mean 6 SD, as median
(interquartile range), or as number (proportion) and compared by Student t test, Wilcoxon rank sum
test, or chi-square test as appropriate.

ORIGINAL ARTICLE

Qing, Conegliano, Shashaty, et al.: RBCs Induce Necroptosis of Lung ECs 1249



increased RIP3 and HMGB1 release in
naive mice and RBC transfusion sensitized
the host to subsequent lung inflammation
through a mechanism dependent on the
danger signal, HMGB1. Thus, the induction

of necroptosis and subsequent DAMP
release is implicated as a novel mechanism
of transfusion-mediated injury.

Extracellular HMGB1 is a potent
mediator of inflammation whose release

from activated inflammatory cells and
necrotically injured cells has been well
described (13, 14). In patients with septic
shock persistent elevation of plasma
HMGB1 differentiated survivors from
nonsurvivors and elevated levels of
HMGB1 were associated with mortality in
a separate cohort of patients with ARDS
(41, 42). Although we attempted to
measure HMGB1 in the plasma of human
subjects with severe sepsis, we were unable
to detect plasma HMGB1 in more than
half of our samples and HMGB1 was
lower than anticipated in the few plasma
samples we were able to measure (data not
shown). We hypothesize that our difficulty
may be related to the freeze-thaw cycle
to which these samples were subjected, or
it may be that among subjects with sepsis,
other circulating mediators bind HMGB1
and make it difficult to detect by standard
ELISA. HMGB1 has been described to
activate microvascular endothelium
and increase barrier dysfunction and
permeability in lung endothelial
monolayers, and lung endothelium itself
has recently been described as a source of
HMGB1 (43–46). We demonstrated that
banked human RBCs can induce the
release of HMGB1 from HMVECs.

To elucidate the mechanisms of
HMGB1 release by RBC-treated EC, we
noticed several striking features including
increased EC death and morphologic
characteristics of necroptosis. To confirm
our morphologic observations of necroptosis,
we identified RIP1-RIP3–containing death
complexes displaying punctate-like
structures following stimulation of lung
EC with RBCs. Importantly, release of
HMGB1 was attenuated when cells were
treated with RIP1 kinase inhibitor Nec-1.
Supporting a functional role of
necroptosis in endothelium, recent
reports have demonstrated palmitic acid
induced necroptosis of human umbilical
vein ECs that was independent of
RIP1 but dependent on ubiquitin
carboxyterminal hydrolyase (47). Because
the endothelium is critical in innate
immunity during sepsis, we speculate that
activation of a necroptotic death program
of lung EC in response to injury would
enhance innate immune responses and
propagation of signals systemically
through the release of DAMPs. Indeed,
the lung microvascular endothelium
is unique because it provides a first
defense against blood-borne pathogens

Non-Transfused
10,000

8,000

6,000

4,000

2,000

0

R
IP

3 
(p

g/
m

l)
Transfused

p=0.046

A

Survivors

8,000

6,000

4,000

2,000

0

R
IP

3 
(p

g/
m

l)

Non-Survivors

p=0.23

B

Survivors

8,000

10,000

6,000

4,000

2,000

0

R
IP

3 
(p

g/
m

l)

Non-Survivors

p=0.039

C
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and recent studies have suggested
a critical role of lung endothelium in
innate immune responses to intraalveolar
stimuli (48).

Although the exact mechanisms of
necroptosis execution remain unknown,
mounting evidence suggests an essential role
for RIP3 (23–25, 27, 29, 37, 49). Because
RIP3 is an intracellular protein that
undergoes nucleocytoplasmic shuttling and
participates in programmed cell death
pathways, extracellular release of RIP3 from
HMVEC-L following necroptosis was an
unexpected finding (50). We therefore
sought to confirm these findings by
examining the plasma of patients with

sepsis for the presence of RIP3. RIP3 was
not only detectable but was elevated in
transfused patients with sepsis and
associated with volume of RBC transfusion.
RIP3 was also elevated in nonsurvivors of
sepsis suggesting that continued production
or abnormal clearance of RIP3 may portend
a worse prognosis. However, larger studies
are necessary to determine whether RIP3
can serve as a specific marker of necroptosis
or predictor of mortality. Because we were
powered only to detect a rather large effect
size between groups, the lack of association
between RIP3 and ARDS may be caused by
low power, and this hypothesis should be
tested in a larger population. Nonetheless,

our findings of elevated RIP3 in
nonsurvivors and transfused subjects also
raise the possibility that RIP3 may function
extracellularly to perpetuate inflammation
similar to other alarmins, although the
mechanisms by which this may occur
remain unknown.

One unanswered question raised by our
studies is how RBCs trigger necroptosis.
Multiple stimuli including pathogens, death
receptor engagement, oxidative damage,
and aberrations in calcium homeostasis and
ATP levels can trigger necroptosis. We
observed increased oxidative stress in lung
EC following stimulation with RBCs;
however, in preliminary studies, ROS
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inhibition did not attenuate necroptosis
or DAMP release in RBC-treated ECs (data
not shown) (11). These findings are not
unexpected because conflicting data
regarding the induction of necroptosis
by oxidants exist and suppression of
necroptosis with ROS inhibition varies
among different cell lines (24, 27, 51, 52).
We also observed heterogeneity in the
ability of RBC units to induce necroptosis
and subsequent HMGB1 and RIP3 release.
We speculate that this may be caused by
donor factors or alterations of the RBC
itself because we have previously observed
heterogeneity in the expression of
inflammatory ligands on banked RBCs and
we did not observe a correlation between
RBC storage duration and necroptosis
induction or HMGB1 release (11).

Because we have previously observed
increased EC release of RIP3 and HMGB1
following RBC-induced necroptosis, we
asked whether RBC transfusion induced
necroptosis and increased circulating
HMGB1 and RIP3 in vivo. We found that

transfusion alone led to enhanced RIP1-
RIP3 interaction in the lung and we also
observed increased plasma HMGB1, which
correlated with RIP3 release following
transfusion of naive mice. We speculate
that enhanced release of HMGB1 and other
DAMPs may reflect a subtle injury resulting
from transfusion that is currently
unrecognized. In this scenario, low levels
of cell death may not result in clinical
manifestations until the susceptible host
sustains a subsequent insult resulting in
injury. One mechanism by which this may
occur is that DAMPs (e.g., HMGB1)
released secondary to necroptosis may
potentiate the innate immune response.
Consistent with this theory is our
observation that RBC transfusion
increased host susceptibility to lung
inflammation and inhibition of HMGB1
in LPS-treated animals that have been
“primed” with RBC transfusion reduced
lung inflammation. Thus, HMGB1 seems
to be a mediator of lung inflammation
following transfusion. Our findings of

HMGB1-mediated lung inflammation
following RBC transfusion are consistent
with previous studies demonstrating
HMGB1 as a potent mediator of lung
injury (53).

In summary, we demonstrate that RBC
transfusions can prime the host response to
subsequent injury through release of the
DAMP, HMGB1. Furthermore, we establish
the induction of necroptosis by transfused
RBCs as a novel mechanism of lung
endothelial injury. Future studies examining
the mechanisms of RBC-induced cell death
and the pathways by which released
mediators modify the host response may
provide a greater understanding of the
significance of RBC transfusions in
contributing to disease in the critically ill
and uncover novel approaches to prevent
and treat transfusion-associated morbidity,
including the development of ARDS, in this
population. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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