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Abstract

Targeted muscle reinnervation (TMR) is a novel neural machine interface for improved 

myoelectric prosthesis control. Previous high-density (HD) surface electromyography (EMG) 

studies have indicated that tremendous neural control information can be extracted from the 

reinnervated muscles by EMG pattern recognition (PR). However, using a large number of EMG 

electrodes hinders clinical application of the TMR technique. This study investigated a reduced 

number of electrodes and the placement required to extract sufficient neural control information 

for accurate identification of user movement intents. An electrode selection algorithm was applied 

to the HD EMG recordings from each of 4 TMR amputee subjects. The results show that when 

using only 12 selected bipolar electrodes the average accuracy over subjects for classifying 16 

movement intents was 93.0(±3.3)%, just 1.2% lower than when using the entire HD electrode 

complement. The locations of selected electrodes were consistent with the anatomical 

reinnervation sites. Additionally, a practical protocol for clinical electrode placement was 

developed, which does not rely on complex HD EMG experiment and analysis while maintaining 

a classification accuracy of 88.7±4.5%. These outcomes provide important guidelines for practical 

electrode placement that can promote future clinical application of TMR and EMG PR in the 

control of multifunctional prostheses.
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I. Introduction

For decades surface electromyography (EMG) has been widely applied as a control source 

for upper-limb prostheses [1]–[5]. In current practice, either the position or the speed of a 

motor in the prosthesis is controlled by the magnitude of EMG signals recorded from one or 

two residual muscles. Unfortunately, this is inadequate for high-level injuries such as 

transhumeral and higher amputations; the user must sequentially control each available 

prosthetic component (hand, wrist, and elbow), a process that is slow and cumbersome. 

Furthermore, controlling multiple prosthetic joints by activating anatomically unrelated 

muscles creates a significant mental burden for the amputee. Recently, with advancements 

in microprocessor and signal processing technology, pattern recognition (PR) based 

multifunctional myoelectric prostheses have been proposed [6]–[9]. Unfortunately, PR 

systems are not applicable for patients with transhumeral amputation and higher because too 

few residual muscles remain from which to extract control signals.

To address this challenge, our research group has developed a new neural machine 

interfacing (NMI) technology called targeted muscle reinnervation (TMR), which improves 

control of multifunctional myoelectric upper-limb prostheses [10], [11]. Neural information 

that controlled the limb prior to amputation remains in the residual peripheral nerves. TMR 

offers access to these control signals via surface EMG by surgically transferring the residual 

nerves to alternative residual muscles that are no longer biomechanically functional [10]–

[13]. Successful TMR allows voluntary motor control signals that used to activate muscles 

in the amputated limb to activate these newly reinnervated muscles. The resultant EMG 

signals can be used to drive the artificial limb. Four individuals with transhumeral or 

shoulder disarticulation amputations have received successful TMR surgery. Four pairs of 

bipolar EMG electrodes mounted in the prosthetic socket captured myoelectric signals from 

the reinnervated muscles for proportional control of hand open/close and elbow extension/

flexion. Previous studies reported that subjects performed the box and blocks and clothes pin 

functional task 2.5–7 times faster when using their experimental TMR prostheses than when 

using conventional myoelectric prostheses [10], [11], [13]. Subjectively, they felt the TMR 

prosthesis control was easier and more intuitive.

In addition to elbow extension/flexion and hand open/close, the transferred nerves normally 

innervate dozens of muscles for actuating all the movements of elbow, wrist, and hand. This 

inspired us to hypothesize that the EMG signals from TMR muscles may contain more 

dormant neural control contents of the missing limb and might potentially be used to control 

more functions in a prosthesis. A prior study has shown that a great amount of neural control 

contents can be extracted from TMR muscles with pattern recognition (PR) methods [14]. 

While four TMR amputees attempted to perform 16 different arm movements as if their 

amputated arm was present, the EMG signals were recorded over their reinnervated muscles 

using a high density (HD) electrode array of 116–128 monopolar electrodes. Using the time 
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domain (TD) features of bipolar EMG signals, a simple linear discriminant analysis (LDA) 

could classify the 16 movement intents, including movements of the elbow, wrist, individual 

fingers and thumb, with 96.0±3.9% accuracy averaged over four subjects.

The results from the HD EMG study are encouraging. However, it is clinically challenging 

to place more than 100 electrodes under a prosthetic socket. In addition it is technically 

demanding to base prosthesis control on real-time PR with a large number of EMG signal 

inputs. This raises the question of whether most of the motor control contents could be 

derived from the surface EMG signals captured by a limited number of electrodes. A 

positive answer will be essential for the application of the TMR technique in multifunctional 

myoelectric prosthesis control.

In this study, we developed an electrode selection algorithm for the HD EMG recordings, 

which suboptimally selected a reduced number of electrodes required to preserve sufficient 

neural control information for accurate classification of user movement intents. The 

placement of selected electrodes was identified as the suboptimal configuration and the 

temporal stability of information extraction was also investigated. Moreover, we tested two 

additional electrode configurations that can be implemented without analyzing HD EMG 

and compared their capability of information extraction to that of the suboptimal 

configuration. This is because performing HD EMG experiments and analysis is not 

practical for clinics; the required equipment, time, and expertise needed for these 

experiments are beyond means of prosthetist today. If a simpler configuration could extract 

sufficient neural information as well with a reduced electrode number, this study would 

allow us to establish guidelines to facilitate future clinical applications of EMG electrode 

placement over TMR muscles without using HD EMG experiments.

II. Methods

A. Participants and Targeted Muscle Reinnervation

Targeted muscle reinnervation surgery and this study were approved by the ethics 

committee and written informed consent was obtained from all subjects. Four people with 

TMR surgeries participated in this study: one male subject with bilateral shoulder 

disarticulations (S1), one female with unilateral short transhumeral amputation (S2), and two 

males with unilateral long transhumeral amputations (S3 and S4). Fig. 1 (left panel) 

illustrates schematically the TMR procedure in S2 (a) and in S3 and S4 (b). Using S3 as an 

example, during TMR surgery the medial head of the biceps and brachialis muscle were 

denervated. The median nerve was transferred to the medial biceps and the distal radial 

nerve was transferred to the brachialis. Muscle reinnervation was observed 4 months after 

surgery. When S3 thought to close his hand or flex his wrist, the medial biceps would 

contract. When he thought to open his hand or extend his wrist, the brachialis muscle would 

contract. The lateral biceps and triceps were still available to produce EMG signals for 

elbow flexion and extension, respectively. Detailed information about TMR surgical 

procedures and clinical results has been presented in [10]–[13].
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B. High Density EMG Experiments and Data Collection

The HD EMG recordings were conducted on all four subjects. EMG signals were captured 

by placing a grid of 116–128 monopolar surface electrodes over TMR muscles and the 

biceps and triceps muscles, if present. A reference electrode was located on the bony area of 

shoulder. The distance between electrodes was 15~20 mm [15]. A BioSemi system 

(BioSemi Active II System, Amsterdam, Netherlands) was used to record HD EMG signals 

at a sampling rate of 2048 Hz. The cut-off frequency of the anti-aliasing filter was one fifth 

of the sampling rate (409.6 Hz). Sixteen movements were involved in this study. Eight of 

these movements were basic joint motions that are offered in commercially available upper-

limb prostheses, namely elbow flexion/extension, wrist flexion/extension, pronation/

supination, and hand open/close. The other eight were thumb adduction/abduction, thumb 

flexion/extension, index finger flexion/extension, and 3rd~5th finger flexion/extension. 

Subjects were asked to watch a video demonstration of each movement and to imagine 

moving their absent limb in synchrony with the video. An experimental trial contained 10 

repetitions of one type of movement. For each repetition, the subjects were asked to exert a 

comfortable level of contraction at a medium force, to hold the contraction for 

approximately 5 seconds, and then to relax for the next 5 seconds. To avoid muscle and 

mental fatigue, the subjects were allowed 3 to 5 minutes’ rest between trials.

C. EMG Pre-processing Pattern Recognition Method

A sixth order Butterworth high-pass filter with a 5 Hz cutoff frequency was applied on EMG 

signals to remove motion artefacts [16]. As bipolar EMG allow a more focal recording area 

and are more clinically relevant than monopolar recordings, the bipolar EMG signals 

(BEMG) were used and were derived by

(1)

where MEMG denotes a monopolar EMG signal and the i and j monopolar electrodes are 

spatially nearest neighbours. Here, each combination of two neighbouring monopolar 

electrodes was termed a bipolar EMG electrode. The relationship between two neighbouring 

electrodes could be longitudinal, latitudinal, or diagonal.

This study used four EMG TD features and LDA to identify user intent because of their 

simplicity and reliable performance [7]. Previous studies showed that four TD features (the 

mean absolute value, the number of zero-crossings, the waveform length, and the number of 

slope sign changes) could extract the information in the EMG signals and were fast to 

calculate [7], [17]. The detailed equation and description of these four TD features can be 

found in [7], [14]. Additionally, studies reported that the simple LDA classifier produced a 

similar classification performance compared to other more complex types [7], [18]. The 

LDA-based EMG PR algorithm is described in the Appendix. To quantify the performance 

of the classifier, the classification accuracy (CA) was calculated by
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(2)

D. Electrode Selection Algorithm

Based on (1), the number of bipolar EMG electrodes derived from the HD array was 402 for 

S1, 440 for S2, 407 for S3, and 426 for S4, which is too high for clinical practice. An 

electrode selection algorithm based on the Sequential Forward Searching (SFS) method [19] 

was developed to select a limited number of electrodes that contain most of neural control 

information for reliable classification. The procedure of SFS is described as follows.

Step 1: Two electrode sets were initialized: the applied electrode set A that contains the 

selected electrodes was initially empty (A=Ø, m=0), and the remaining electrode set R 

included all bipolar EMG electrodes derived from the HD array (R={r1, r2, …, rNHD}, n= 

NHD). r denotes an electrode in set R and a denotes an electrode in set A.; m and n denote 

the number of electrodes in set A and set R respectively.

Step 2: In the first searching iteration, the TD features of each individual bipolar electrode in 

set R were used to train and test a LDA classifier. The electrode that produced the maximum 

classification accuracy as in (3) was chosen as the first selected electrode.

(3)

where the classification accuracy is described as a function of applied electrodes r̄, i.e. CAr̄ = 

fCA(r̄). Then, rk was removed from set R (R = R\{rk}, n=NHD−1) and added into set A 

(A={a1 = rk}, m=1). Additionally, we calculated the normalized classification accuracy 

(nca) defined as

(4)

where CAHD is the classification accuracy as a result of using all bipolar electrodes derived 

from the HD electrode array, and CAA is the accuracy when using the selected electrodes in 

the updated set A.

Step 3: In the following iterations, we paired each of the remaining electrodes in set R with 

all previously searched electrodes in set A, i.e. A∪{ri}, and applied these electrodes to train 

and test a classifier. The electrode in set R paired with the electrodes in set A that generated 

the maximum CA as in (5) was identified and moved to electrode set A from set R.

(5)

The set A and set R were then updated as
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In each iteration, one electrode in set R was selected and added into set A as the most 

informative electrode. The nca improved when the number of selected electrodes in the set 

A increased. Two criteria could be applied to terminate the iteration: (1) nca ≥ nca_th, and 

(2) m> N_th, where nca_th was the threshold of normalized classification accuracy ranging 

from 0% to 100% and N_th was the threshold of applied electrode number in set A.

Note that, ideally, all combinations of the total applied bipolar electrodes (NHD) taken m at a 

time, i.e. ( ), should be examined in order to select the optimal m electrodes for 

maximum classification accuracy. However, such an exhaustive search was impossible for 

the current computational system. SFS searches electrodes suboptimally with much reduced 

searching time. The number of analyzed electrode combinations is NHD+(NHD −1)+…+

(NHD−m+1). For example, if m=10 and NHD=400, the number of analyzed combinations is 

 for the exhaustive search, while it is only 3955 for SFS method. In the 

case of NHD =400, unless m=1 or m≥398, the number of searched electrode combinations in 

SFS is much less than that in the exhaustive search. Hence, the placement of SFS-searched 

electrodes was named the Suboptimal Configuration.

E. Analysis of the Temporal Stability of the Suboptimal Configuration

The temporal stability of the SFS-selected electrodes was further validated using the EMG 

data recorded from follow-up EMG experiments on two subjects (S1 and S2), which were 

performed three to four months after the first experiments. The Suboptimal Configuration of 

the SFS-selected electrodes determined in the first EMG experiment was used in the follow-

up experiment. The experimental protocol was the same as the first experiment. Using the 

EMG signals from these SFS-selected electrodes, we trained and tested the LDA classifier to 

decipher the 16 movement intents of the subjects.

F. Geometrical and Clinical Electrode Configurations

Two electrode configurations with the same number of electrodes as in the Suboptimal 

Configuration were tested. These configurations do not require a HD EMG experiment and 

SFS analysis to determine the electrode placement. By comparing classification accuracy of 

these two electrode configurations with that of the Suboptimal Configuration, we can (1) 

determine the relative efficacy of these configurations in neural information extraction, (2) 

test the spatial sensitivity of the classification accuracy to the EMG electrode placement, and 

(3) identify the electrode placement configuration that would provide reliable and easy 

clinical application.

The Geometrical Configuration was selected by approximating a uniform placement of 

applied bipolar EMG electrodes over the targeted muscles. An example for S2 is shown in 

Fig. 2a, in which 12 electrodes were assumed to be applied. No prior SFS analysis of the HD 
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EMG or clinical measurement was required. The Geometrical Configuration is the simplest 

of the three studied configurations to design and implement.

The Clinical Configuration was determined based on the extent of anatomical knowledge 

and clinical understanding of each subject’s TMR surgery. It is relatively easy for a 

prosthetist to determine the point of maximal EMG signal amplitude over each of the target 

muscle by readily available tools [20]. We hypothesize that these locations would contain a 

great amount of neural control contents and could serve to guide clinical electrode 

placement. Fig. 2b demonstrates an example of a Clinical Configuration for S2. First, the 4 

direct control sites were selected. These sites had the largest EMG amplitude for each nerve 

transfer and were functionally independent [20] (purple electrodes in Fig. 2b). These EMG 

signals from 4 direct control sites, designated as D1/D3 and D2/D4 (Fig. 2b), have been 

used to proportionally control the hand close/open and elbow flexion/extension functions in 

the subject’s prosthesis. Eight additional electrodes (in green) were located over specifically 

involved muscles, especially those reinnervated by nerves that originally controlled multiple 

joints—the median and radial nerves. In general, they were clustered over the central regions 

of the reinnervated muscles with large EMG amplitude. All bipolar clinical electrodes were 

oriented parallel to the estimated direction of the underlying muscle fibers. For subjects S1 

and S2, the pectoralis major was used for TMR. The estimated direction of these muscle 

fibers was from the muscle’s origin to insertion (Fig. 2). For long transhumeral amputees S3 

and S4, the muscles in the residual upper arm were used. Bipolar electrodes were placed 

parallel to the residual humerus. Taking advantage of the uniform electrode orientation in S3 

and S4 in Clinical Configuration, we also compared the effects of electrode orientation on 

the extraction of neural information by alternately covering the same spots with electrodes 

placed in longitudinal, latitudinal and diagonal orientations. The selection of the Clinical 

Configuration was blind to the Suboptimal Configuration.

III. Results

A. Performance of Electrode Selection Algorithm

The SFS was tested on two classifiers: an 8-movement classifier of the basic joint 

movements and a 16-movement classifier that recognized the 8 basic joint movements plus 

an additional 8 finger and thumb movements. For the 16-movement classifier, if nca≥98% 

was applied as a criterion to stop the SFS iteration, the number of suboptimal selected 

electrodes was 11 bipolar electrodes for S1, 12 for S2, 10 for S3, and 11 for S4. That is to 

say, only 12 or less suboptimal placed EMG electrodes could extract essentially as much 

neural control information as the entire 402–440 differential recordings possible from the 

HD EMG experiments. For easy comparison among subjects, the number of selected 

electrodes (N_th) was set to 12 for all four subjects and m>N_th was used to terminate the 

SFS iteration.

Fig. 3 demonstrates the relationship between the number of SFS-selected suboptimal 

electrodes and the corresponding classification accuracy when using these suboptimal 

electrodes. Accuracy for the 16-movement classifier (Fig. 3a) increases dramatically at the 

beginning of the curve. The first five selected electrodes provide 77%–87% accuracies for 

all four subjects. When using 12 suboptimal bipolar electrodes, the average classification 
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accuracy over four subjects is 93.0(±3.3)%, only 1.2% lower that when using HD EMG 

recordings. The 8-movement classifier demonstrated a similar trend (Fig. 3b). The 

classification accuracy quickly reached a plateau. Classification accuracies of greater than 

90% could be achieved in all subjects with just 6 bipolar electrodes. With 12 electrodes, the 

averaged classification accuracy over the four subjects was 99.1(±0.8)%, only 0.2% lower 

than when using HD EMG recordings.

B. Temporal Stability of Suboptimally Selected Electrodes

The 12 electrode Suboptimal Configurations for S1 and S2 gave very similar classification 

accuracies with repeated experiments. The accuracy of classifying 16 classes of movements 

was 96.2% in the first experiment for subject S1 and 96.3% in the experiment repeated 4 

months later. For subject S2, the initial experiment had a classification accuracy of 88.6% 

and the second experiment 3 months later produced an accuracy of 90.4%.

C. Suboptimal Electrode Location

Fig. 4 demonstrates the Suboptimal Configuration on subjects S2 and S4 using a 16-

movement classifier from the original HD EMG electrode configuration. Fig. 4b expands the 

3-dimensional HD electrode array that wrapped around S4’s transhumeral residual limb into 

a 2-dimensional plot, allowing better visualization. The purple rectangles in the background 

indicate direct control sites as points of reference. The green electrodes (Suboptimal 

Configuration) are the electrodes selected by the SFS algorithm. The label beside each 

electrode denotes the sequence of electrode selection during the sequential forward search.

At least one electrode in the Suboptimal Configuration was on or partially collated with a 

direct control site. For instance, in the results for S2 (Fig. 4a), the 5th, 7th, and 9th suboptimal 

electrodes directly overlaid the control sites D4, D1, and D2, respectively, and the 8th and 

10th electrodes overlaid the site D3. Additionally, in the Suboptimal Configuration the 

majority of the first 12 electrodes selected were clustered over the TMR muscles 

reinnervated by the median and radial nerves which previously controlled the hand and 

wrist. For S2 (Fig. 4a), 5 out of 12 of the first electrodes assigned were located at the 

serratus reinnervated by the radial nerve, while 3 electrodes were over the sternal head of 

the pectoralis reinnervated by the median nerve. Interestingly, one electrode was located 

over the portion of the clavicular head reinnervated by the ulnar nerve. A similar result is 

seen in S4 (Fig. 4b). The majority of the first 12 suboptimal electrodes were clustered at the 

brachialis reinnervated by the radial nerve and at the biceps whose medial head was 

innervated by the median nerve.

D. Comparison of Classification Accuracy of Suboptimal, Clinical and Geometric 
Configurations

The comparison of 16-movement classification accuracy using electrodes placed according 

to Suboptimal, Clinical, and Geometrical Configurations is demonstrated in Fig. 5 with 

representative data from S4. Compared to the Clinical Configuration and Geometric 

Configuration, the SFS-selected electrodes (Suboptimal Configuration) always provided the 

highest accuracy. Using the Clinical and Geometrical Configurations, classification accuracy 

also improved as the number of applied electrodes increased. However, compared to the 
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curve of Suboptimal Configuration, the Clinical and Geometric Configurations did not show 

the rapid improvement and quick achievement of a plateau. This is because the sequence of 

electrode selection was assigned subjectively in the Clinical and Geometrical 

Configurations. When using 6 electrodes, the classification accuracies of both the Clinical 

and Geometric Configurations were more than 15% lower than that of the Suboptimal 

Configuration. This result implies that when the number of applied electrodes is small (<6), 

the electrode selection is critical for the 16-movement classifier’s performance. When more 

EMG electrodes are added, the classification accuracy using the Clinical Configuration is 

higher than that using the Geometrical Configuration and approaches the accuracy of the 

Suboptimal Configuration. Furthermore, Fig. 5 also shows the effect of electrode orientation 

on the classification accuracy. In the Clinical Configuration, classification accuracy is 

similar among longitudinal, latitudinal, and diagonal electrode orientations. This finding 

indicates that EMG electrode orientation does not influence the extraction of neural 

information.

These observations are also true for the other subjects as shown in Fig. 6. When using 12 

EMG electrodes to classify 16 movement classes, the average classification accuracy over 

the four subjects was 93.0±3.3% for the Suboptical Configuration, 88.7±4.5% for the 

Clinical Configuration, and 72.9±8.6% for the Geometric Configuration.

IV. Discussion

Results from this study show that 12 or less EMG electrodes placed over TMR and other 

residual muscles can pick up neuromuscular control information for the amputated limb, 

including the control of finger movements. This electrode number is clinically feasible for 

myoelectric prosthesis control when considering current socket design, electrode hardware, 

and the power of current microprocessors. Using 12 suboptimally selected electrodes, the 

LDA classified the basic 8 movement classes with 99.1% accuracy. This indicates that 

individuals with transhumeral or shoulder disarticulation amputations could reliably control 

a prosthesis with a powered elbow, wrist rotator, wrist flexion unit, and hand. This is beyond 

the current capability of commercially available prostheses which do not include powered 

wrist flexion. The 16-class analysis was more challenging as it included 8 additional 

movements involving the thumb and fingers. Yet high classification accuracy was still 

achieved with a 93.0% average over all subjects. These results suggest the clinical feasibility 

of TMR and EMG PR-based control for more complex prostheses with two degree of 

freedom wrists and multifunction hands, such as those under development in the Defense 

Advanced Research Agency’s Revolutionizing Upper Limb Prosthetics Program and 

elsewhere [21], [22]. This will provide potential for significantly improving the function of 

prostheses for people with transhumeral and shoulder disarticulation amputation.

The SFS electrode selection algorithm applied to HD EMG recordings is a computationally 

efficient and useful way to obtain a Suboptimal Configuration of electrode placement for 

maximal neural information extraction. Compared to the other electrode configurations 

explored in this study, the placement of EMG electrodes in the Suboptimal Configuration 

produced the highest classification accuracy. The SFS algorithm placed the majority of 

electrodes over the central portions of muscles reinnervated by the median and radial nerves. 
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This highlights that most of the control content involving the distal joints is transmitted 

through the median and radial nerves. Interestingly, in S2, the suboptimal electrodes were 

assigned to the area of the pectoralis that had been reinnervated by the ulnar nerve, although 

ulnar reinnervation did not elicit a strong, isolated muscle signal for direct control of a 

prosthetic component [10].

In order to accurately classify multiple functions, the SFS algorithm selected several 

spatially separated electrodes in one reinnervated muscle territory. This suggests that TMR 

gives rise to discrete, spatial segregation of motor activation within a single reinnervated 

muscle. In our previous study, we also observed that in S1 two strong activations at different 

spots within one muscle reinnervated by the median nerve were correlated separately with 

hand close and thumb abduction [10]. Both of these observations imply that there is some 

functional organization in the proximal amputated nerve that is maintained to some degree 

as the motor axons regenerate through the muscle and reinnervate muscle fibers.

The analysis of suboptimal electrode placement showed that most of the neural information 

available could be extracted with a greatly reduced number of electrodes. However, it was 

unclear how precisely the electrodes needed to be placed to obtain high classification 

accuracy. Furthermore, the HD EMG experiments, if necessary, would be a significant 

obstacle to clinic success of PR-based control. Therefore, a Geometric Configuration was 

analyzed to test the sensitivity of electrode placement and to determine if this very simple 

configuration would be clinically viable. Unfortunately, the classification accuracy averaged 

over subjects for 16 movements was only 72.9%. This implies that a small number of 

electrodes evenly spaced over the target muscles do not capture sufficient information 

content for high classification accuracy and electrode location is very import for efficient 

extraction of neural information. Thus, this simple method of applying electrodes would be 

inadequate for clinical use.

However, we can estimate the areas where most of neural control information was located 

based on the clinical understanding of each subject’s TMR surgery and place electrodes over 

these areas as shown in the Clinical Configuration. The average classification accuracy 

when using the Clinical Configuration is only 4.3% lower than that found when using the 

Suboptimal Configuration. Additionally, the electrode placement of the Clinical 

Configuration and that of Suboptimal Configuration were similar, indicating that the 

Suboptimal Configuration of electrode placement is consistent with the anatomical nerve-

muscle transfer arrangement. Importantly, this result implies that some rules of electrode 

placement can be followed for effective neural control information extraction in a clinical 

setting--without the use of complex HD EMG experiments and the SFS algorithm.

Based on the results of the EMG electrode configurations explored in this study, we offer 

simple guidelines for effective electrode placement, even without HD EMG recordings. 

These guidelines will facilitate future clinical application of TMR and PR-based myoelectric 

prosthetic control. A good starting point is to locate electrodes near sites where high EMG 

magnitude can be obtained. For robust application, electrodes with high signal levels have 

better tolerance to high noise levels. Furthermore, these sites likely lie in the centers of 

reinnervated muscles where signal content is greatest. The locations of clinical electrodes 
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should cover all functional muscles necessary to control the particular joint movements. 

Based on knowledge of each subject’s TMR surgical outcome, clinicians are urged to apply 

more electrodes over muscles that embed the most motor control information, in particular 

the median and distal radial nerve regions. A small number of electrodes (possibly only one) 

should be sufficient for the musculocutaneous target muscle (which only controls elbow 

flexion) or residual native muscles like the biceps and triceps. It is important to note that as 

the number of applied electrodes decreases, exact electrode placement becomes increasingly 

important for better classification accuracy. Hence, within the constraints of the system, 

more EMG electrodes were preferred in clinical application for more reliable pattern 

recognition. Although the orientation of electrodes does not greatly affect the accuracy of 

movement intent classification (Fig. 5), it is recommended that electrodes be aligned along 

the estimated direction of the muscle fibers, which offers large signal levels and better 

tolerance to noise [15].

The electrode stability analysis addresses one of the important issues of clinical feasibility. 

The control system must have some tolerance for variability of electrode placement. It is not 

possible to place the electrodes in exactly the same position every time the prosthesis is 

donned. The validation analyses presented in this study indicates that high pattern 

classification accuracy can be obtained in repeated experiments where there has been at least 

some movement of the suboptimally placed electrodes. However, this analysis was 

performed on only two sets of experiments, thus it should be considered preliminary work.

More research on the robustness of a real-time pattern recognition control system with TMR 

is needed, such as in keeping electrodes stably located over muscles, in how to quickly and 

robustly train the classifiers, in building an easy interface for clinicians, and in developing 

training protocols for patients. In addition, prostheses are needed which are more dexterous 

than those commercially available today. This work adds to the growing body of literature 

showing that we can control multifunction shoulders, elbows, wrists and complex prosthetic 

hands [21], [22].

V. Conclusions

In conclusion, this study provides evidence and tools for the clinical implementation of a 

multifunctional prosthetic control strategy that combines TMR and EMG pattern 

recognition. The information involved in the control of movement of a missing arm and 

hand can be extracted using a practical and clinically feasible number of EMG electrodes 

placed over reinnervated muscles and other residual muscles. This study explores the 

configurations of electrode placement, and initial guidelines of effective electrodes 

placement are offered for future clinical application of TMR and EMG PR in myoelectric 

prosthesis control.
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Appendix. EMG Pattern Recognition Using Linear Discriminant Analysis

The movement classes were presented as Cg (g∈[1, G]), where G denotes the total number 

of classes. For each movement, the recorded EMG data were composed of 10 five-second 

active attempts, which were divided into 10 segments with a labelled attempt number from 1 

to 10. The 5 EMG data segments with even numbers were assigned as the training data and 

the rest were used as testing data. In both sets, EMG signals were segmented into a series of 

analysis windows with a window length of 256 ms and a window increment of 64 ms. In 

each analysis window, four TD features of all applied bipolar EMG signals were extracted 

and concatenated to form an observation of feature vector: f̄ = {f1, f2, … fn, …, fN}T. fn 

consists of four TD features of the n bipolar EMG signal; N is the total number of applied 

bipolar EMG signals.

The idea of discriminant analysis is to classify the observed data to the movement class in 

which the posteriori probability P(Cg|f̄) can be maximized [23]. The posteriori probability is 

the probability of class Cg given the observed feature vector f̄ and can be expressed as

(6)

where P(Cg) is the priori possibility, P(f̄|Cg) is the likelihood, and P(f̄) the possibility of 

observed feature vector f̄. In this study, given movement class Cg, the observed feature 

vectors had a multivariate normal (MVN) distribution, i.e. P(f̄|Cg) ~ MVN(μg, Σg), where μg 

is the mean vector and Σg is the covariance matrix of the class Cg. Additionally, the priori 

possibility was assumed to be equivalent for each movement class, i.e. . For 

simplicity, the logarithm was applied on both sides of (6). Since P(f̄) and P(Cg) were the 

same for every movement class in this study, both terms were ignored in the maximization 

of posteriori possibility as shown in (7).

(7)

By assuming that every class shared a common covariance, i.e. Σg = Σ, (7) can be further 

simplified as

(8)

where

(9)
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was the linear discriminant function.

During the training procedure, μg and Σ were estimated by the feature vectors calculated 

from the training data.

where Kg is the number of observations in class Cg; f̄Cg, k is the k observed feature vector in 

class Cg; Fg is the feature matrix Fg = [f̄Cg, 1, f̄Cg, 2, … f̄Cg, k, …, f̄Cg, Kg]; Mg is the mean 

matrix Mg = [μ̃g, μ̃g, …μ̃g] that has the same number of columns as in Fg. Therefore, the 

parameters in the linear discriminant function (9) were known, i.e.

(10)

In the testing procedure, each observed feature f̄ derived from the testing data set was 

applied to calculate d̃Cg in (10) for each movement class and was classified into a specific 

class C̃g that satisfied
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Fig. 1. 
Schematic description of targeted muscle reinnervation techniques (left panel) and the high 

density EMG experimental setup (right panel) in (a) unilateral short transhumeral amputee 

subject S2, and (b) unilateral long transhumeral subjects S3 and S4. ‘n.’ denotes nerve.
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Fig. 2. 
Schematic description of the selected electrodes in (a) Geometrical Configuration and (b) 

Clinical Configuration on subject S2. Purple electrodes demonstrate the direct control sites. 

Clinical Configuration utilizes direct control sites for the first four selected electrodes that 

are labeled D1 (hand close), D2 (elbow flexion), D3 (hand open), and D4 (elbow extension). 

Green electrodes indicate other applied electrodes. The labeled number beside the electrode 

indicates the sequence of electrode placement.
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Fig. 3. 
Classification accuracy of (a) 16-movement classifier and (b) 8-movement classifier when 

using different numbers of SFS-selected suboptimal electrodes. Results are from all four 

subjects. NHD denotes the total number of bipolar electrodes derived from the high-density 

EMG array.
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Fig. 4. 
Schematic description of the Suboptimal Configurations for classifying 16 movements. The 

representative data are from (a) S2 and (b) S4. As points of reference, the purple electrodes 

demonstrate the locations of direct control sites. Green electrodes indicate the suboptimal 

electrodes. Each electrode is labeled with a number that indicates its sequence of selection 

using SFS.
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Fig. 5. 
Comparison of classifier accuracy among different electrode configurations. Results are 

from S4. Compared configurations include Suboptimal Configuration, Clinical 

Configuration with longitudinal, latitudinal and diagonal electrode orientation, and 

Geometrical Configuration.
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Fig. 6. 
The accuracy of classifying 16 intended movements with 12 electrodes placed according to 

Suboptimal, Clinical, and Geometrical Configuration.
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