
Approaching the Next Revolution? Evolutionary
Integration of Neural and Immune Pathogen
Sensing and Response

Kevin J. Tracey

Feinstein Institute for Medical Research, Manhasset, New York 11030

Correspondence: kjtracey@nshs.edu

Mammalian immunity evolved by the process of natural selection that produced differential
survival and reproduction advantages through combinations of hereditary traits underlying
the response to pathogens. Primitive animals sense the presence of microbial pathogens
through recognition of pathogen-derived molecules in their rudimentary immune and
nervous systems. No molecular biological mechanism assigns primacy of pathogen sensing
mechanisms to immune cells over neurons. Rather, in animals as diverse as Caenorhabditis
elegans to mammals, neural reflexes are activated by the presence of pathogens and trans-
duce neural mechanisms that control the development of immunity. A coming revolution in
immunological thinking will require immunologists to incorporate neural circuits into under-
standing pathogen signal transduction, and the molecular mechanisms of learning, that
culminate in immunity.

On considering memory, one finds an ironic
perspective, tainted by shadows of two

major scientific fields that, historically at least,
did not collaborate. Immunological memory,
mediated by lymphocytes, and neurological
memory, mediated by neurons, evolved over
millions of years in response to environmental
changes. Closer inspection within both fields
reveals key features of common origin between
neural and immune information collection and
retrieval. Major evolutionary advantages arose
at points of intersection of these systems, man-
ifested as beneficial physiological responses to
environmental stimuli during infection, injury,
and metabolic stress. In 1989, Charles Janeway
proposed that the first revolution in immuno-

logical thinking led to the domination of the
humoral theory of immunity, and that an ap-
proaching second revolution would integrate
innate and adaptive immunity by understand-
ing the role of pathogen-associated molecular
pattern receptors (Janeway 1989). Today, I be-
lieve that the groundwork has been laid for a
third revolution in immunological thinking
that will integrate the role of neurological feed-
back circuits into innate and adaptive immuni-
ty, including the role of molecular mechanisms
through which neurons sense microbes and reg-
ulate the output of hematopoietic-derived im-
mune cells. I also suggest that costimulation of
neural reflex circuits by microbial products
plays a major role in the immune response to
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infection, and to the subsequent development
of immunity (Fig. 1). If correct, this idea could
revolutionize our thinking about immunity and
take us beyond innate and adaptive immunity
to an integrated view of neurological and im-
munological recognition and learning.

EVOLUTIONARILY ANCIENT SENSING
MECHANISMS IN NEUROSCIENCE AND
IMMUNOLOGY

It begins with sensing a change in the environ-
ment. Consider the evolutionarily primitive
animal, Caenorhabditis elegans, which harbors
rudimentary immune and nervous systems.
Moving and feeding within a bacterial lawn, it
uses neural and immune sensory mechanisms
to detect the presence of pathogenic microbes
and toxins (Pradel et al. 2007). On encountering
specific molecules, sensory neurons transduce
the chemical environmental information into
action potentials, which initiate neural respons-
es that modify the animal’s behavior and mo-
tion. The presence of pathogens also activates its

innate immune cells, which incite defensive re-
actions, including enhanced MAP kinase and
XBP-1 signaling, accumulation of unfolded
proteins in endoplasmic reticulum, and other
cellular and metabolic responses (Styer et al.
2008; Aballay 2013). Sensory neural signals ini-
tiate primitive response circuits linked to corre-
sponding motor neural signals that determine
behavioral and physiological responses. Thus,
the worm’s neural and innate immune sensory
systems independently detect the presence of
the pathogens in the environment.

Primitive innate immune-like cells in C. el-
egans, which predate the evolution of compe-
tent Toll-like receptor and NF-kB signal trans-
duction mechanisms, are also activated by the
presence of pathogens or injury (Aballay 2013).
Gene expression patterns in the innate immune
system, and animal behavior mediated by the
nervous system, are altered in a pathogen spe-
cies-dependent manner. The result of these re-
sponses is that the animal can defend itself
against certain pathogen encounters, although
not all. The innate neural and immunological
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Figure 1. Pathogens or products of cellular inflammation and injury costimulate immune cells and neurons
during the earliest stages of infection. Neural input activates reflex circuits, which modulate the nervous system
and the immune system. Hematopoietic-derived cellular responses produce humoral and cellular signals that
influence immune cells and neurons. These signal transduction pathways culminate in mediating the behavior of
the animal and in initiating learning.
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sensing events are both operative at the earliest
stage of the encounter, but the speed of neural
transmission offers a key advantage to coordi-
nating the animal’s specific responses.

There are 302 neurons in C. elegans, and the
interconnections and response characteristics of
these have been elucidated. A characteristic fea-
ture of the worm’s response to infection is that
one family of neural circuits, activated when
sensory neurons detect the presence of path-
ogenic pseudomonas, transmits neurotrans-
mitter-dependent signals to mediate pathogen
avoidance behaviors, and to suppress the un-
folded protein response in innate immune cells
(Sun et al. 2011). In light of today’s advanced
knowledge, and our detailed molecular mecha-
nistic understanding about inhibitory reflex
control of innate immune responses in mam-
mals, perhaps the perspective becomes clearer.
The regulatory intersection between the ner-
vous and innate immune systems in C. elegans,
which has been retained in today’s mammals,
originated from evolutionary pressure to opti-
mize physiological homeostasis, and survival.

Beyond either field, there is little need to
account for separateness in functional mecha-
nisms that operate in a parallel time frame, and
also intersect to control the magnitude of host
defense and response. But immunology and
neuroscience have only recently embraced this
theory, so there is value in reviewing the concept
from the perspectives originating within each.
From an historic perspective in immunology,
the principal focus has been to understand the
development and maintenance of immunity,
and to provide a complete molecular mechanis-
tic basis for how lymphocytes acquire and retain
the information necessary to remember the na-
ture of infectious threats. This has been highly
successful for establishing the principles to ex-
plain the diversity and repertoire of long-term
humoral and cellular immune memory that re-
sults from antigen processing, presentation, and
clonal development of B and T cells. A detailed
molecular understanding for the basis of innate
immunity was also produced. When likened to
reflex or instinctual behavior, pathogen recog-
nition by innate immune cells is encoded in the
genome, enables a relatively rapid and consis-

tent response to pathogen-associated and dam-
aged-associated molecular patterns, and is
highly conserved. These mechanisms of immu-
nity have been exceedingly well described with-
in a knowledge sphere circumscribed by cells of
hematopoietic origin, operating in response to
pathogens, absent control from other systems.
It is axiomatic within immunological think-
ing that the earliest stages of sensing pathogens
occurs through activation of innate immune
pattern-recognition receptor signals, and that
later sensing occurs through adaptive immune
responses.

In an historic time line parallel with these
unfolding events, the principle focus of neuro-
science has been to understand the functions of
the brain and nervous system. This established
neurons as the principal cells controlling infor-
mation, learning, and memory; the chemical
basis of neurotransmission; and the principles
of synaptic neural communication underlying
neuronal signaling. In the mid-20th century,
Sherrington famously recognized that the sim-
ple reflex, comprised of a sensory arc, interneu-
rons, and a motor arc, is the fundamental unit
for information processing on which the entire
nervous system evolved (Sherrington 1906).
From C. elegans and to modern mammals, sen-
sory neurons respond to chemical, mechanical,
or temperature changes in the environment.
This information is transduced via ion channels
and gradient potentials that generate action po-
tentials that are relayed to other neurons. Dur-
ing pathogen threat, or in response to other en-
vironmental changes, information processing
in the nervous system begins with sensory input
transmitted in the afferent arc of a reflex circuit.

Sensory neural signals in mammals are
routed through nuclei residing within the cen-
tral nervous system, primarily in the brain stem.
These nuclei produce the output that regulates
organ function by transmission through the
motor arc to complete the reflex circuit. The
simple reflex unit is the basic building block
that evolutionary pressure used to integrate
and assemble the mammalian nervous system
as the regulatory and coordinating system of
host responses to infection, injury, and other
threats. Nuclei that provide the relay stations
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for regulatory reflexes are housed in the evolu-
tionarily ancient regions of the mammalian
brain stem. These brain stem nuclei control the
homeostatic set points of all basic physiological
functions associated with health, and the re-
sponse to environmental change.

Individual neural reflex circuits are stimu-
lated in response to specific sensory inputs aris-
ing within the body organs. The reflexively con-
trolled release of neurotransmitters from the
motor arc controls the output of each organ.
Ultimately, the physiological, or involuntary,
behavior of the host is the result of the sum total
action of all reflexes connecting its organs to its
brain stem. These involuntary reflexes function
with limited or no input from the cerebral cor-
tex. They operate largely beneath conscious con-
trol. Primitive animals, like C. elegans, which
(presumably) lack the cerebral faculties of con-
sciousness and self-awareness, also show reflex
behavior in response to changes in pressure,
temperature, the chemical composition of the
environment, and the presence of pathogens.

In considering the role of regulatory feed-
back on the molecular mechanisms underlying
immunity, it bears special note here that there is
a modern tendency to center discussions of
mammalian neural information processing on
the cerebral cortex. Termed “cortical conceit,”
one may view the sophisticated human cerebral
encephalon as an undoubted source of inesti-
mable pride, a grand evolutionary accomplish-
ment (Dubos 1998). But the advanced cerebral
cortex found in mammals is a relatively new
addition to biology, one that is largely dispen-
sable for understanding basic mechanisms of
physiological and immunological homeostasis.
Surgically or genetically decorticated mammals
can well maintain physiological and immuno-
logical set points within a healthy range, as long
as the brain stem nuclei and corresponding re-
flex circuits are functional. Basic reflex circuits,
having developed in an evolutionary time,
maintain physiological responses during infec-
tion and injury without requiring input from
the cortex to operate competently. Signals de-
scending from the higher brain can influence
the functional output of the reflex nuclei, but
these psychological implications need not be

considered here to understand the basic physi-
ological principles governing homeostasis. So,
in defining rules that govern how the nervous
system modulates the immune system to estab-
lish immunological homeostasis, we can dis-
pense with the need to consider individual
acts of conscious will, or choices made. The
system operates in the background of conscious
existence, driven by sensory inputs that elicit
reflex responses.

These reflex circuits originating in the evo-
lutionary precursors of the modern mammali-
an brain stem nuclei conferred the ability to
modulate cardiac and pulmonary function in
response to infection, and countless other pro-
tective and beneficial organ responses. Animals
expressing such competent beneficial reflexes
gained a preservation and reproductive advan-
tage over breeding populations lacking it. In
time, the accumulation of individual simple re-
flexes endowed evolving species with optimal
flexibility necessary to use effective defensive
responses and maintain homeostasis in re-
sponse to a range of changes in the internal
and external milieu. The identity and function
of these regulatory reflexes in mammals was re-
vealed in classic physiological studies of the an-
atomically accessible body systems. Consider
the cardiovascular system, which is beautifully
presented in the thorax when the sternum is
divided, to behold the beating heart.

With each cardiac contraction it is possible
to observe, measure, and record numerous ex-
perimental end points reflecting the intricate
physiological working of the reflexively con-
trolled heart. Cutting the vagus nerve to the
heart produces an increase in heart rate, indi-
cating that heart rate is tonically suppressed by
descending neural signals from the brain stem.
This descending inhibitory signal is transmitted
in the motor arc of a reflex initiated when an
increase in heart rate is sensed by afferent bar-
oreceptor neurons. Action potentials arrive
within brain stem nuclei, and from there, neural
signals exit the brain stem to be transmitted
back to the heart to decrease heart rate relative
to a predetermined set point. Other reflexes,
activated when heart rate decelerates below its
set point, culminate in signaling via other mo-
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tor arcs that increase heart rate. From observa-
tions of this sort, physiologists and neuroscien-
tists built detailed models and developed rules
of feedback control based on individual units
of reflex action to explain how cardiovascular
homeostasis is maintained during a range of
changes in the internal and external milieu.
Similar rules have been developed and applied
to other organ systems. The regulatory neural
systems that reflexively control physiological
homeostasis operate in real time, are highly sen-
sitive to changes in external and internal envi-
ronment, and ultimately enable organ systems
to function within a narrow range of metabolic,
thermal, nutrient, and behavioral parameters
that is compatible with cellular and animal
health.

The vagus nerve is a principal nerve in mam-
mals that transmits afferent, sensory informa-
tion from the organs to the brain stem, and it
is a mechanism for informing the nervous sys-
tem about the status of the internal milieu. From
the visceral organs, it travels a meandering
course across the abdomen, thorax, and neck,
entering the brain stem, where its sensory nerve
endings synapse on, and relay information to,
neurons in the nucleus tractus solatarius. Inter-
neurons arising there relay signals to the dorsal
motor nucleus of the vagus nerve, representing a
major cholinergic outflow tract that returns to
the peripheral organs. The motor arcs stimulat-
ed by vagus sensory afferent neurons return to
the organs via efferent neurons that travel along
two major routes: the sympathetic chain, and
the vagus nerve itself. At the nerve terminus,
motor neurons from these two major outflow
paths release acetylcholine, norepinephrine, va-
soactive peptide, and other neuropeptides that
bind to cognate receptors in the target organ’s
epithelial and parenchymal cells, to modulate
cellular metabolism, function, and secretory ca-
pacity. Studies of the cardiopulmonary, gastro-
intestinal, renal, hepatic, and endocrine systems
established the anatomic and neurophysiologi-
cal principles underlying reflex control of phys-
iological homeostasis. Until quite recently, how-
ever, the existence of regulatory reflexes exerting
control over the immune system had evaded
description. Immunological thinking had not

viewed immunity as a reflexively regulated re-
sponse.

REFLEX REGULATION OF INNATE
IMMUNITY

This began to change following the discovery
that cytokines produced in response to infec-
tion and injury are necessary and sufficient me-
diators in disease pathogenesis. This provided
experimental tools and strategies that enabled
the illumination of neural circuits that regulate
innate immunity. Termed “the cytokine theory
of disease,” cytokines produced in response to
infection and injury mediate cellular, metabol-
ic, and pathological effects underlying the ma-
jor physiological and clinical manifestations of
illness (Tracey 2007). Restated, disease occurs
when there is a loss of immunological homeo-
stasis producing an unbalanced or excessive
cytokine response. In such cases, inhibiting or
modulating the cytokine response to restore im-
munological homeostasis can prevent or reverse
disease, and it should be stressed that the cyto-
kine theory does not state that all cytokines are
“bad.” By analogy, the germ theory does not
state that all microbes are pathogenic. Rather,
the cytokine theory indicates that in some in-
stances of cytokine imbalance or excess, treat-
ment of diseases can be specifically accom-
plished with targeted therapeutics.

The cytokine theory of disease was validated
in mammals, including humans, within a few
years after early direct evidence became avail-
able that tumor necrosis factor (TNF) is a nec-
essary and sufficient mediator of acute septic
shock during infection (Tracey et al. 1986,
1987). The first principles for administering
anti-TNF monoclonal antibodies as therapy
were established in baboons infected with Es-
cherichia coli (Tracey et al. 1987). Treated ani-
mals survived despite the presence of replicating
bacteria in their bloodstream, proving that the
disease (septic shock) required the activity of
TNF. Disease was attributable to the activity of
the cytokine, regardless of the status of the path-
ogen (Tracey et al. 1987). Today it is common to
witness this principle being applied to patients
receiving monoclonal anti-TNF for the treat-
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ment of rheumatoid arthritis, inflammatory
bowel disease, and other conditions. From a
practical point of view, the earliest underlying
or inciting etiological agent can be dissociated
from the disease. The physician standing at the
patient’s bedside is witness to signs and symp-
toms of inflammation, organ damage, and tox-
icity mediated by the direct action of cytokines.
In many, if not most, diseases, excessive cyto-
kine activity can be considered as a failure of
immunological homeostasis.

It was from this perspective, in the 1990s,
that my colleagues and I began to directly ad-
dress the possibility that reflex neural circuits
had a critical role in regulating cytokine release
and maintaining immunological homeostasis.
We focused on the TNF response in animal
models of infection and injury. The choice of
TNF as the target of these studies was important,
because it represents an early-stage response,
rapidly induced in response to pathogenic stim-
ulation. The measurable TNF response falls
within a time window peaking 90 min after ex-
posure to endotoxin, quite compatible with
making observations that could be interpreted
in the context of experimental manipulation of
neural circuits. To determine whether neural sig-
nals suppress TNF release from tissue macro-
phages, we applied stimulating electrodes to
the vagus nerve where it traversed the neck on
its descending course to the reticuloendothelial
system (Borovikova et al. 2000). Electrical stim-
ulation of the vagus nerve significantly inhibited
TNF release in red pulp and marginal zone mac-
rophages in spleen, suggesting that descending
signals in the motor arc of an “inflammatory
reflex” participate in regulating the innate im-
mune response and maintaining immunologi-
cal, or “cytokine homeostasis” (Tracey 2002; Ro-
sas-Ballina et al. 2008).

When the vagus nerve was divided before
exposing animals to endotoxin, we observed
that TNF production by splenic macrophages
was enhanced (Borovikova et al. 2000). By anal-
ogy to the tonic inhibitory influence of vagus
nerve signaling, which inhibits heart rate, this
fact indicated that constitutively active or tonic
vagus nerve signals slow or inhibit the innate
immune response to endotoxin. By following

the track of the vagus nerve from the brain
stem, down the neck, across the thorax, and
into the abdomen, and either dividing the nerve
in some cases, or electrically stimulating it along
its course in others, we discovered that the point
of convergence of the vagus nerve signals to reg-
ulate serum TNF during endotoxemia is in the
spleen (Huston et al. 2006; Rosas-Ballina et al.
2008). Electrical signals applied to the cervical
vagus nerve descend to the celiac ganglion,
which is the origin of motor neurons that inner-
vate the spleen. Vagus nerve and splenic nerve
action potentials inhibit the release of TNF in
red pulp and marginal zone macrophages,
which together account for .90% of the peak
serum TNF levels following the acute onset of
endotoxemia.

Three implications from these findings are
immediately obvious. First, the TNF producing
innate immune response to endotoxin is regu-
lated by neural signals. The constitutive inhibi-
tory activity of neural circuits establishes a set
point for the innate immune response to endo-
toxin. Second, the immune system is anatomi-
cally and functionally innervated. Although ex-
tensive prior anatomic evidence indicated that
all of the major organs of the reticuloendothelial
system receive neural connections from the
brain stem, the prior anatomic findings had
not provided a scientific framework for experi-
mental studyof the functional operation of these
neurons. Approaching this as a functional, neu-
rophysiological property of neuronal activity to
regulate the innate immune response to endo-
toxin opened a door to delineating molecular
mechanisms. Third, it is overwhelmingly prob-
able that the basic principles of reflex action
activated by sensory input also apply to other
aspects of innate immunity and adaptive immu-
nity. The evolutionary emergence of lympho-
cytes, and adaptive immunity, occurred roughly
in parallel with the emergence of more sophisti-
cated neural networks arising from evolution-
arily expanding neural circuits and connectivity.
It is nearly impossible to imagine an evolving
situation in which the environmental changes
caused by infection and injury did not intersect
with signals that simultaneously influence both
the immune and nervous systems.
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As broadly defined, immunity is the state of
acquiring (learning) and retaining (remember-
ing) systems to confer protection against infec-
tion. On accepting the theory that neural sig-
nals, which regulate immune responses, are
costimulated during the activation of innate im-
munity, and provide regulatory signals in the
earliest stages of acquiring immune memory,
then it can be strongly argued that a complete
understanding of immunity requires incorpo-
rating neural mechanisms. To determine the
mechanism for reflex inhibition of innate im-
munity, we experimentally followed the path of
the neural signals arising in the vagus nerve and
terminating in the spleen (Rosas-Ballina et al.
2011). Within the spleen, we observed splenic
nerve endings terminating in synapse-like struc-
tures adjacent to lymphocytes. In transgenic
mice, which coexpressed green fluorescent pro-
tein in cells that express choline acetyltransfer-
ase, the rate-limiting enzyme that catalyzes the
biosynthesis of acetylcholine, we observed that
T lymphocytes capable of synthesizing acetyl-
choline resided in close proximity to splenic
nerve endings. Electrical stimulation of the va-
gus nerve stimulated the adrenergic splenic
nerve to release norepinephrine, which in turn
stimulated Chat-expressing T cells to release
acetylcholine. Lymphocyte-derived acetylcho-
line is the neurally activated molecular mediator
that binds to a7 nicotinic acetylcholine recep-
tors expressed by red pulp and marginal zone
macrophages (Wang et al. 2003). Ligand recep-
tor interaction inhibits the release of TNF
through a molecular mechanism that has been
attributed to formation of a heteroprotein com-
plex comprised of a7 binding to JAK-STAT that
suppresses activation of the nuclear transloca-
tion of nuclear factor kB and to stabilizing mi-
tochrondrial membrane permeability (de Jonge
et al. 2005; Lu et al. 2014). The functional im-
portance of these T cells in this neural circuit is
striking, because T-cell-deficient nude mice lack
a working inflammatory reflex. Electrical stim-
ulation of the vagus nerve in nude mice fails
to inhibit TNF. This phenotype is reversed by
passive transfer of Chat-expressing T cells into
naı̈ve recipient nude mice, which restores the
functional inflammatory reflex in these animals

(Rosas-Ballina et al. 2011). Thus, the inflamma-
tory reflex is defined by vagus nerve action po-
tentials that activate the release of an inhibitory
neurotransmitter, acetylcholine, from special-
ized lymphocytes to suppress the magnitude
of the TNF response in spleen. A prototypical
neural circuit prevents overexpression of TNF to
establish healthy immunological homeostasis.

Our initial observations on the neural reg-
ulation of TNF release enabled us to formulate
the fundamental principles for reflex control of
immunity. Discrete neurons terminating in spe-
cific molecular mechanisms modulate the im-
mune response to infection (Tracey 2009; An-
dersson and Tracey 2012a). Inhibitory neural
control of innate immunity by acetylcholine is
not restricted to controlling TNF, because ace-
tylcholine interaction with a7 nicotinic acetyl-
choline receptors in macrophages significantly
inhibits activation of the inflammasome, the
protein complex required for the release of lead-
erless cytokines, including IL-1, HMGB1, and
IL-18 (Borovikova et al. 2000; Lu et al. 2014).
Expression of a7 nAChR is essential to the in-
tegrity of the inflammatory reflex, because a7
nAChR knockout mice have an impaired in-
flammatory reflex. Vagus nerve stimulation fails
to suppress inflammasome activity in these
animals; and, moreover, activation of innate im-
munity in the a7 nAChR knockout mice pro-
duces significantly higher levels of TNF and
the leaderless cytokines (Wang et al. 2003; Lu
et al. 2014).

SENSORY STIMULATION OF
NEUROLOGICAL REFLEXES IN IMMUNITY

As is the case for all reflexes, the motor arc of the
inflammatory reflex is activated in response to
signals arising in the sensory arc. Beyond the
evidence cited above that the interaction of
C. elegans with pathogens begins by sensing sig-
nals transmitted in afferent neurons, a series of
pivotal studies have provided insight into the
origin and function of the sensory arc of the
inflammatory reflex in mammals. Originally,
Linda Watkins and her colleagues (1995)
made the seminal discovery that the fever re-
sponse induced by the intra-abdominal admin-
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istration of IL-1 requires an intact and func-
tional vagus nerve, because when they surgically
divided the vagus nerve, animals maintained
normothermia despite exposure to intra-ab-
dominal IL-1. Thus, the presence of IL-1 in
the abdomen, or more specifically in the hepatic
circulation, is sensed by the vagus nerve, which
propagates action potentials ascending to syn-
apses in the nucleus tractus solatarius in the
brain stem (Fairchild et al. 2011). Sensory vagus
nerve action potentials mediated by IL-1 have
been experimentally shown using recording
electrodes applied to the vagus nerve at various
points along its course from the abdomen to the
brain stem (Niijima 1996). Compound action
potentials arising in response to intrahepatic IL-
1 have also been recorded in the splenic nerve,
which is a pure motor nerve lacking sensory
fibers (Niijima et al. 1991). This gives direct evi-
dence that sensory vagus nerve signals activate
compound action potential signals descending
to the spleen via the motor arc of the inflamma-
tory reflex.

Other inflammatory mediators have been
implicated in stimulating sensory action poten-
tials in the vagus nerve, including endotoxin,
TNF, prostaglandins, substance P, and other en-
dogenous and exogenous products of infection
and injury (Chiu et al. 2012). The sensory and
motor arcs of the inflammatory reflex within
the vagus nerve are positioned to anatomically
and functionally respond to and modulate the
host response to infection and threat in the vis-
ceral organs of the body compartment. The im-
portance of this inhibitory neural circuit to
maintaining immunological homeostasis is in-
dicated by the findings that animals deficient in
this reflex are rendered increasingly sensitive to
excessive TNF release. This raises the next ques-
tion: Can reflexes stimulate, rather than inhibit,
innate immune responses to maintain immu-
nological homeostasis?

As far back as 1874, it had been proposed
that inflammation is mediated by action poten-
tials transmitted in peripheral neurons (Chiu
et al. 2012). This stemmed from the observa-
tions that electrical stimulation of dorsal root
neurons produced vasodilation in the inner-
vated skin. Today we understand that the in-

flammatory effect of these motor neurons is at-
tributable to neurotransmitters released into
the tissue including neuropeptides, catechol-
amines, and substance P. These molecules inter-
act with cognate receptors expressed on endo-
thelial cells, smooth muscle cells, lymphocytes,
monocytes, and macrophages that in turn me-
diate vasodilation, increased capillary perme-
ability, neutrophil recruitment, and swelling.
Signaling through these stimulating neural
pathways produces an enhancement of inflam-
mation attributable to the biological mecha-
nisms of specific proinflammatory neurotrans-
mitters activated by that specific neural circuit.
As these motor circuits are stimulatory, defined
by their activity to increase the output of innate
immune responses, there is evidence supporting
a functional approach to studying the regulation
of innate immunity by combined inhibitory and
excitatory neural signaling mechanisms.

A basic principle in neuroscience is that the
interaction of inhibitory and excitatory neural
circuits mediates the output of a neural net-
work, and determines the final state of organ
function. Major forms of information process-
ing in the nervous system are routinely defined
by the identity of the excitatory or inhibitory
neurotransmitter released in response to specif-
ic action potentials. Accordingly, depending on
the neurotransmitters released, neural circuits
can either inhibit inflammation, as in the case
of cholinergic signals, or enhance inflamma-
tion, as in the cases of proinflammatory neuro-
peptides, adrenergic signals, and substance P.
The functional output depends on the neuro-
transmitter receptors, rather than the neuro-
transmitters per se, as in the case of adrenergic
signaling by norepinephrine secreting neurons,
which can enhance or inhibit inflammation,
depending on whether the principle receptors
engaged are a or b adrenergic GPRs. Indeed,
most innervated tissues receive input from cir-
cuits that release immune inhibitory and im-
mune excitatory signals, so the net effect of neu-
ral control on the immune response will depend
on the sum total interaction of molecular mech-
anisms resulting from ligand receptor signal
transduction in a cell-specific and neurotrans-
mitter-specific path.
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To this point, I have argued that the output
of neural reflex circuits regulates the innate
immune response to pathogens, and that these
circuits can be activated by IL-1 and other en-
dogenous products of inflammation and tissue
damage. This is in keeping with pervasive im-
munological thinking that the innate immune
system is the primary sensor of the presence of
pathogens. Next, consider that the regulatory
intersection between the nervous and immune
systems can also originate with pathogen sens-
ing. It is clear that innate immune system
receptors respond to pathogen-associated mo-
lecular patterns during early phases of infec-
tion, and that clonal expansion of lymphocytes
expressing specific pathogen sensing receptors
confers long-term protection against sub-
sequent infections. But how early is “early,”
and what role might the nervous system play
if it detects the presence of microbes or tissue
damage first, before innate immune responses?
Can neurons respond to bacteria directly, or
must there be an intermediate sensing step of
microbial recognition by the innate immune
system?

Consider that peripheral sensory neurons
form a dense meshlike network that envelops
and covers all tissues exposed to the external
environment, including the epithelial lining of
the skin and soft tissues, as well as the pulmo-
nary, genitourinary, and gastrointestinal sur-
faces. Wherever microbes might gain entry, a
sensory neural net is in place to respond. Spe-
cialized “nociceptor” neurons can be activated
to transmit afferent action potentials by expo-
sure to specific molecules. In C. elegans, with its
limited repertoire of neurons, glycolipids con-
taining ascarylose (3,6-dideoxy-L-arabino-hex-
ose), termed “ascarosides,” stimulate specific
nocioreceptor neurons that lead to discrete
behavioral responses (Ludewig and Schroeder
2013). For example, exposure of worms to
ascr#3 mediates either attraction or repulsion
of hermaphrodites and males, whereas chemical
modification of ascr#3 by addition of a trypto-
phan adduct (producing “Icas#3”) produces
entirely different aggregation and attraction be-
havior. In this example, discrete chemical mod-
ification of awell-characterized molecular entity

provides a differential sensory input into reflex
circuits that produce visibly perceptible behav-
ioral responses.

Stimulation of nocioreceptors produces
graded potentials that propagate short distanc-
es, and can lead to stimulation of action poten-
tials in a frequency that reflects the intensity of
the original stimulus. These action potentials
travel longer distances along axons from the pe-
ripheral tissue into the central nervous system,
where the incoming information can be relayed
to the brain stem, and can activate an interneu-
ron to stimulate a motor arc of a simple reflex
that returns to the periphery. Another feature
of some nocioceptive neurons is that signals
propagating toward the central nervous system
can be diverted at branch points to travel back
toward the periphery in a phenomenon termed
an “axon reflex” (Yaprak 2008). By this mecha-
nism, TNF, IL-1, prostaglandins, substance P,
and other molecular products of inflammation
stimulate nocioceptive neurons to stream sig-
nals to the brain stem and back into the region-
al tissues. Functional expression of receptors
for cytokines (e.g., IL-1R, TNFR), pathogen-as-
sociated molecules (e.g., TLR3, TLR4, TLR7,
TLR9), and damage-associated molecules (e.g.,
RAGE, P2X3) have all been implicated in medi-
ating neuronal hyperpolarization and signaling
(Chiu et al. 2012).

From the neuroscience perspective, there is
nothing particularly curious about the nervous
system sensing molecular input from the milieu
interior and exterior. Changes in the molecular
composition of the environment directly medi-
ate the generation of action potentials, and ini-
tiate the neural platform for responding to
threat, which stimulates learning. If one ap-
proaches this from within a narrow immunol-
ogy perspective, there will be significant bias in
favor of theories that cells within the innate im-
mune system, not the nervous system, are the
primary sensing apparatus to detect pathogens.
From an evolutionary perspective, however,
there is no reason to ascribe innate sensing pri-
macy to the immune system. Indeed, the facts
argue to the contrary. Atomic structural mech-
anistic studies of molecular signaling through
neurons in C. elegans, the evolutionary precur-
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sors to mammalian neuronal reflexes, react dif-
ferentially to subtle changes in molecular struc-
ture. It can be strongly argued that neurons, as
well as innate immune cells, evolved to “sense”
molecules derived from pathogens in a manner
that initiates highly specific and coordinated
responses that benefit survival, and that evolu-
tion would preserve these advantages.

The recent discovery by Clifford Woolf and
colleagues that mammalian nocioceptors sense
pathogens independently from the innate im-
mune system indicates that some adjustment
will have to be made to prior immune-centric
sensing theories (Chiu et al. 2013). Inoculation
of bacteria into mice produced pain and inflam-
matory responses, even when animals were ren-
dered genetically deficient in TLR and MyD88-
dependent signal transduction mechanisms.
N-formylated peptides derived from Gram-
negative and Gram-positive bacteria are sensed
by G-protein-coupled formyl peptide receptors
(FPRs) on neurons. Administration of E. coli–
derived peptide (fMLF), and Staphylococcus
aureus–derived peptide (fMIFL) to mice-acti-
vated calcium flux in nocioceptive neurons
that mediate pain and mechanical hypersensi-
tivity. Exposure of the S. aureus–derived pore-
forming toxin, a-haemolysin, induced a con-
centration-dependent calcium flux in sensory
neurons, which express A disintegrin and met-
alloprotease 10 (ADAM10), implicated in mem-
brane pore assembly. The assembly of molecular
pores in response to a-haemolysin is sufficient
to mediate ion flux and generate action poten-
tials in sensory neurons. Mice rendered defi-
cient in nocioceptive neurons (Nav1.8-Cre/
diphtheria toxin A mice) and exposed to S. au-
reus–developed enhanced inflammatory re-
sponses, including increased neutrophil and
monocyte infiltration, increased lymph node
swelling, and increased production of TNF.
Thus, the interaction of pathogen-associated
molecules on neurons directly activated sensory
information, transmitted as action potentials,
to mediate a locally inhibitory neural circuit
that suppresses inflammation (Chiu et al.
2013). This direct mechanistic evidence estab-
lishes that pathogen-derived molecules can be
sensed by neurons, that specific molecular

products activate specific neuronal mechanisms
that culminate in the generation of action po-
tentials, that localized neural reflexes contribute
to regional regulation of innate immunity, and
that all of this occurs at the earliest, immediate
stages of host responses that are associated with
learning and, eventually, memory.

CONCLUSIONS

Viewing the onset of immunity as commencing
with neural sensing independent from, and co-
stimulatory with, immune cell sensing has pro-
found implications to immunological thinking.
For students interested in the functional activity
of hematopoietic cells, it will remain an option,
of course, to continue investigation into the in-
teraction between specific microbes and patho-
gen-associated molecules with specific cognate
receptors expressed in cells from the myeloid
lineage. This can be furthered in exquisite mo-
lecular detail by pursuing signal transduction
mechanisms that converge on gene expression
patterns. Students interested in understanding
how immunological memory develops in mam-
mals during infection, and those interested in
understanding how the innervated host oper-
ates as a physiologically regulated animal within
constraints of a stable internal milieu, will take a
different approach. The revolutionary new ap-
proach to immunological thinking will embrace
the mechanisms of inhibitory and excitatory
neural feedback loops that function from the
onset of infection, and are coordinated by brain
stem reflexes and regional axonal reflexes, to
modulate the output of the innate immune cells
that independently sense the presence of micro-
bial agents.

Revolutions can be messy business, and pre-
dicting the outcome even messier. But some-
times, as perhaps illustrated by Janeway’s pre-
science in defining the second revolution in
immunological thinking, the outcome can be
predetermined by facts. At present, nearly
25 years after Janeway’s prediction, innate im-
munity has been elevated to heightened pre-
eminence in immunological thinking. There is
an intense and appropriate focus on under-
standing the role of innate immunity in the ac-
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quisition of adaptive immunity. Looking to the
coming revolution, there is clear evidence today
that innate immunity is regulated by neural re-
flexes activated by pathogens and host-derived
mediators of infection, inflammation, and inju-
ry; and there is strongly suggestive evidence that
neural signals modulate adaptive immunity as
well (Wong et al. 2011; Arima et al. 2012; Mina-
Osorio et al. 2012). From my vantage point, this
has all the makings of a revolution in immuno-
logical thinking that is under way owing to a
convergence, not a clashing, of two major fields.
A complete understanding of immunity re-
quires fully understanding the neural response
to infection and injury (Andersson and Tracey
2012b). Tools provided by molecular biology,
neurophysiology, and cell biology render this a
particularly exciting time to embrace this inter-
section of neuroscience and immunology, and
to consider that advances from worms to mam-
mals hold promise for advances in the clinic.
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