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Respiratory complex I inhibition by drugs and other chemicals has been implicated as a frequent mode of
mitochondria-mediated cell injury. However, the exact mechanisms leading to the activation of cell death
pathways are incompletely understood. This study was designed to explore the relative contributions to
cell injury of three distinct consequences of complex I inhibition, i.e., impairment of ATP biosynthesis,
increased formation of superoxide and, hence, peroxynitrite, and inhibition of the mitochondrial protein
deacetylase, Sirt3, due to imbalance of the NADH/NADþ ratio. We used the antiviral drug efavirenz (EFV)
to model drug-induced complex I inhibition. Exposure of cultured mouse hepatocytes to EFV resulted in
a rapid onset of cell injury, featuring a no-effect level at 30 mM EFV and submaximal effects at 50 mM EFV.
EFV caused a concentration-dependent decrease in cellular ATP levels. Furthermore, EFV resulted in
increased formation of peroxynitrite and oxidation of mitochondrial protein thiols, including cyclophilin
D (CypD). This was prevented by the superoxide scavenger, Fe-TCP, or the peroxynitrite decomposition
catalyst, Fe-TMPyP. Both ferroporphyrins completely protected from EFV-induced cell injury, suggesting
that peroxynitrite contributed to the cell injury. Finally, EFV increased the NADH/NADþ ratio, inhibited
Sirt3 activity, and led to hyperacetylated lysine residues, including those in CypD. However, hepatocytes
isolated from Sirt3-null mice were protected against 40 mM EFV as compared to their wild-type controls.
In conclusion, these data are compatible with the concept that chemical inhibition of complex I activates
multiple pathways leading to cell injury; among these, peroxynitrite formation may be the most critical.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The mitochondrion is a frequent subcellular target that is in-
volved in the toxicity of drugs [1–4]. Multiple initiating mechan-
isms can contribute to the pathogenesis of cell injury, including
drug-mediated inhibition of one or several of the respiratory chain
complexes [5]. In particular, complex I is a relatively frequent
target, and complex I inhibition induced by drugs has been im-
plicated in causing cell death [6–9].

Complex I (NADH:ubiquinone oxidoreductase, NQR) is the
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largest among the electron transport chain (ETC) complexes; it is
composed of at least 45 subunits encoded by both mitochondrial
and nuclear genes [10]. Its major function is the oxidation of
NADH, resulting in the transfer of electrons to ubiquinone, while
the released energy is utilized to pump protons from the matrix
into the intermembrane space, helping maintain the inside nega-
tive inner transmembrane gradient. The exact mechanisms of how
complex I inhibitors may induce cell injury are still incompletely
understood, but three major mechanistic pathways have been
identified. First, complex I inhibition may lead to defects in mi-
tochondrial bioenergetics, as a result of reduced electron flow and
impairment of oxidative phosphorylation (OXPHOS), especially in
tissues with high energy demand [11]. However, complex I has a
large reserve capacity, and minor inhibition of complex I may not
result in significant deficiencies in ATP biosynthesis [12]. Second,
inhibition of NQR activity may result in a backup of electrons and
increased reductive stress, causing facilitated reduction of mole-
cular oxygen to form superoxide anion [8]. This can lead to ul-
trarapid formation of peroxynitrite, which even outcompetes the
SOD-catalyzed formation of hydrogen peroxide. In addition, redox-
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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sensitive signaling pathways can be activated, one of them re-
sulting in an increase in the intermembrane pool of cytochrome c,
leading to apoptosis [7]. Third, imbalances in the NADþ/NADH
ratio, due to impaired substrate oxidation at complex I, could
result in inhibition of NADþ-dependent enzymes including the
mitochondrial sirtuins (Sirt). Among these, Sirt3 is a soluble
mitochondrial protein that is involved in the posttranslational
regulation of a number of mitochondrial targets by deacetylating
lysine residues [13]. Inhibition of Sirt3 activity will invariably
lead to hyperacetylation of these proteins and dysregulation of
mitochondrial homeostasis. However, the relative contribution of
these three mechanisms to the initiation and progression of cell
death is not known.

In this study, we used efavirenz (EFV) to model drug-induced
inhibition of complex I. Efavirenz is a non-nucleoside reverse
transcriptase inhibitor that is widely used as part of the highly
active antiretroviral therapy (HAART) to treat HIV infections. Al-
though considered generally safe, there is evidence that EFV can
cause hepatic toxicity; in fact, up to 10% of patients treated with
EFV may develop increased plasma ALT activity (a marker for he-
patocellular injury), which limits treatment [14,15]. Although the
underlying molecular mechanisms have largely remained unclear,
it has been reported that EFV inhibits cellular oxygen consumption
in isolated rat liver mitochondria energized through complex I
(but not through complex II) [16], suggesting that EFV might in-
hibit complex I activity. More recently, evidence has revealed that
EFV indeed inhibits NQR activity in mouse hepatic sub-
mitochondrial particles in a concentration-dependent manner,
indicating direct inhibition of complex I activity caused by EFV.

The aim of this study was to explore the causal role of both
increased reactive oxygen species/reactive nitrogen species (ROS/
RNS) and potential inhibition of Sirt3 activity and protein hyper-
acetylation, as a result of EFV-induced complex I inhibition, in
contributing to the pathogenesis of EFV-induced cell death in
mouse hepatocytes. We found that peroxynitrite formation plays a
mechanistic role in triggering cell death, but that, surprisingly,
Sirt3 inhibition seems to protect, rather than promote, hepato-
cellular injury induced by the complex I inhibitor.
Materials and methods

Chemicals

Efavirenz (EFV) was purchased from Sigma (St. Louis, MO). Fe-
TCP (Fe(III) meso-tetra(4-carboxyphenyl)porphyrine chloride) was
purchased from Frontier Scientific (Logan, UT). Fe-TMPyP (Fe(III)
tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride) was pur-
chased from Cayman (Ann Arbor, MI). All chemicals were obtained
at the highest grade available.

Animals and genotyping

The study design and all protocols for animal care and handling
were approved by the Institutional Animal Care and Use Com-
mittee at the University of Connecticut. Young adult C57BL/6 mice,
as well as 129-Sirt3tm1.1Fwa/J (homozygous Sirt3 knockout) mice
and their 129S1/SvImJ wild-type controls, were obtained from the
Jackson Laboratory (Bar Harbor, ME). Male mice (8–10 weeks of
age) were used for all studies. Prior to use, the mice were accli-
matized for Z1 week and kept on a 14/10-h light/dark cycle under
controlled environmental conditions. They had free access to
mouse chow (Teklad Global Rodent Diet; Harlan Laboratories,
Boston, MA) and water. Genotyping was performed by tail biopsy
and polymerase chain reaction (PCR) analysis. Briefly, the tissue
was lysed in 50 mM Tris–HCl, pH 8.8, containing 1 mM EDTA, 0.5%
Tween 20, and 0.6 mg/ml proteinase K, and incubated at 56 °C
overnight. Proteinase K was inactivated at 95 °C for 10 min, and
the lysates centrifuged at 13,000g for 10 min. Supernatants were
used for PCR (Supplementary Table 1). 5 ml PCR reaction mix was
loaded onto a 2% agarose gel and run with 1� TBE buffer at 20 mA
constant for 2 h.

Primary mouse hepatocyte culture and exposure to drugs

Hepatocytes were isolated by in situ retrograde collagenase
perfusion, and subsequently cultured in supplemented Williams'
Medium E as described [17]. Briefly, the cells were plated in 48-
well plates (8.0�104 cells per well) coated with 50 mg/ml rat tail
collagen. The hepatocytes were allowed to attach for 3 h in a hu-
midified atmosphere of 5% CO2/95% air at 37 °C. Subsequently, the
cells were washed and incubated in the same medium. After
overnight pre-culture, the medium was replaced by fresh serum-
and antibiotic-free medium to which the test compounds were
added from stock solutions. Efavirenz and other lipophilic com-
pounds were dissolved in DMSO (final DMSO concentrations
r0.25%). Culture medium was used to dissolve hydrophilic
compounds.

Determination of cell injury

Release of cytosolic lactate dehydrogenase (LDH) into the ex-
tracellular medium (CytoTox-One Homogeneous Membrane In-
tegrity Assay, Promega, Madison, WI) was used as an indicator of
cytotoxicity. The data were expressed as percentage of activity
present in the medium as compared to the total intra- and ex-
tracellular LDH activity. Total cellular ATP content was measured
by chemiluminescence in black 96-well plates (Cell Titer-Glo Lu-
minescent Cell Viability Assay, Promega) and calculated from a
standard curve. EFV did not interfere with the luciferin/luciferase
reaction.

Measurement of mitochondrial superoxide and peroxynitrite gen-
eration in hepatocytes

Mitochondrial generation of superoxide was estimated with
the cell-permeable and mitochondria-targeted fluorogenic probe,
hydroethidine (HE) linked to triphenylphosphonium (MitoSOX
Red, Life Technologies, Carlsbad, CA). The drug-pretreated cells
were loaded with MitoSOX Red (25 nM) for 10 min at 37 °C, wa-
shed with fresh culture medium, and the mitochondrial 2-hydroxy
ethidium-derived fluorescence was determined at 396/580 nm
(excitation/emission, respectively) as described [17], in a Safire2
microplate reader (Tecan, Maennedorf, Switzerland). Hepatocel-
lular formation of peroxynitrite was determined with the highly
selective fluorogenic probe, coumarin-7-boronic acid (CBA, Cay-
man, Ann Arbor, MI), which reacts stochiometrically and rapidly
with ONOO� several orders of magnitude faster than with H2O2

[18]. Hepatocytes were preloaded with 100 mM CBA for 20 min at
37 °C, and the generation of hydroxycoumarin was determined at
332/450 nm (excitation/emission) in a Safire2 microplate reader.

Determination of CYP3A4 and CYP2B6 activity in baculosomes ex-
pressing the human isoforms

Microsomes derived from baculovirus-transfected insect cells
expressing recombinant human CYP3A4 or CYP2B6 were in-
cubated with the fluorogenic probe 7-benzyloxy-methyloxy-3-
cyanocoumarin (BOMCC, 10 mM) (Vivids CYP3A4 or CYP2B6 Blue
Substrate, Invitrogen), which is a substrate for both cytochrome
P4503A4 and 2B6 and which is metabolized to the fluorescent
3-cyano-7-hydroxycoumarin [19]. After preincubation with the
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metalloporphyrins for 5 min, fluorescence (415/460 nm, excita-
tion/emission) was monitored every 5 min for 20 min. Miconazole
(30 mM), a high-affinity inhibitor of CYP2B6 [20] or 1-ABT
(100 mM), a CYP inhibitor with a broader isoform selectivity, were
used as mechanism-based CYP inhibitor controls.

Immunoblotting

Equal amounts of denatured mitochondrial protein were loa-
ded on each lane, and the proteins were resolved on precast
polyacrylamide gels (BioRad, Hercules, CA), under reducing or
non-reducing conditions, and subsequently transferred to poly-
vinylidene fluoride membranes (Millipore, Billerica, MA). The
membranes were blocked in 5% milk prepared with 0.1% Tween 20
in TBS at room temperature for 1 h. Anti-3-nitrotyrosine (1:3000)
(Cell Signaling, Danvers, MA), anti-VDAC (1:3000) (Cell Signaling),
anti-acetyl-lysine (1:3000) (Cell Signaling), and CypD (1:5000)
(Cell Signaling) were used as primary antibody. The protein bands
were visualized by enhanced chemiluminescence (Millipore) after
incubation with HRP-conjugated secondary antibody (1:10,000)
(BioRad). Anti-VDAC antibody was used as loading control.

Determination of cellular NADH and NADþ concentrations

NADH and NADþ concentrations were measured in lysates of
3.2�105 cells, using the NAD/NADH ratio assay kit (e-Enzyme,
Gaithersburg, MD) according to the manufacturer’s instructions.

Isolation of hepatic mitochondria and assessment of complex I
activity

Hepatic mitochondria were isolated from untreated mice ac-
cording to standard procedures as previously described [17]. Pro-
tein content was determined with the BCR protein assay using
albumin as the reference protein. The mitochondria-enriched
fractions were kept at �80 °C until analysis. Complex I activity
was determined in freeze-thawed (2� ) mitochondria according to
standard methods [21]. Briefly, complex I was measured as NQR
activity in 25 mM potassium phosphate buffer containing 5 mM
MgCl2, pH 7.2, and 2.5 mg/ml BSA, 0.13 mM NADH, 2 mg/ml anti-
mycin A, and 65 mM ubiquinone (Q1). NADH oxidation was mon-
itored as decrease in absorbance at 340 nm.
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Fig. 1. Effects of efavirenz (EFV) on cell injury and intracellular ATP concentrations in
release and (B) intracellular ATP content after treatment with solvent (DMSO, 0.25%)
preparations using quadruplicate wells. *Po0.05 versus solvent control.
Statistical analysis

All data were expressed as mean7SD. If there was normal
distribution, a standard analysis of variance (ANOVA) was used,
followed by Dunnett’s test for multiple comparisons versus the
control group. When normality failed, a Kruskal–Wallis one-way
analysis of variance on ranks was used followed by Dunn's test for
multiple comparison versus the control group. A P value of r0.05
was considered significant.
Results

EFV causes lethal cell injury in mouse hepatocytes that is insensitive
to CYP inhibitors

To determine the concentration-dependent toxic response to
efavirenz, we first exposed hepatocytes isolated from C57BL6/J
mice to EFV for various periods of time. We found that there was a
rapid onset of toxicity (3 h) with a characteristic threshold, as
evidenced by increases in LDH leakage and decreases in in-
tracellular ATP concentrations (Fig. 1). Specifically, EFV con-
centrations r30 mM did not induce significant changes from sol-
vent controls, whereas 50 mM EFV caused �50% LDH leakage and
490% loss of intracellular ATP after 24 h. These data indicate that
EFV induces hepatocellular injury in mouse hepatocytes, con-
firming previous studies in human Hep3B cells [16,22]. The data
also suggest that mouse hepatocytes are a good model of EFV-
induced liver cell injury.

In humans, EFV is metabolized by CYP2B6, resulting in the
formation of 8-hydroxy-EFV as the major metabolite (which is
subsequently glucuronidated) [23]. In rodents (but not humans)
glutathione adducts were detected, originating from the formation
of cyclopropane ring hydroxylation [23]. However, the mechanistic
role of CYP-mediated bioactivation of EFV in mouse liver is not
known. Therefore, we next determined the extent of hepatocel-
lular injury induced by EFV (50 mM) in mouse hepatocytes in the
presence or absence of the pan-CYP or CYP2B inhibitor, 1-amino-
benzotriazole (ABT) or miconazole, respectively. We found that
both ABT and miconazole did not attenuate EFV-induced LDH
leakage (Fig. 2), suggesting that the parent EFV, rather than a CYP-
mediated reactive metabolite, may directly cause cell injury.
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Fig. 2. Effect of the pan-cytochrome P450 (CYP) inhibitor or CYP2B inhibitor, 1-aminobenzotriazole (ABT) or miconazole, on EFV-induced cell injury. Hepatocytes were
exposed to EFV (50 mM) in the presence or absence of ABT or miconazole, and LDH release was determined after 24 h. Data are mean7SD of three independent hepatocyte
preparations using quadruplicate wells. *Po0.05 versus solvent control.
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EFV inhibits complex I activity and induces ROS signaling pathways

To confirm and extend previous data demonstrating that EFV
inhibits complex I-energized respiration [16] and NQR activity
[24], we measured complex I activity in submitochondrial particles
isolated from 129S1/SvImJ mouse liver. We found that EFV in-
hibited NQR activity in a concentration-dependent manner, fea-
turing an IC50 of o10 mM (Supplementary Fig. 1). At Z30 mM,
complex I activity was completely inhibited by EFV. Because of
these potent effects on mitochondrial electron transport function,
we hypothesized that complex I inhibition might be one of the
mechanisms leading to EFV-induced hepatocellular injury. Mas-
sive complex I inhibition can have at least three major con-
sequences: first, decreases in ATP biosynthesis rates, resulting in a
potential bioenergy crisis; second, increased formation of ROS/RNS
due to a blockage of electron transfer at the IQ (ubiquinone-
binding) site and facilitated formation of superoxide; and third,
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inhibition of the catalytic activity of Sirt3, which is a
NADþ-dependent deacetylase, as a consequence of a decrease in
NADH oxidation resulting in an imbalance of the NADH/NADþ

ratio.
We first evaluated whether EFV caused increases in mi-

tochondrial ROS levels by using a fluorogenic probe that reacts
with superoxide to form hydroxyethidine. We found that EFV
(50 mM) caused a rapid increase in MitoSOX Red-derived fluores-
cence (Fig. 3A). Furthermore, because superoxide anion reacts
extremely fast with nitric oxide to form the highly toxic species,
peroxynitrite (ONOO�), we assessed the formation of peroxyni-
trite using coumarin-7-boronic acid (CBA), a boronate-based
fluorogenic probe that selectively reacts with peroxynitrite [18].
We found that cells preloaded with CBA followed by exposure to
EFV (50 mM) developed increases in CBA-derived fluorescence
(Fig. 3B). These data suggest that EFV generates increased levels of
ROS and RNS through mitochondria, at concentrations that induce
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massive cell death, but not at concentrations that only marginally
induce cell injury (r30 mM).

Iron porphyrins protect hepatocytes against EFV-induced lethal injury

To determine whether the increase in superoxide anion and
peroxynitrite are causally involved in cell injury, rather than
simply being a consequence of cell death, we explored the effects
of two distinct ferroporphyrins on the extent of toxicity. Specifi-
cally, we used the cell-permeable SOD mimetic, Fe-TCP, and the
peroxynitrite decomposition catalyst, Fe-TMPyP. Both compounds
are cationic metalloporphyrins that are taken up into the mi-
tochondrial matrix [25]. Other inhibitors, such as superoxide dis-
mutase or catalase, are difficult to be introduced into cells and,
specifically, into mitochondria in cell cultures. We found that both
0 

20 

40 

60 

80 

100 

LD
H

 re
le

as
e 

(%
 o

f c
on

tr
ol

) 

EFV 50 µM 

# 

# 

# 

1

LD
H

 re
le

as
e 

(%
 o

f c
on

tr
ol

) 

* * 

* 
* 

BA

Fig. 5. Effect of Fe-TCP or Fe-TMPyP on EFV-induced cell injury. Hepatocytes were expose
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Fe-TCP and Fe-TMPyP attenuated the EFV-induced fluorescence
of MitoSOX Red and CBA (Fig. 4). Importantly, both Fe-TCP and
Fe-TMPyP prevented the increases in LDH leakage caused by EFV
alone after 24 h (Fig. 5). These data suggest that the mitochondrial
generation of ROS/RNS may be causally involved in the patho-
genesis of EFV-induced cell injury.

An unexpected finding was that both ferroporphyrins were po-
tent inhibitors of CYP2B6 and CYP3A4 activity in baculosomes ex-
pressing the human isoforms (Fig. 6). Because other CYP inhibitors
did not attenuate the toxicity of EFV in mouse hepatocytes, it is
unlikely that the protective effect provided by the ferroporphyrins
was due to an inhibition of CYP-mediated bioactivation. However,
because iron porphyrins have been used in various other experi-
mental models, the interpretation of results needs increased at-
tention to a potential inhibition of drug bioactivation.
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Peroxynitrite causes oxidative modification of mitochondrial proteins

Peroxynitrite can modify tyrosine residues in proteins by ni-
tration, and/or it can directly oxidize sulfhydryl groups. To first
analyze whether EFV-induced oxidant/nitrative stress was asso-
ciated with nitration, we explored changes in global mitochondrial
protein nitration in an immunoblotting approach, using a ni-
trotyrosine antibody, as a biomarker of nitration. We found that
the abundance of major immunoreactive mitochondrial protein
bands did not significantly differ between EFV-exposed cells and
solvent controls (not shown). In contrast, we found that EFV
caused oxidative modification of target proteins involved in mi-
tochondria-mediated cell death pathways. Specifically, we ex-
plored the role of oxidative modification of cyclophilin D (CypD), a
modulator of the mitochondrial permeability transition (mPT)
[26]. We found by Western immunoblotting that in solvent con-
trols there was a distinct band of 18 kDa representing the CypD
monomer (Fig. 7). In contrast, EFV treatment of hepatocytes
resulted in loss of the 18 kDa band and in the formation of
CypD protein aggregation, which was reversed to the monomers
under reducing conditions (reduction of disulfide bonds by
Reducing conditionNon reducing condition Reducing conditionNon-reducing condition
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Fig. 7. Effect of EFV exposure on mitochondrial protein thiol oxidation. Hepato-
cytes were treated with EFV (50 mM) or solvent for 4.5 h, and mitochondrial
proteins were resolved and probed with anti-CypD antibody by western
immunoblotting techniques in the presence (reducing conditions) or absence
(non-reducing conditions) of β-mercaptoethanol.
β-mercaptoethanol). These data suggest that EFV causes thiol
oxidation in CypD and probably other proteins targeted by
peroxynitrite.

EFV causes shifts in the NADH/NADþ ratio and induces mitochondrial
protein hyperacetylation via inhibition of Sirt3

To explore whether EFV altered the ratio of NADH/NADþ in
favor of NADH, due to the decreased NQR activity at complex I,
we determined NADH and NADþ concentrations in hepatocytes
exposed to EFV. We found that EFV indeed increased the
NADH/NADþ ratio by �50% (Fig. 8A). Based on these data, we
hypothesized that the reduced capacity of mitochondria to pro-
vide NADþ to Sirt3, which utilizes NADþ as a required cofactor,
might inhibit Sirt3 activity. Sirt3 activity cannot be measured
with a Sirt3 assay because NADþ added in excess is part of the
assay; however, we measured Sirt3 activity indirectly by ana-
lyzing the degree of protein hyperacetylation with im-
munochemical techniques. Again, we chose CypD as one target
protein that is regulated by Sirt3 via deacetylation. CypD was
isolated by immunoprecipitation with an anti-acetyl-lysine an-
tibody, followed by immunoblotting and probing with a CypD
antibody. We found that EFV treatment resulted in increased le-
vels of acetylated CypD, as compared to solvent controls (Fig. 8B),
suggesting that Sirt3 activity (protein lysine deacetylation) was
partially inhibited.

Genetic ablation of Sirt3 (Sirt3� /� mice) protects against EFV toxicity

Evidence suggests that mitochondrial protein hyperacetyla-
tion, due to inhibition of Sirt3 activity, may sensitize cells to the
induction of mPT and aggravation of cell death [27]. To determine
whether inhibition of Sirt3 activity and the resulting protein
hyperacetylation might contribute to the modulation of the de-
gree of toxicity, we chose a genetic approach to eliminate Sirt3.
Mice with a homozygous deletion of Sirt3 (Sirt3� /�) on a 129S1/
SvImJ background were genotyped. Hepatocytes were isolated
from both Sirt3� /� mice and their wild-type controls (Sirt3þ /þ),
and overnight cultures were exposed to EFV. Both genotypes
exhibited the same steep onset of toxicity between 30 and 50 mM
as observed in the C57BL/6J mice (Fig. 9). However, the Sirt3-null
mice were clearly protected against 40 mM EFV. At higher con-
centrations (50 mM), this protection was lost. These data suggest
that genetic ablation of Sirt3 provides partial protection against
the mitochondrial toxicity of EFV (but not necessarily against
other, nonmitochondrial pathways of toxicity). However, the
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findings were unexpected as we had initially speculated that
inhibition of Sirt3 activity or genetic ablation would promote,
rather than protect against, EFV toxicity.

To ascertain whether the protective effects of Sirt3 deletion
may be caused by different levels of complex I expression and
activity in the Sirt3� /� mice, we next measured complex I ac-
tivity in mitochondria isolated from both genotypes. We found
that complex I activity in the Sirt3� /� mice did not exhibit any
significant differences as compared to wild-type controls (Sup-
plementary Fig. 1). The activity data were normalized to VDAC
protein levels to correct for potential changes in mitochondrial
mass. Furthermore, to assess whether the protection against EFV
toxicity in Sirt3� /� mice might be caused by differential
response to the inhibitory action of EFV on complex I, as a
possible result of differential degrees of acetylation of complex I,
another target for Sirt3-mediated deacetylation [9,28] we
exposed hepatocytes from both genotypes to various concentra-
tions of EFV. We found that EFV added to submitochondrial
particles from Sirt3�/� mice caused a similar concentration-
dependent inhibition of complex I activity as that in wild-type
controls. These data indicate that the protective effect of Sirt3
depletion on EFV-induced toxicity is unlikely a consequence of
smaller protein expression levels of complex I or decreased
sensitivity to EFV on complex I activity.
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Discussion

This study was designed to explore the relative contribution of
distinct molecular pathways in the induction of cell injury fol-
lowing inhibition of mitochondrial complex I by drugs. To model
pharmacologic inhibition of complex I, we used EFV, which has
been reported earlier to be a potent inhibitor of complex I [16,24],
which was confirmed and extended in this study. Specifically, we
analyzed three major consequences of complex I inhibition; ATP
depletion, ROS/RNS formation, and Sirt3 inhibition (Fig. 10). We
found that ROS/RNS formation had the greatest impact as a causal
factor in the pathogenesis of cell injury. This conclusion was
supported by a number of findings.

First, one of the major direct consequences of EFV-induced
complex I inhibition is a disruption of cellular bioenergetics, due to
severely impaired ETC function. However, it is unlikely that this is
the major mode of toxicity, at least at lower EFV concentrations.
One of the reasons is that, in organs with a high energy demand,
ATP is present at millimolar levels; therefore, even if there was a
50% reduction in ATP concentration, ATP levels would still be way
above the km of almost all intracellular enzymes [29]. However, it
is possible that, at higher EFV concentrations (Z50 mM), ATP
would be depleted to dangerously low levels.

Second, it has been shown previously that exposure of hepa-
tocytes to EFV causes an increase in mitochondrial superoxide
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Fig. 10. Schematic representation of the putative mechanisms involved in EFV-mediated inhibition of mitochondrial complex I. The major consequences of complex I
inhibition are alterations in the NADH/NADþ balance and the generation of peroxynitrite stress, resulting in mitochondrial protein hyperacetylation and thiol oxidation,
respectively. MOM, mitochondrial outer membrane; MIM, mitochondrial inner membrane; Q, ubiquinone; Ac�K, acetylated-lysine; ONOO� , peroxynitrite.
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formation and decreases in cellular GSH levels [22]. In addition, it
has been recently reported that EFV increases mitochondrial nitric
oxide production [30]. Here, we provide evidence that EFV rapidly
induced the formation of peroxynitrite (demonstrated with the
highly selective boronate probe, CBA). Although the subcellular
source of peroxynitrite has not been determined, it likely has
mitochondrial origin because superoxide generated in mitochon-
dria cannot easily cross biomembranes. Importantly, the SOD
mimetic Fe-TCP, or the peroxynitrite decomposition catalyst
Fe-TMPyP, not only reduced the net formation of superoxide/
peroxynitrite, respectively, but they also attenuated the cytotoxic
response in hepatocytes in a concentration-dependent manner.
Because both of the Fe-porphyrins may also affect other cellular
processes, apart from decreasing superoxide/peroxynitrite, we
explored their potential role in inhibiting CYP activity. However, as
reported in this study, the protective effects of Fe-TCP or Fe-TMPyP
are unlikely related to CYP-mediated EFV bioactivation in the
mouse model. Taken together, the data suggest that peroxynitrite
might play a major role in the pathways leading to cell death.
However, it cannot be excluded that peroxynitrite-independent
pathways may also be involved. The exact mode of cell death is not
clear; however, peroxynitrite can cause oxidative modification of
proteins and the formation of aggregates, which can lead to mPT
pore formation. This type of pore is insensitive to CsA (“un-
regulated mPT”). Indeed, in our mouse hepatocyte model, CsA
(1 mM) did not protect cells against EFV-induced cell death (data
not shown). It is possible that, especially at high concentrations of
EFV (50 mM and greater), other, non-mitochondrial effects may be
involved, as demonstrated with neuronal cells [31].

Third, we hypothesized that if complex I-targeting drugs
(including EFV) increased the NADH/NADþ ratio (as a consequence
of inhibition of electron flow from NADH to ubiquinone), this
would inhibit the NADþ-dependent Sirt3 activity. Sirt3 is a
NADþ-dependent deacetylase localized to the mitochondrial ma-
trix [32,33] and expressed at high levels in a number of tissues
including liver [13]. Like other sirtuins, Sirt3 removes the acetyl
group from N-ε-lysine residues. Because decreased Sirt3 activity
leads to hyperacetylation of a number of mitochondrial proteins,
we sought to determine whether EFV-induced inhibition of Sirt3
would contribute to the precipitation of cell injury. However,
surprisingly, Sirt3-null mice were not more sensitive to EFV toxi-
city; rather, they exhibited partial protection against EFV in a
narrow concentration range, although overall protein acetylation
was increased.

The molecular targets of Sirt3-mediated deacetylation of mi-
tochondrial lysine residues include several proteins; in fact, it has
been demonstrated that �35% of all mitochondrial proteins have
at least one acetylation site [34]. One important candidate protein
is CypD [27,35]. CypD is acetylated at K166; this highly conserved
site is adjacent to the CsA-binding pocket of CypD, suggesting that
acetylation/deacetylation might regulate the mPT [35]. Other Sirt3
targets include the SdhA subunit of complex II [36] and the Ndufa9
subunit of complex I [29]. However, the mechanistic role of these
altered respiratory complexes in drug-induced Sirt3 inhibition is
not known. While we did not find any differences in complex I
activity between Sirt3� /� mice and their wild-type controls, an-
other report found that Sirt3 knockout mice exhibited slightly
decreased respiration rates in mitochondria energized with glu-
tamate/malate as compared to wild-type controls [29].

The mechanisms underlying the protection against EFV toxicity
in Sirt3-null mice are not known. Because Sirt3 is a lysine deace-
tylase, it is likely that the differential lysine acetylation status of
certain critical proteins is involved. In line with this is a recent
report demonstrating that Sirt3 KO mice were protected from
acetaminophen hepatotoxicity because of a specific role of mi-
tochondrial aldehyde dehydrogenase, which is a target of Sirt3
[37]. Because Sirt3 localizes to the mitochondrial matrix, the mode
of protection afforded by the loss of Sirt3 may be operating at the
mitochondrial level. According to this concept, it is possible that
30 and 40 mM EFV-treated cells from Sirt3 KO mice are protected
via a mitochondrial mechanism, whereas cells exposed to 50 mM
EFV are no longer protected because of a more generalized ex-
tramitochondrial stress.

In conclusion, EFV at lower concentrations (o50 mM) caused
toxicity to cultured mouse hepatocytes by inhibiting complex I and
causing increased oxidant stress via the formation of peroxynitrite.
At higher concentrations (450 mM), the massive and sustained
ATP depletion may directly lead to cell death by disrupting the
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cellular bioenergetics. However, such high EFV concentrations are
less relevant if extrapolated to the clinical situation [38]. Sirt3
depletion did not result in exacerbation of cell injury but, at EFV
concentrations o50 mM, afforded protection against the cytotoxic
effects of EFV. Taken together, the data are compatible with the
concept that peroxynitrite formation, resulting from mitochon-
drial complex I inhibition, is a major mechanism of mitochondria-
mediated cell injury.
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