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Abstract

The Hedgehog (Hh) signaling pathway is critical for embryonic development. In adult tissues, Hh 

signaling is relatively quiescent with the exception of roles in tissue maintenance and repair. 

Aberrant activation of Hh signaling is implicated in multiple aspects of transformation including 

the maintenance of the cancer stem cell (CSC) phenotype. Pre-clinical studies indicate that CSCs 

from many tumor types are sensitive to Hh pathway inhibition and that Hh-targeted therapeutics 

block many aspects of transformation attributed to CSCs including, drug resistance, relapse and 

metastasis. However, to date, Hh inhibitors, specifically those targeting Smoothened (such as 

Vismodegib, BMS-833923, Saridegib (IPI-926), Sonidegib/Erismodegib (LDE225), 

PF-04449913, LY2940680, LEQ 506 and TAK-441) have demonstrated good efficacy as 

monotherapy in patients with basal cell carcinoma and medulloblastoma, but have shown limited 

activity in other tumor types. This lack of success is likely due to many factors including a lack of 

patient stratification in early trials, crosstalk between Hh and other oncogenic signaling pathways 

that can modulate therapeutic response, and a limited knowledge of Hh pathway activation 

mechanisms in CSCs from most tumor types. Here we discuss Hh signaling mechanisms in the 

context of human cancer, particularly in the maintenance of the CSC phenotype, and consider new 

therapeutic strategies that hold the potential to expand considerably the scope and therapeutic 

efficacy of Hh-directed anti-cancer therapy.

Background

Hedgehog (Hh) is a highly conserved developmental pathway involved in organogenesis, 

stem cell maintenance, and tissue repair/regeneration. Aberrant Hh pathway activation 

controls multiple aspects of tumorigenesis including initiation, progression and relapse, at 

least in part, by driving a cancer stem cell (CSC) phenotype. Mutational Hh pathway 

activation drives tumor formation in several tumor types, and many other tumors exhibit 

epigenetic Hh pathway activation. Small-molecule Hh inhibitors have been used as 

monotherapy and in combined modalities for cancer treatment. To date, however, Hh 
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inhibitors have enjoyed limited success clinically. Here, we discuss oncogenic Hh signaling 

mechanisms and highlight new therapeutic strategies that may enhance the clinical efficacy 

and expand the effective use of Hh inhibitors to new tumor types.

The canonical Hh signaling pathway

Core Hh signaling components include the Hh ligands (sonic Hh (Shh); Indian Hh, (Ihh) and 

Desert Hh, (Dhh)), the trans-membrane receptor proteins Patched 1 and 2 (PTCH1 and 

PTCH2), the G-protein-coupled receptor-like protein Smoothened (SMO) and the glioma-

associated oncogene transcription factors 1–3 (GLI1, GLI2 and GLI3) (reviewed in (1) (Fig. 

1). Primary cilia localize these components to activate or repress signaling (2). Canonical Hh 

signaling is activated when Hh ligand binds PTCH to relieve PTCH-mediated SMO 

inhibition at the base of the primary cilium (3). SMO then translocates to the ciliumtip (4), 

driving a signaling cascade that results in nuclear GLI translocation and activation. GLI 

activates transcription of context-specific genes regulating self-renewal, cell fate, survival, 

angiogenesis, epithelial-mesenchymal transition and cell invasion (reviewed in (5)). As Hh 

transcriptional targets, GLI1 and PTCH establish a feedback loop that regulates Hh signaling 

(6).

Several accessory proteins promote or suppress Hh pathway activity (Fig. 1). Hh ligands are 

synthesized as precursors that undergo autocatalytic cleavage, addition of a carboxy-

terminal cholesterol moiety, and amino-terminal palmitoylation mediated by Skinny Hh/Hh 

acyltransferase (Ski/Hhat) to produce mature ligand, whose secretion is facilitated by the 

transmembrane transporter-like protein Dispatched (Disp) (1). Growth Arrest Specific 1 

(GAS1), CAM-related/down-regulated by oncogenes (CDO), brother of CDO (BOC) and 

Glypican-3 (GPC3) are co-receptors that facilitate ligand binding to PTCH (1), whereas 

Hedgehog Interacting Peptide (HhIP) represses signaling by sequestering Hh ligand (7). 

Protein kinase A (PKA), glycogen synthase 3β (GSK3β), casein kinase I (CK1), Skip–

Cullin–Fbox (SCF) protein, βTransducin repeat Containing Protein (βTrCP), and a 

suppressor complex comprised of Fused kinase (Fu), Suppressor of Fused (Sufu) and 

Costal2 (Cos2) regulate GLI expression, stability and localization (reviewed in (1)). 

Alterations in one or more of these modulatory mechanisms can lead to pathway 

deregulation and cancer.

Hh signaling in cancer

Both ligand-dependent and-independent mechanisms result in aberrant Hh pathway 

activation in cancer. Germline or somatic loss-of-function PTCH or SUFU, and gain-of-

function SMO, mutations constitutively activate ligand-independent Hh signaling and drive 

basal cell carcinoma (BCC), medulloblastoma (MB), rhabdomyosarcoma and meningioma 

tumor development (8-11). GLI1 amplification occurs in glioblastoma and 

rhabdomyosarcoma, and activating mutations in GLI1 and GLI3 are evident in pancreatic 

adenocarcinomas (12-14), although the function of these mutations is not fully explored. 

Pallister-Hall syndrome, characterized by formation of benign hypothalamic hamartomas, is 

caused by a frameshift GLI3 mutation that generates a C-terminal truncated protein 

resembling physiologically-generated GLI3 repressor (15).
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Hh signaling can also drive the transformed phenotype through autocrine or paracrine 

ligand-dependent mechanisms. Autocrine activation ensues when Hh ligand produced by 

tumor cells activates Hh signaling in the same or neighboring tumor cells to stimulate 

survival and tumor growth. Autocrine Hh pathway activation occurs in lung, pancreas, 

stomach, colon, skin, prostate, breast and brain cancers (16-23). In these tumors, SMO 

inhibitors block tumor cell growth in the absence of stromal cells. Paracrine Hh pathway 

activation occurs when tumor cells secrete Hh ligands that induce Hh activation in stromal 

cells, which then promote tumor growth by producing angiogenic factors (i.e. IGF and 

VEGF) and IL6 and Wnt signaling activation (24-27). Paracrine Hh signaling occurs in 

pancreatic, lung, esophageal, gastric, colon, lymphomas, multiple myelomas and prostate 

cancers (25, 27-34). Reverse paracrine Hh signaling has also been described in lymphomas 

and multiple myelomas, in which Hh ligand produced in bone marrow stroma activates Hh 

signaling in adjacent tumor cells (35).

Hh pathway activation in cancer stem cells

Lineage tracing studies have demonstrated the existence of a sub-population of tumor cells 

exhibiting stem-like properties (36-38). These tumor-initiating or cancer stem cells (CSCs) 

exhibit self-renewal, enhanced tumor initiation, and differentiation into transiently-

amplifying cells that populate the bulk tumor. These cells function in tumor maintenance, 

metastasis, relapse and chemoresistance. Hh signaling drives CSC maintenance in lung, 

breast, pancreas, colon, glioblastoma, multiple myeloma, and chronic myeloid leukemia 

(CML) (16, 18, 20, 22, 39-42). Hh signaling is selectively activated in CSCs compared to 

bulk tumor cells from these tumor types (18, 20, 22, 41, 42), and directly drives the CSC 

phenotype by regulating expression of CSC markers aldehyde dehydrogenase, BMI1, 

WNT2 and CD44 (20, 27, 43). Pharmacologic or genetic Hh inhibition in these tumor types 

decreases self-renewal, tumor growth and metastasis (16, 18, 20, 22, 39-42). Hh signaling 

also regulates ABCG2 and MDR expression, suggesting a role in the chemo-resistance 

characteristic of CSCs (44-48).

Clinical-Translational Advances

Hh pathway inhibitors

Four major modes of Hh inhibition have been exploited therapeutically: 1) SMO inhibition; 

2) receptor-ligand disruption; 3) inhibition of ligand processing; and 4) GLI inhibition (Fig. 

1). Cyclopamine, a naturally-occurring SMO inhibitor, established Hh as a viable 

therapeutic target (49, 50). Though cyclopamine is not clinically useful due to its low 

potency and bioavailability, more potent and specific SMO inhibitors Vismodegib, 

BMS-833923, Saridegib (IPI-926), Sonidegib/Erismodegib (LDE225), PF-04449913, 

LY2940680, LEQ 506 and TAK-441 (Fig. 1) have been developed and evaluated clinically 

(Table 1, ClinicalTrials.gov). SMO inhibitors are particularly effective against MBs and 

BCCs harboring SMO or PTCH mutations, and FDA approval of Vismodegib for advanced 

BCC solidified Hh as a bona fide therapeutic target. Hh signaling has also been blocked by 

disrupting Hh ligand-PTCH interactions (Fig. 1). The Hh ligand monoclonal antibody 5E1, 

and the macrocyclic small molecule Robotnikinin, inhibit Hh:PTCH interactions and exhibit 

anti-tumor activity (51, 52). Small molecule inhibitors of Ski/HHAT, an enzyme that 
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catalyzes a key step in Hh ligand processing, have recently been developed. HHAT 

inhibitors block Hh palmitoylation and prevent pathway activation (53). Agents such as 

GANT58/GANT61 and HPI 1-4 act by blocking GLI processing, activation and/or 

transcriptional activity (54, 55). These agents may be particularly useful in treating tumors 

exhibiting ligand-independent Hh pathway activation. Although proof-of-concept has been 

demonstrated with 5E1, Robotnikinin, HHAT and GLI inhibitors in vitro, further testing is 

required before these agents can be clinically evaluated.

Targeting Hh in CSCs

CSCs are emerging therapeutic targets whose efficient elimination may offer longer lasting, 

potentially curative outcomes in cancer patients. Hh pathway inhibition is a promising 

approach to therapeutically-target CSCs. Cyclopamine preferentially inhibits pancreatic 

CSCs but not bulk tumor cells (41), and GLI or SMO gene-silencing, or cyclopamine, 

decreases glioblastoma CSC proliferation, survival and self-renewal (16, 39). shRNA-

mediated knockdown of HHAT or GLI1, or treatment with SMO inhibitor LDE225, blocks 

growth of lung squamous cell carcinoma (LSCC) CSCs in vitro and tumor formation in vivo 

(18). Cyclopamine or 5E1 antibody reduces multiple myeloma CSC self-renewal and 

induces terminal differentiation (56). Likewise, Smo inhibition reduces expansion of Bcr-

Abl-positive leukemic stem cells in vivo and delays relapse in a mouse CML model (40). 

Interestingly, inhibition is independent of Bcr-Abl mutation status, indicating that imatinib-

resistant leukemic stem cells may retain responsiveness to Hh inhibition.

Drug combinations therapeutically target Hh in CSCs

SMO inhibitors are extremely effective against BCC and MB tumors that harbor driver Hh 

pathway mutations (Table 1). However, despite promising preclinical results, SMO 

inhibitors have yielded little or no clinical benefit in tumors not harboring pathway 

mutations (Table 1). The poor clinical performance of SMO inhibitors beyond BCC and MB 

may be due, at least in part, to crosstalk between Hh and EGFR, RAS/MEK/ERK, 

PI3K/AKT/mTOR, NOTCH and/or WNT oncogenic signaling pathways (reviewed in (57)). 

Hh and EGFR pathways can activate each other, and cooperate to induce GLI1 

transcriptional targets and promote tumor growth (58). Oncogenic KRAS/MEK/ERK 

signaling promotes tumorigenesis through paracrine, SMO-independent regulation of GLI1 

expression, phosphorylation, degradation, nuclear localization and activation (59). The 

PI3K/AKT/mTOR pathway also regulates Hh signaling through GLI phosphorylation, 

nuclear localization and activation (60). In addition, Shh mediates epithelial-to-

mesenchymal transition and metastasis through PI3K/AKT/mTOR activation (61), whereas 

GLI1 appears to suppress the WNT pathway in colon cancer cells (62). Thus, crosstalk 

between Hh and other oncogenic signaling pathways may significantly alter clinical 

response to Hh pathway inhibition and limit efficacy.

Clinical efficacy of Hh inhibitors may be significantly enhanced through rational patient 

stratification based on advanced knowledge of Hh signaling mechanisms in specific subsets 

of tumors. For instance, tumors in which Hh signaling is active in CSCs, but not bulk tumor 

cells, are unlikely to respond effectively to Hh inhibitors as monotherapy. Furthermore, the 

emergence of drug-resistant SMO mutations is a key factor limiting the efficacy of SMO 
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inhibitors as monotherapy (63-65). Given these limitations, current strategies for 

therapeutically-targeting the Hh pathway are being reevaluated to include strategic 

combinations of SMO inhibitors with other therapeutic modalities.

Several preclinical studies report success combining SMO inhibitors and conventional 

cytotoxic anti-tumor agents. For instance, combined SMO inhibitor IPI-926 and gemcitabine 

blocks tumor growth in a mouse pancreatic cancer model through gemcitabine-mediated 

cytotoxicity and IPI-926-mediated CSC inhibition (45). In glioblastoma CSC xenografts, 

SMO inhibitors enhance the effects of temozolomide (66), and in a mouse CML model 

cyclopamine enhances the effects of Bcr-Abl inhibitor nilotinib and increases survival by 

targeting leukemic stem cells (40). Combined docetaxel, NOTCH inhibitor, and 

cyclopamine inhibits growth of docetaxel-resistant prostate CSCs (67), and combined EGFR 

and SMO inhibition has proven effective in preclinical prostate, BCC and glioblastoma 

models (57). Several clinical trials of SMO inhibition combined with other therapeutics are 

currently underway (Table 1). Results from these trials will provide a key indication of 

whether use of SMO inhibitors can be effectively extended beyond BCC and MB through 

use of strategic drug combinations.

Emerging insights into Hh pathway regulation in CSCs may lead to even more effective 

combination strategies for targeting Hh signaling in these cells. In this regard, the atypical 

Protein Kinase C iota (PKCι) is an oncogene (68, 69) (reviewed in (70) (71) that has 

emerged as a major regulator of Hh pathway activity in BCC and LSCC (18). In BCC, PKCι 

regulates GLI1 in a SMO-independent fashion to promote BCC tumor growth (71), 

suggesting that PKCι inhibition may be an alternative approach to treating BCC tumors with 

acquired resistance to SMO inhibitors. In LSCC, PKCι and SOX2, both of which are 

lineage-specific lung oncogenes, cooperate to drive a CSC phenotype through Hh pathway 

activation (18). Amplification of chromosome 3q26, which occurs in ∼70% of LSCCs, 

results in the co-amplification and co-overexpression of PKCι and SOX2 which cooperate to 

drive cell-autonomous Hh signaling in LSCC CSCs (18) (Fig. 2A). Mechanistically, PKCι 

phosphorylates SOX2, a transcription factor that functions in stem cell maintenance, and 

controls SOX2-mediated transcriptional activation of HHAT, resulting in increased levels of 

mature, palmitoylated Hh ligand and Hh pathway activation that drives the LSCC CSC 

phenotype (18). PKCι also activates Rac1/MEK/ERK signaling in LSCC cells to 

transcriptionally-regulate Matrix Metalloproteinase 10 (MMP10). This PKCι/

Rac1/MEK/ERK/MMP10 signaling axis is required for both CSC maintenance and 

transformed growth of bulk LSCC cells (Fig. 2A) (reviewed in (70). Thus, PKCι drives both 

CSC and bulk tumor cell growth suggesting that combined PKCι and Hh inhibition may be 

a particularly effective therapeutic intervention strategy in LSCC. Indeed, combined 

treatment with the selective PKCι inhibitor auranofin (ANF) (18) and the SMO inhibitor 

LDE225 causes synergistic inhibition of LSCC CSC expansion and viability (Fig. 2B). ANF 

inhibits expression of PKCι-dependent transcriptional targets HHAT, GLI1 and MMP10 

(18, 72), whereas LDE225 causes decreased GLI1, consistent with on-target effects of these 

agents. Combined ANF and LDE225 caused a more pronounced inhibition of downstream 

effectors when compared to either agent alone (Fig. 2C), consistent with the observed 

synergistic growth inhibition. Since the PKCι-SOX2-Hh signaling axis is driven by 

chromosome 3q26 amplification, combined PKCι and SMO inhibitor may represent a 
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particularly effective treatment strategy for LSCCs harboring chromosome 3q26 

amplification. These results have implications well beyond LSCC because many other tumor 

types harbor this genetic alteration. Indeed, chromosome 3q26 amplification is the most 

prevalent genetic copy number gain alteration in human cancers, occurring in approximately 

15% of human tumors (73). As a result, PKCι and SOX2 co-amplification and co-

overexpression is observed in significant percentages of bladder, breast, cervical, 

esophageal, head and neck, kidney, lung adenocarcinoma, lung squamous cell carcinoma, 

serous ovarian, stomach and uterine cancers (Table 1, (reviewed in (70)). Thus, a large 

patient population, identifiable by tumor-specific 3q26 amplification, is likely to exhibit 

active PKCι/SOX2/Hh signaling, a stem-like phenotype driven by Hh pathway activation, 

and responsiveness to combined ANF/SMO inhibitor treatment. Early phase clinical trials 

are being actively pursued to evaluate this novel therapeutic strategy.

Perspective

Hh inhibitors have been successfully employed as monotherapy for BCC and MB tumors 

harboring Hh pathway mutations. However, therapeutic response in these tumors may be 

limited by the challenge of acquired SMO resistance. SMO inhibitors have been less 

successful in other tumor types, probably due to many complicating factors including a lack 

of patient stratification in early phase trials, crosstalk between Hh and other signaling 

pathways, the complexity of Hh signaling in CSCs, bulk tumor cells and tumor 

microenvironment, and a lack of in-depth knowledge of Hh pathway activation mechanisms 

in specific tumor subtypes. Tumors not harboring Hh pathway mutations are unlikely to 

respond to Hh inhibitors alone. However, combining Hh inhibitors with chemotherapeutics 

or other targeted agents coupled with appropriate patient stratification paradigms provide 

new opportunities for more effective Hh-based therapy. One promising strategy involves 

combined Hh and PKCι inhibitor therapy. PKCι activates a novel PKCι-SOX2-Hh 

signaling axis in CSCs from LSCC tumors harboring chromosome 3q26 amplification, and 

these cells exhibit synergistic response to combined SMO/PKCι inhibition. The high 

prevalence of chromosome 3q26 copy number gains, and the resulting co-amplification of 

PKCι and SOX2, in many tumor types (∼15% of human tumors) raises the exciting 

possibility that combined Hh and PKCι inhibitor therapy will prove effective in the large 

target patient population whose tumors harbor chromosome 3q26 copy number gains and a 

CSC phenotype driven by PKCXι-SOX2-Hh pathway activation.
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Figure 1. 
Schematic of Hedgehog (Hh) signaling in Vertebrates. A) In the absence of Hh ligand, 

Patched (PTCH) prevents SMO localization to the primary cilium and GLI is suppressed by 

a protein complex composed of Costal2 (Cos2), Fused (Fu), Suppressor of Fused (SUFU) 

that promotes Protein Kinase A (PKA), Glycogen Synthase Kinase 3 (GSK3) and Casein 
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Kinase 1 (CK1)- mediated GLI phosphorylation and partial proteosomal processing of GLI 

into a repressor form that inhibits expression of Hh target genes. B) Hh ligand requires N-

terminal palmitoylation mediated by Hh acyltransferase (HHAT) to be activated and 

released into the extracellular space by Dispatched (Disp). The Hh pathway is activated 

upon Hh ligand binding to PTCH and the co-receptors Growth Arrest Specific 1 (GAS1), 

CAM-related/down-regulated by oncogenes (CDO), brother of CDO (BOC) which relieves 

PTCH-mediated inhibition of SMO. Upon activation, SMO translocations to the primary 

cilia where it disrupts the repressor protein complex resulting in GLI translocation to the 

nucleus and activation of GLI-mediated transcription of gene targets that maintain a CSC 

phenotype. The Hh pathway can be therapeutically targeted by: 1) SMO inhibition 

(Vismodegib, BMS-833923, IPI-926, LDE225, PF-04449913, LY2940680, LEQ 506, 

TAK-441 and cyclopamine; 2) receptor-ligand disruption (5E1 anti-Hh ligand antibody and 

robotnikinin); 3) inhibition of ligand processing (HHAT inhibitor RU-SKI 43); or 4) 
inhibition of GLI activity (GANT58, GANT61 and HPI 1-4).
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Figure 2. 
Combined inhibition of PKCι and Hh signaling inhibits the CSC phenotype. A) PKCι 

regulates multiple signaling pathways that maintain both CSC and bulk tumor cells and 

drives tumor initiation, growth, survival, invasion, metastasis and chemoresistance. In lung 

squamous cell carcinoma (LSCC) cells harboring 3q26 amplification, PKCι phosphorylates 

SOX2 and regulates SOX2-mediated transcriptional activation of HHAT leading to 

autocrine Hh pathway activation. This PKCι/SOX2/Hh signaling axis is required to maintain 

a CSC phenotype. PKCι also forms an oncogenic complex with the polarity protein PAR6 

and the guanine nucleotide exchange factor Epithelial Cell Transforming Sequence 2 

(ECT2) that functions to drive a RAC1/PAK/MEK/ERK signaling cascade that 

transcriptional upregulates Matrix Metalloproteinase 10 (MMP10) to promote 

tumorigenicity of both bulk tumor and cancer stem cells. B) The PKCι inhibitor, Auranofin 

and the SMO inhibitor, LDE225 synergistically block the growth of LSCC CSCs. C) PKCι 
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and Hh inhibition transcriptionally downregulate their respective transcriptional targets 

HHAT, GLI1 and MMP10 and combined inhibition of PKCι and Hh further downregulates 

expression of these gene targets. DMSO, dimethyl sulfoxide.
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Table 1

Preclinical and clinical response to SMO inhibition in various tumor types and their chromosome 3q26 

amplification status.

Cancer type Response pre-clinically Response Clinically 
Clinicaltrials.gov NCT #

3q26 status % with 
copy # gains

Reference

Basal cell carcinoma Suppressed proliferation, 
induced apoptosis and 
regression of lesions.

Antitumor activity in metastatic 
and locally advanced BCC; 
Vismodegib FDA approved for 
advanced BCC

(74, 75)

Breast Decreased proliferation, 
tumor growth and 
metastasis.

NCT01576666; recruiting patients 25% (TCGA) (31, 76)

Cervical Decreased cell proliferation 
and survival.

77% (TCGA) (77)

Chronic myelogenous leukemia Sensitized cells to 
chemotherapy. Prolonged 
survival in leukemia mouse 
model. Decreased 
tumorigenic potential of 
leukemic stem cell 
population.

NCT01456676; recruiting 
NCT01218477; completed, no 
results reported NCT01357655; 
ongoing, not recruiting

(40, 78, 79)

Colorectal Blocked cell growth in 
vitro and growth of 
xenograft tumors in vivo. 
Decreased recurrence and 
metastases.

NTC00636610; Vismodegib does 
not add to the efficacy of FOLFOX, 
FOLFIRI, or bevacizumab 
NCT01576666; recruiting patients

11% (TCGA) (22, 27, 80, 
81)

Esophageal Decreased cell growth and 
induced apoptosis.

NCT00909402; completed, no 
results reported

53% (82, 83)

Gastric Decreased cell growth and 
induced apoptosis.

NCT00982592; Addition of 
Vismodegib to FOLFOX did not 
improve PFS in an unselected 
population NCT00909402; 
completed, no results reported 
NCT01576666; recruiting patients

35% (TCGA) (84, 85)

Gliomas Decreased self-renewal of 
CSCs and potentiated the 
anti-proliferative effect of 
conventional 
chemotherapy.

NCT01576666; recruiting patients 14% (TCGA) (39)

Head and Neck Decreased colony 
formation in primary tumor 
cells ex vivo.

74% (TCGA) (86)

Hepatocellular Blocked proliferation and 
invasion in vitro and 
xenograft tumors in vivo.

17% (TCGA) (87)

Kidney Decreased cell growth and 
caused tumor regression in 
vivo.

15% (TCGA) (88)

Lung Suppressed growth of 
small-cell lung cancer cells 
in vitro and in vivo. 
Prevented small-cell lung 
cancer tumor recurrence 
after chemotherapy 
treatment. Inhibited growth 
of lung squamous cell 
carcinoma CSCs.

NCT01579929; recruiting 
NCT01722292; recruiting

84% LSCC (TCGA) 
32% LAC (TCGA) 

27% SCLC

(18, 23, 89)

Lymphoma Induced apoptosis and 
inhibits growth of cancer 
cells in mice.

29% (TCGA) (29)

Clin Cancer Res. Author manuscript; available in PMC 2016 February 01.

http://ClinicalTrials.gov


N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Justilien and Fields Page 18

Cancer type Response pre-clinically Response Clinically 
Clinicaltrials.gov NCT #

3q26 status % with 
copy # gains

Reference

Medulloblastoma Antitumor activity in 
mouse models.

NCT00939484, sustained response 
in 15% of patients

(74, 90-92)

Melanoma Reduced proliferation, 
prevented recurrence and 
lung metastasis.

20% (21)

Neuroblastoma Reduced proliferation, 
induced apoptosis and 
blocked tumorigenicity.

(93, 94)

Neuro-endocrine Blocked cell growth in 
vitro.

(95)

Ovarian Decreased proliferation, 
mobility and invasiveness. 
Induced cancer cell 
dedifferentiation and 
apoptosis in vitro and 
decreased tumor growth in 
vivo.

NTC00739661; No clinically 
meaningful improvement in 
progression-free survival for 
vismodegib versus placebo

83%, serous (TCGA) (96-99)

Pancreatic Blocked growth, migration, 
invasion, colony formation, 
the cancer stem cell 
population, tumor growth 
and metastasis.

NCT01096732; terminated 
NCT00878163; Active, not 
recruiting NCT01576666; 
recruiting NCT01537107; 
recruiting

20% (TCGA) (100, 101)

Prostate Prevented tumour growth 
in xenograft model.

NCT01163084; ongoing, not 
recruiting

15% (TCGA) (54)

Sarcoma Decreased rhabdosarcoma 
cell proliferation, induced 
apoptosis and blocked 
tumor growth in vivo. 
Decreased osteocarcinoma 
cell growth in vitro and 
tumor growth in vivo.

NCT01154452; recruiting 13% (TCGA) (102, 103)

Uterine Decreased cell growth in 
vitro.

64% (TCGA) (104)
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