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Abstract Several dietary approaches have been proposed to
prevent the onset of chronic diseases. As yet, no single ap-
proach has emerged as having the most consistent health
benefits. This arises, in part, due to the fact that diet influences
health in the context of individual factors with genetic com-
ponents. Therefore, the effects of diet on health may be
dependent on an individual’s genetic background. At this time
we lack robust evidence for the effects of interactions between
genes and dietary patterns on health. To understand why, I will
briefly review the most methodologically strong attempts to
identify gene—diet interactions, which will illuminate how the
challenges facing all of genetic research apply to the search for
gene—diet interactions. Then I will discuss some ways in
which these challenges are being addressed that offer hope
for the future in which the best diet for an individual is
identified based on their genetic variation.
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Introduction

Human health arises from complex interactions between ge-
netic predisposition and the environment in which genes
manifest. From pre-conception [1] until death, human health
is shaped by nutrition, leading dietary intake to be considered
a critical environmental factor that may interact with genes in
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determining human health [2—5]. Dietary patterns are one way
of conceptualizing nutritional intake. The “dietary pattern”
approach to public health is reflected in federal dietary guide-
lines [6, 7] and those of foundations such as the American
Heart Association (AHA) [2], who focus their recommenda-
tions for intake on both the quality and variety of overall diet
rather than solely on the contribution of individual nutrients
[8]. These recommendations have led to an awareness of
dietary patterns such as the Dietary Approaches to Stop
Hypertension (DASH) and Mediterranean Diet patterns,
which may convey more protection on health over recommen-
dations which focus on a single macronutrient such carbohy-
drate or fat. It has long been recognized that individual differ-
ences in genetic variation will influence the association of
these dietary recommendations with health, and this has yet
to be reflected in dietary guidelines. Identifying the interplay
between genes and dietary patterns holds promise for a new
era of personalized medicine, whereby the recommended diet
for best health is tailored towards how an individual’s metab-
olism is genetically predisposed to respond to dietary intake.
Moving away from the current one-size-fits-all approach
holds promise from increasing the efficacy of dietary ap-
proaches in the prevention of chronic disease. However, com-
pared to genetic main effects, few attempts have been made to
identify interactions between genes and dietary patterns on
health. Those that have, have remained stuck at the macronu-
trient level — for example, looking at interactions between
carbohydrate intake and genes on adiposity—with very little
attention paid to the overall diet. Even research on specific
dietary nutrients thus far has been labeled “fragmented, in-
complete, and in many cases, controversial” [9]. Identifying
how overall diet interacts with genetic variation to influence
human health is an important direction for public health, and
the lack of definitive findings needs to be placed in the context
ofunique challenges that confront all human genetic research.
Only by identifying these challenges can researchers start to
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address and overcome them. In addition, as clinicians are
aware of the difficulties faced in nutrigenomic research, they
may be able to respond to those patients who ask why a
personalized approach to diet is still lacking.

Lessons Learned from Decades of Genetic Research

The history of genetics has been a long and chequered one.
While there are notable successes in identifying genes for
health, such as the risk alleles housed within breast cancer
type 1 and 2 susceptibility protein (BRACAI and BRACA?2)
genes for breast cancer [10] and the apolipoprotein E (4POE)
gene for Alzheimer’s disease [11], it has been repeatedly
stated that the quest to identify the genetic variants that ac-
count for the estimated heritability of complex traits related to
human health has fallen short of expectations [12—15].
Although the advent of sequencing analysis has added to the
geneticist’s toolbox, genetic association studies designed to
identify specific variants associated with disease have typical-
ly been conducted by one of two methodologies: candidate
gene or genome-wide association studies (GWAS; Table 1).
In the early years of genetic research, a candidate gene
approach was taken to identify putative loci associated with
health. In this approach, a select number of variants within a
pathway implicated in the development of a trait of interest
would be analyzed for association with the trait. The lack of
replication among candidate gene studies across a range of
phenotypes led to the conclusion that candidate approaches on
their own were unsuitable for identifying the complement of
genetic variants associated with human disease. It was ac-
knowledged that the pathways between candidate genes and
disease-related traits were more numerous, and more com-
plex, than previously thought, presenting challenges to gener-
ating a priori hypotheses about the putative gene regions.
The advent of DNA chip technology held promise for
resolving this problem. Relative to candidate gene methods,
chips allowed for quick and cheap genotyping of 500,000—
3,000,000 common single-nucleotide polymorphisms (SNPs)

Table 1

spaced somewhat evenly across the whole genome. This
technological advance allowed researchers to survey loci
across the genome for associations with health outcomes in
a hypothesis-free manner, holding the promise of identifying
new pathways between genes and disease. The initiation and
success of the International HapMap Project further bolstered
the science community’s belief that GWAS would enable the
identification of the SNPs accounting for the genetic variation
underlying human health [16]. The International HapMap
Project outlined the correlational structure between SNPs
across the genome, which enabled researchers to impute data
from the SNPs genotyped on a single chip to provide infor-
mation on approximately 80 % of the human genome [16].
With the potential for hypothesis-free survey of almost all of
the genome, there was enormous optimism at the start of the
“GWAS era” that science would fairly rapidly start to account
for the majority of the genetic variance associated with traits
of interest.

To date, science has failed to do so. Even for some of the
most commonly studied traits, such as body mass index
(BMI), more than 95 % of the genetic variance remains
unaccounted for [15]. In addition, the majority of initial
genome-wide significant findings failed to replicate. In recog-
nition of this, and of the limitation that many putative loci may
lie just under the threshold for genome-wide significance,
many have called for a two-stage approach to gene-hunting:
a discovery phase in which a genome-wide scan is conducted,
and then a replication phase in which all hits from the first
phase reaching a given threshold (often P<1.0*10-5; but can
be between P<10*-4-10*6) are examined for associations in
one or more independent samples [17]. It is hoped that this
approach will prevent the false negatives which the stringent
Bonferroni correction typically applied to GWAS studies has
given rise to, but equally, prevent the “winner’s curse” of
initial associations that never replicate [18]. The failure of
GWAS to account for the heritable variance has been termed
the “missing heritability” [14]. The reasons for missing heri-
tability are numerous and highly debated, but include the use
of genetically complex phenotypes [19], the notion that rare

A comparison of candidate gene and genome-wide approaches to genetic association studies

Candidate Gene Vs.

GWAS

A very small fraction of the genome is typically analyzed
Required a strong a priori hypothesis
A more statistically powerful approach

Suitable for identifying variants of large and small effect

Can include rarer variants and nonSNP variants such as variable
number of tandem repeats (VNTRs)

Covers up to 80 % of the genome
Is a hypothesis-free or hypothesis-generating approach

Compared to candidate genes, the needed correction for multiple
testing leads to low power

Typically more suitable for identifying variants of larger effect”

Traditionally includes common variation (SNP occurring in <1 %
of the population, although some GWAS chips contain rarer
variants and/or are customizable)

#This is dependent on sample size
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variants may play a more important role than previously
realized and smaller effect sizes than initially anticipated
[14, 15]. These well-recognized challenges pose grave prob-
lems for identifying how genetic background moderates the
association between dietary patterns and health.

Placing Gene—Diet Interaction Research in the Light
of These Lessons

In identifying loci that interact with a given dietary pattern,
researchers are confronted with a difficult choice: does one
take a candidate locus approach, or survey the whole genome
in a hypothesis-free manner with a GWAS?

Candidate gene approaches have been the mainstay of
gene—environment interaction studies, which generally
choose SNPs and diets associated with a disease—or trait—
in previous research in order to examine whether SNPs and
dietary patterns interact. To my knowledge, although many
studies have examined the effects of interactions between
genetic variants and individual nutrients on health, only two
single-cohort studies have examined gene—diet interactions
with dietary patterns. The first study reported that weight loss
on a Mediterranean style diet was moderated by variation at
rs1801260 in the Circadian Locomotor Output Cycles Kaput
(CLOCK) gene [20]. The second study reported that weight
loss on the Mediterranean diet over a three-year period was
significantly lower in A allele carriers of rs9939609 in the fat
mass and obesity-associated (F70) gene compared to those
homozygous for the T allele [21]. Promising though these
results are, they are notable for a lack of replication and
validation.

Some of the strongest gene—environment research has
come out of consortia such as the Cohorts for Heart and
Aging Research in Genomic Epidemiology (CHARGE)
Consortium [22]. Consortia such as CHARGE employ data
meta-analyzed across a number of cohorts, which may there-
fore be considered more robust and more powerful than
single-cohort studies. A very focused candidate gene study
used data from 15 cohorts to examine whether the associations
of polymorphisms in the lipoprotein receptor-related protein 1
(LRP1I) gene with BMI, waist circumference, and hip circum-
ference were modified by fatty acid intake. The study reported
that saturated fatty acid intake was associated with all three
anthropometric traits, and interacted with rs2306692 in LRP1
such that the association between saturated fatty acids and
each anthropometric data was stronger for each of the anthro-
pometric traits for each copy of the T allele [23¢]. This inter-
action was present in whites but not in African-Americans
[23-].

More often, however, the candidate gene approach to iden-
tifying gene—diet interactions has not yielded significant re-
sults. In data meta-analyzed across 14 CHARGE cohorts of
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European ancestry, total zinc intake was associated with
fasting glucose (»p=0.0003) but did not significantly interact
with glucose-raising alleles after a correction for multiple
testing [24]. Similarly, a meta-analysis of the same cohorts
reported that whole-grain food intake was strongly associated
with fasting glucose and insulin (P-.0003 - <0.00001), but no
significant interactions were found with SNPs known to in-
fluence fasting glucose and insulin levels [25]. In possibly the
only study to examine interactions between genes and a
dietary pattern rather than a single macro- or micronutrient,
an analysis across 15 cohorts from CHARGE investigated
whether a “healthy diet” altered the associations between
glucose- and insulin-associated SNPs and fasting levels.
“Healthy diet” was a single score defined a priori based on
self-reported intake of nine food groups. Five food groups
were designated “favorable,” and a high healthy diet score
indicted higher intake. These favorable foods were whole
grains, fish, fruits, vegetables, and nuts/seeds. Four groups
were defined as “unfavorable,” and high intake contributed to
a lower overall healthy diet score. Red and processed meats,
sweets, sugared beverages, and fried potatoes all contributed
negatively to the healthy diet score [26¢¢]. As expected based
on previous research, the healthy diet score was inversely
associated with fasting glucose and insulin; for each unit
increase, there was a 0.004 mmol/L decrease in glucose and
a 0.0058 mmol/L decrease in insulin. However, the score did
not interact with known glucose- and insulin-related SNPs on
the glycaemia measures [26°°].

In many studies, SNP—diet interactions reached suggestive
levels of significance, which did not survive a multiple testing
correction, and thus it is not clear whether power is an issue
[25]. Nonetheless, it is likely that the challenges faced by
main-effect association studies are also faced by gene—diet
interaction studies. As over 95 % of the mechanistic pathways
from genes to chronic diseases such as obesity, cardiovascular
disease, and cancer remain opaque, it is challenging to select
which putative loci are involved in these pathways and thus
should be analyzed in the context of gene—diet interactions
[15, 27, 28]. In addition, selecting variants for interaction
analysis is challenging in light of data simulations showing
that the most significant associations from GWAS are not
likely to be those variants which interact with the environment
to influence phenotypes of interest [29-31]. Rather, since
GWAS detects variants of relatively large effect, and the
presence of an interaction with diet is likely to weaken the
detected main effect, it is likely that the “sub-threshold”
variants are those which hold promise for gene—diet interac-
tions [29-31]. Focusing on genetic loci which are not the top
GWAS hits may be a more fruitful approach. As yet, however,
there is no empirical or theoretical threshold for selecting these
variants.

Genome-wide interaction study (GWIS) approaches also
pose unique difficulties: with a given sample and effect size, a
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study has less power to detect gene—environment interactions
than genetic main effects [32]. Full GWIS approaches there-
fore require the accrual of large sample sizes. While many
successful consortia have been established, these bring the
additional challenge of harmonizing diet data across cohorts.
Dietary data are typically measured in one of a number of
ways, including through food frequency questionnaires
(FFQs), dietary diary analysis, and interview-led diet history
interviews. The concordance between these measures has yet
to be established. In addition, if a dietary pattern is defined in
part by a macronutrient variable, it may be that the constituent
components of that macronutrient differ across cohorts de-
fined by, for example, ethnicity or geographic location. This
heterogeneity makes it difficult to detect interactions in a
combined sample.

The GWIS approach still holds promise for identifying gene—
diet interactions. In a genome-wide analysis of 9,287 colorectal
cancer cases and 9,117 unaffected control controls across ten
independent studies, a significant interaction was found between
a variant near the trans-acting T-cell-specific transcription factor
(GATA3) gene and processed meat intake on colorectal cancer
status [33¢]. The association between processed meat intake and
colorectal cancer was only present among those who were T
allele carriers [33¢]. However, while compelling, this result has
yet to replicate. In addition, this study focused on a single food
group rather than an overall pattern of intake, making it difficult
to derive clinical advice from the results.

Developing Solutions to Methodological Challenges
in Gene—Diet Interaction Analysis

Numerous challenges remain in the quest to determine the
dietary pattern that will convey the most protection against
chronic disease, given an individual’s genetic background.
Even with a candidate gene approach which is powered to
detect smaller effect sizes than a GWIS approach, the very
small effect sizes found for suggestive interactions (those that
are significant but do not survive a correction from multiple
testing) suggest that power still remains an issue [24, 25]. One
solution to dealing with small effect sizes for interactions with
individual SNPs has been to use a genetic risk score (GRS). A
genetic risk score is a sum of alleles taken across several genes
known to convey deleterious effects on the same phenotype.
By summing the effects of several SNPs, GRS typically show
larger effect sizes than a lone SNP. Recently, studies adopting
this approach have met with some success, as witnessed in the
following two illustrative examples.

A GRS constructed of 63 obesity-associated alleles was found
to interact with a diet high in total—and especially saturated—fat
intake on BMI in two independent populations [34]. When
saturated fat intake was low, every additional risk allele in the
GRS was associated with an increase in BMI of 0.11-0.20; when

saturated fat intake was high, each risk allele conveyed an
addition increase of 0.19-0.41 BMI points. In a similar study, a
higher GRS score (more risk alleles across 32 BMI-associated
loci) increased the association between BMI and sugar-
sweetened beverage intake; per increment of 10 risk alleles, the
increase in BMI points was 1.00 for an intake of less than one
serving per month, 1.12 for one to four servings per month, 1.38
for two to six servings per week, and 1.78 for one or more
servings per day (P<0.001 for interaction) [35]. GRSs can also
include SNPs identified from mechanistic candidate gene studies.
This may convey an advantage since, as previously discussed,
the top GWAS hits may not contain SNPs that associate with the
phenotype of interest through gene—environment interactions
[29-31]. However, a limitation of the GRS approach is that it
fails to consider potential interactions between the alleles com-
prising the GRS (gene—gene interactions), and further, offers little
mechanistic insight into how genes modify the effect of dietary
pattern on health, since GRSs often subsume many mechanistic
pathways.

Further Challenges in Identifying the Best Dietary Pattern
for Good Health for Each Genotypic Background

There still remain several issues that researchers need to
resolve if we are to identify the dietary pattern that is most
protective against chronic diseases for each individual, given
their genetic background. Only a few articles could be identi-
fied in which the interaction between dietary patterns and
genetic variation on health were analyzed [26¢°]. This may
reflect difficulties with how “dietary pattern” should be de-
fined and what it should be compared to. Dietary intake, in
general, reflects a continuum of adherence to a given dietary
pattern rather than a yes/no approach. Defining how closely
someone adheres to, for example, the DASH diet requires the
quantification of guidelines, which may be tricky to achieve
across diverse cohorts. In addition, the implication of the
anticipated small effect sizes goes beyond the need for large
sample sizes, and reflects the larger question of clinical utility:
what is the role of expensive genetic tests if they may only
inform on a difference of 0.004 mmol/L in fasting glucose
[26°¢], when dietary changes alone may reduce the incidence
of type 2 diabetes by up to 31 % [36]?

Conclusions

While the clinical utility of understanding how genes moder-
ate the association of dietary pattern with health has not yet
been fulfilled, the potential benefits of using genetic back-
ground to design a personalized dietary approach for the
prevention of chronic disease remain. The popularity of
home-based nutrigenomic tests, while scientifically
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questionable, reflects public desire for personalized nutrition
advice [37]. There are many methodological challenges to
overcome, shared with all of human genetic research, before
we can identify the putative variants that interact with dietary
patterns. These challenges center on the lack of power for
GWIS approaches, but the theoretical and empirical difficul-
ties in identifying loci a priori for a candidate gene approach.
Dietary nutrients do not act in isolation, and as guidelines for
preventing chronic disease focus on overall holistic diet, un-
derstanding which dietary pattern an individual should adhere
to may present the most promise for improving public health.
To address this question, we are going to need to combine data
from studies employing a host of statistical approaches.
Studies employing GRSs have perhaps met with the most
success in identifying gene—diet interactions, but to gain
mechanistic insights, these will have to complement candidate
gene approaches. In addition, as we do not fully understand
the pathways between genes and chronic disease, and have
identified SNPs which only account for a small proportion of
the underlying genetic variance, GWIS approaches will be
vital for identifying new related loci. Finally, the need for
replication must be addressed. Until then, dietary advice for
optimum health will remain at the population—rather than
individual—level, and many benefits of dietary change on
health may be lost.
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