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Abstract

We develop a flexible framework for modeling high-dimensional imaging data observed 

longitudinally. The approach decomposes the observed variability of repeatedly measured high-

dimensional observations into three additive components: a subject-specific imaging random 

intercept that quantifies the cross-sectional variability, a subject-specific imaging slope that 

quantifies the dynamic irreversible deformation over multiple realizations, and a subject-visit 

specific imaging deviation that quantifies exchangeable effects between visits. The proposed 

method is very fast, scalable to studies including ultra-high dimensional data, and can easily be 

adapted to and executed on modest computing infrastructures. The method is applied to the 

longitudinal analysis of diffusion tensor imaging (DTI) data of the corpus callosum of multiple 

sclerosis (MS) subjects. The study includes 176 subjects observed at 466 visits. For each subject 

and visit the study contains a registered DTI scan of the corpus callosum at roughly 30,000 voxels.
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1 Introduction

An increasing number of longitudinal studies routinely acquire high-dimensional data, such 

as brain images or gene expression, at multiple visits. This led to increased interest in 

generalizing standard models designed for longitudinal data analysis to the case when the 

observed data are massively multivariate. In this paper we propose to generalize the random 

intercept random slope mixed effects model to the case when instead of a scalar one 

measures a high-dimensional object, such as a brain image. The proposed methods can be 

applied to longitudinal studies that include high-dimensional imaging observations without 

missing data that can be unfolded into a long vector.

This paper is motivated by a study of multiple sclerosis (MS) patients (Reich et al., 2010). 

Multiple sclerosis is a degenerative disease of the central nervous system. A hallmark of MS 

is damage to and degeneration of the myelin sheaths that surround and insulate nerve fibers 

in the brain. Such damage results in sclerotic plaques that distort the flow of electrical 

impulses along the nerves to different parts of the body (Raine et al., 2008). MS also affects 

the neurons themselves and is associated with accelerated brain atrophy.

Our data are derived from a natural history study of 176 MS cases selected from a 

population with a wide spectrum of disease severity. Subjects were scanned over a 5-year 

period up to 10 times per subject, for a total of 466 scans. The scans have been aligned 

(registered) using a 12 degrees of freedom transformation which accounts for rotation, 

translation, scaling, and shearing, but not for nonlinear deformation. In this study we focus 

on fractional anisotropy (FA), a useful voxel-level summary of diffusion tensor imaging 

(DTI), a type of structural Magnetic Resonance Imaging (MRI). FA is viewed as a measure 

of tissue integrity and is thought to be sensitive both to axon fiber density and myelination in 

white matter. It is measured on a scale between zero (isotropic diffusion characteristic of 

fluid-filled cavities) and one (anisotropic diffusion, characteristic of highly ordered white 

matter fiber bundles) (Mori, 2007).

The goal of the study was to quantify the location and size of longitudinal variability of FA 

along the corpus callosum. The primary region of interest (ROI) is a central block of the 

brain containing the corpus callosum, the major bundle of neural fibers connecting the left 

and right cerebral hemispheres. We weight FA at each voxel in the block with a probability 

for the voxel to be in the corpus callosum, where the probability is derived from an atlas 

formed using healthy-volunteer scans, and study longitudinal changes of weighted FAs in 

the blocks (Reich et al., 2010). Figure 1 displays the ROI that contains corpus callosum 

together with its relative location in a template brain. Each block is of size 38 × 72 × 11, 

indicating that there are 38 sagittal, 72 coronal, and 11 axial slices, respectively. Figure 2 

displays the 11 axial (horisontal) slices for one of the subjects from bottom to top. In this 

paper, we study the FA at every voxel of the blue blocks, which could be unfolded into an 

approximately 30, 000 dimensional vector that contains the corresponding FA value at each 

entry. The variability of these images over multiple visits and subjects will be described by 

the combination of: 1) a subject-specific imaging random intercept that quantifies the cross-

sectional variability; 2) a subject-specific imaging slope that quantifies the dynamic 
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irreversible deformation over multiple visits; and 3) a subject-visit specific imaging 

deviation that quantifies exchangeable or reversible visit-to-visit changes.

High dimensional data sets have motivated the statistical and imaging communities to 

develop new methodological approaches to data analysis. Successful modeling approaches 

involving wavelets and splines and adaptive kernels have been reported in the literature 

(Mohamed and Davatzikos, 2004; Morris and Carroll, 2006; Guo, 2002; Morris et al., 2011; 

Zhu et al., 2011; Rodriguez et al., 2009; Bigelow and Dunson, 2009; Reiss et al., 2005; 

Reiss and Ogden, 2008, 2010; Li et al., 2011; Hua et al., 2012; Yuan et al., 2014). A 

different direction of research has focused on principal component decompositions (Di et al., 

2008; Crainiceanu et al., 2009; Aston et al., 2010; Staicu et al., 2010; Greven et al., 2010; Di 

et al., 2010; Zipunnikov et al., 2011b; Crainiceanu et al., 2011), which led to several 

applications to imaging data (Shinohara et al., 2011; Goldsmith et al., 2011; Zipunnikov et 

al., 2011a). However, the high dimensionality of new data sets, the inherent complexity of 

sampling designs and data collection, and the diversity of new technological measurements 

raise multiple challenges that are currently unaddressed.

Here we address the problem of exploring and analyzing populations of high dimensional 

images at multiple visits using high dimensional longitudinal functional principal 

components analysis (HD-LFPCA). The method decomposes the longitudinal imaging data 

into subject specific, longitudinal subject specific, and subject-visit specific components. 

The dimension reduction for all components is done using principal components of the 

corresponding covariance operators. Note that we are interested in imaging applications and 

do not perform smoothing. However, in Section 3.4, we discuss how the proposed approach 

can be paired with smoothing and applied to high-dimensional functional data. The 

estimation and inferential methods are fast and can be performed on standard personal 

computers to analyze hundreds or thousands of high-dimensional images at multiple visits. 

This was achieved by the following combination of statistical and computational methods: 

1) relying only on matrix block calculations and sequential access to memory to avoid 

loading very large data sets into the computer memory (see Demmel, 1997 and Golub and 

Loan, 1996 for a comprehensive review of partitioned matrix techniques); 2) using SVD for 

matrices that have at least one dimension smaller than 10, 000 (Zipunnikov et al., 2011a); 3) 

obtaining best linear unbiased predictors (BLUPs) of principal scores as a by-product of 

SVD of the data matrix; and 4) linking the high-dimensional space to a low-dimensional 

intrinsic space, which allows Karhunen-Loève (KL) decompositions of covariance operators 

that cannot even be stored in the computer memory. Thus, the proposed methods are 

computationally linear in the dimension of images.

The rest of the manuscript is organized as follows. Section 2 reviews LFPCA and discusses 

its limitation in high-dimensional settings. In Section 3 we introduce HD-LFPCA, which 

provides a new statistical and computational framework for LFPCA. This will circumvent 

the problems associated with LFPCA in high dimensional settings. Simulation studies are 

provided in Section 4. Our methods are applied to the MS data in Section 5. Section 6 

concludes the paper with a discussion.
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2 Longitudinal FPCA

In this section we review the LFPCA framework introduced by Greven et al. (2010). We 

develop an estimation procedure based on the original one in Greven et al. (2010), but we 

heavily modify it to make it practical for applications to imaging high dimensional data. We 

also present the major reasons why the original methods can not be applied to high-

dimensional data.

2.1 Model

A brain imaging longitudinal study usually contains a sample of images Yij, where Yij is a 

recorded brain image of the ith subject, i = 1, …, I, scanned at times Tij, j = 1, …, Ji. The 

total number of subjects is denoted by I. The times Tij are subject specific. Different subjects 

could have different number of visits (scans), Ji. The images are stored in 3-dimensional 

array structures of dimension p = p1 × p2 × p3. For example, in the MS data p = 38 × 72 × 11 

= 30, 096. Note that our approach is not limited to the case when data are in a 3 dimensional 

array. Instead, it can be applied directly to any data structure where the voxels (or pixels, or 

locations, etc.) are the same across subjects and visits and data can be unfolded into a vector. 

Following Greven et al. (2010) we consider the LFPCA model

(1)

where υ denotes a voxel, η(υ) is a fixed main effect, Xi,0(υ) is the random imaging intercept 

for subject i, Xi,1 (υ) is the random imaging slope for subject i, Tij is the time of visit j for 

subject i, Wij(υ) is the random subject/visit-specific imaging deviation. For simplicity, the 

main effect η(·) does not depend on i and j. As discussed in (Greven et al., 2010), model (1) 

and the more general model (8) in Section 3.2 are similar to functional models with 

uncorrelated (Guo, 2002) and correlated (Morris and Carroll, 2006) random functional 

effects. Instead of using smoothing splines and wavelets as in (Guo, 2002; Morris and 

Carroll, 2006), our approach models the covariance structures using functional principal 

component analysis; we have found this approach to lead to the major computational 

advantages, as further discussed in Section 3.

In the remainder of the paper, we unfold the data Yij and represent it as a p × 1 dimensional 

vector containing the voxels in a particular order, where the order is preserved across all 

subjects and visits. We assume that η(υ) is a fixed surface/image and the latent (unobserved) 

bivariate process  and process Wij(υ) are square-integrable 

stochastic processes. We also assume that Xi(υ) and Wij(υ) are uncorrelated. We denote by 

KX (υ1, υ2) and KW (υ1, υ2) their covariance operators, respectively. Assuming that KX (υ1, 

υ2) and KW (υ1, υ2) are continuous, we can use the standard Karhunen-Loève expansions of 

the random processes (Karhunen, 1947; Loeve, 1978) and represent 

with  and  where  and  are the 

eigenfunctions of the KX and KW operators, respectively. Note that KX and KW will be 

estimated by their sample counterparts on finite 2p × 2p and p × p grids, respectively. 
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Hence, we can always make a working assumption of continuity for KX and KW. The 

LFPCA model becomes the mixed effects model

(2)

where Zij = (1, Tij)′ and “ ~ (0, 0; , 0)” indicates that a pair of variables is 

uncorrelated with mean zero and variances  and , respectively. Variances ’s are 

nonincreasing, that is  if k1 ≤ k2. We do not require normality of the scores in the 

model. The only assumption is the existence of second order moments of the distribution of 

scores. In addition, the assumption that Xi(υ) and Wij(υ) are uncorrelated is ensured by the 

assumption that  and  are uncorrelated. Note that model (2) may be 

extended to include a more general vector of covariates Zij. We discuss a general functional 

mixed model in Section 3.2.

In practice, model 2 is projected onto the first NX and NW components of KX and KW, 

respectively. Assuming that NX and NW are known, the model becomes

(3)

The choice of the number of principal components NX and NW is discussed in (Di et al., 

2008; Greven et al., 2010). Typically, NX and NW are small and (3) provides significant 

dimension reduction of the family of images and their longitudinal dynamics. The main 

reason why the LFPCA model (3) cannot be fit when data are high dimensional is that the 

empirical covariance matrices KX and KW can not be calculated, stored or diagonalized. 

Indeed, in our case these operators would be 30, 000 by 30, 000 dimensional, which would 

have around 1 billion entries. In other applications these operators would be even bigger.

2.2 Estimation

Our estimation is based on the methods of moments (MoM) for pairwise quadratics 

. The computationally intensive part of fitting (3) is estimating the following 

massively multivariate model

(4)

where η = (η(υ1), …, η(υp)), Yij = {Yij(υ1), …, Yij(υp)} are p × 1 dimensional vectors, 

 and  are correspondingly vectorized eigenvectors,  and 

 are p × NX dimensional matrices,  is a p × NW 

dimensional matrix, principal scores ξi = (ξi1, …, ξiNX)′ and ζij = (ζij1, …, ζijNU)′ are 
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uncorrelated with diagonal covariance matrices  and 

, respectively.

To obtain the eigenvectors and eigenvalues in model (4), the spectral decompositions of KX 

and KW need to be constructed. The first NX and NW eigenvectors and eigenvalues are 

retained after this, that is KX ≈ ΦXΛXΦX′ and KW ≈ ΦWΛWΦW′, where ΦX = [ΦX,0′, ΦX,1′]′ 

denotes a 2p × NX matrix with orthonormal columns and ΦW is a p × NW matrix with 

orthonormal columns.

Lemma 1: The MoM estimators of the covariance operators and the mean in (4) are 

unbiased and given by

(5)

where Ỹij = Yij− η̂, the 2p × 2p matrix , with 

 for k, s ∈ {0, 1}, the weights  are elements of the lth column 

of the matrix Hm×5 = F′(FF′)−1 the matrix F5×m has columns equal to fij1j2 = (1, Tij2, Tij1, 

Tij1, Tij2, δj1j2)′, and .

The proof of the lemma is given in Appendix. The MoM estimators (5) define the symmetric 

matrices K̂X and K̂W. Identifiability of model (4) requires that some subjects have more than 

two visits, that is Ji ≥ 3. Note that if one is only interested in estimating covariances, η can 

be eliminated as a nuisance parameter by using MoMs for quadratics of differences E{Yij1 − 

Ykj2)(Yij1 − Ykj2)′ as in Shou et al. (2013).

Estimating the covariance matrices is a crucial first step. However, constructing and storing 

these matrices requires O(p2) calculations and O(p2) memory units. Even if it were possible 

to calculate and store these covariances, obtaining the spectral decompositions would be 

infeasible. Indeed, KX is a 2p × 2p and KW is a p × p dimensional matrix, which would 

require O(p3) operations, making diagonalization infeasible for p > 104. Therefore, LFPCA, 

which performs well when the functional dimensionality is moderate, fails in very high and 

ultra high dimensional settings.

In the next section we develop a methodology capable of handling longitudinal models of 

very high dimensionality. The main reason why these methods work efficiently is because 

the intrinsic dimensionality of the model is controlled by the sample size of the study, which 

is much smaller compared to the number of voxels. The core part of the methodology is to 

carefully exploit this underlying low dimensional space.
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3 HD-LFPCA

In this section we provide our statistical model and inferential methods. The main emphasis 

is on providing a new methodological approach with the ultimate goal of solving the 

intractable computational problems discussed in the previous section.

3.1 Eigenanalysis

In Section 2 we established that the main computational bottleneck for standard LFPCA of 

Greven et al. (2010) is constructing, storing, and decomposing the relevant covariance 

operators. In this section we propose an algorithm that allows efficient calculation of the 

eigenvectors and eigenvalues of these covariance operators without either calculating or 

storing the covariance operators. In addition, we demonstrate how all necessary calculations 

can be done using sequential access to data. One of the main assumptions of this section is 

that the sample size, , is moderate so calculations of order O(n3) are feasible. In 

Section 6 we discuss ways to extend our approach to situations when this assumption is 

violated.

Write Ỹ = (Ỹ1, …, ỸI), where Ỹi = (Ỹi1,…, ỸiJi) is a centered p × Ji matrix and the column j, 

j = 1, …, Ji, contains the unfolded image for subject i at visit j. Note that the matrix Ỹi 

contains all the data for subject i with each column corresponding to a particular visit. The 

matrix Ỹ is the p × n matrix obtained by column-binding the centered subject-specific data 

matrices Ỹi. Thus if Ỹi = (Ỹi1, …, ỸiJi) then Ỹ = (Ỹ1, …, ỸI). Our approach starts with 

constructing the SVD of the matrix Ỹ

(6)

Here, the matrix V is p × n dimensional with n orthonormal columns, S is a diagonal n × n 

dimensional matrix and U is an n × n dimensional orthogonal matrix. Calculating the SVD 

of Ỹ requires only a number of operations linear in the number of parameters p. Indeed, 

consider the n × n symmetric matrix Ỹ′Ỹwith its spectral decomposition Ỹ′Ỹ = USU′. Note 

that for high-dimensional p the matrix Ỹ cannot be loaded into the memory. The solution is 

to partition it into L slices as Ỹ′ = [(Ỹ1)′|(Ỹ2)′| … |(ỸL)′], where the size of the lth slice, Ỹ1, 

is (p/L) × n and can be adapted to the available computer memory and optimized to reduce 

implementation time. The matrix Ỹ′Ỹ is then calculated as  by streaming the 

individual blocks. This step calculates singular value decomposition of the p × n matrix Ỹ. 

Note that for any permutation of components υ, model (3) will be valid and the covariance 

structure imposed by the model can be recovered by doing the inverse permutation. If 

smoothing of the covariance matrix is desirable, then this step can be efficiently combined 

with Fast Covariance Estimation (FACE, Xiao et al. (2013)), a computationally efficient 

smoother of (low-rank) high-dimensional covariance matrices with p up to 100,000.

From the SVD (6) the p × n matrix V can be obtained as V = ỸUS−1/2. The actual 

calculations can be performed on the slices of the partitioned matrix Ỹ as Vl = ỸlUS−1/2, l = 

1, …,L. The concatenated slices [(V1)′|(V2)′| … |(VL)′] form the matrix of the left singular 
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vectors V′. Therefore, the SVD (6) can be constructed with sequential access to the data Ỹ 
with p-linear effort.

After obtaining the SVD of Ỹ, each image Ỹij can be represented as Ỹij = VS1/2Uij, where 

Uij is a corresponding column of matrix U′. Therefore, the vectors Ỹij differ only through the 

vector factors Uij of dimension n × l. Comparing this SVD representation of Ỹij with the 

right-hand side of (4), it follows that cross-sectional and longitudinal variability controlled 

by the principal scores ξi, ζij, and time variables Tij must be completely determined by the 

low-dimensional vectors Uij. This is the key observation which makes the approach feasible. 

Below, we provide more intuition behind our approach. The formal argument is presented in 

Lemma 2.

First, we substitute the left-hand side of (4) with its SVD representation of Ỹij to get 

VS1/2Uij = ΦX,0ξi + TijΦ
X,1ξi + ΦWζij. Now we can multiply by V′ both sides of the equation 

to get S1/2Uij = V′ΦX,0ξi + TijV′ΦX,1ξi + V′ΦWζij. If we denote AX,0 = V′ΦX,0 of size n × NX, 

AX,1 = V′ΦX,1 of size n × NX, and AW = V′ΦU of size n × NW, we obtain

(7)

Conditionally on the observed data, Ỹ, models (4) and (7) are equivalent. Indeed, model (4) 

is a linear model for the n vectors Ỹij’s. These vectors span an (at most) n-dimensional 

linear subspace. Hence, the columns of the matrix V, the right singular vectors of Ỹ, could 

be thought of as an orthonormal basis, while S1/2Uij are the coordinates of Ỹij in this basis. 

Multiplication by V′ can be seen as a linear mapping from model (4) for the high-

dimensional observed data  to model (7) for the low dimensional data S1/2Uij. 

Additionally, even though VV′ ≠ Ip, the projection defined by V is lossless in the sense that 

model (4) can be recovered from model (7) using the identity VV′Ỹij = Ỹij. Hence, model (7) 

has an “intrinsic” dimensionality induced by the study sample size, n. We can estimate the 

low-dimensional model (7) using the LFPCA methods described in Section 2. This step is 

now feasible as it requires only O(n3) calculations. The formal result presented below shows 

that fitting model (7) is an essential step for getting the high-dimensional principal 

components in p-linear time.

Lemma 2: The eigenvectors of the estimated covariance operators (5) can be calculated as 

Φ̂X,0 = VÂX,0, ΦX̂,1 = VÂX,1, Φ̂W = VÂW, where the matrices ÂX,0, ÂX,1, ÂW are obtained 

from fitting model (7). The estimated matrices of eigenvalues Λ̂X and Λ̂W are the same for 

both model (4) and model (7).

The proof of the lemma is given in Appendix. This result is a generalization of the HD-

MFPCA result in Zipunnikov et al. (2011b), which was obtained in the case when there is no 

longitudinal component ΦX,1. In the next section, we provide more insights into the intrinsic 

model (7).

3.2 The general functional mixed model

A natural way to generalize model (3) is to consider the following model
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(8)

where the (q + 1)-dimensional vector of covariates Zij = (Zij,0, Zij,1, …, Zij,q) may include, 

for instance, polynomial terms of Tij and other covariates of interest.

The fitting approach is essentially the same as the one described for the LFPCA model in 

Section 3.1. As before, the right singular vectors Uij contain the longitudinal information 

about ξi, ζi, and covariates Zij. The following two results are direct generalizations of 

Lemmas 1 and 2.

Lemma 3: The MoM estimators of the covariance operators and the mean in (8) are 

unbiased and given by

where Ỹij = Yij − η̂), the (q + 1)p × (q + 1)p block-matrix KX is composed of p × p matrices 

 for k, s ∈ {0, 1, …, q}, the weights  are elements of the lth 

column of matrix Hm×((q+1)2+1) = F′ (FF′)−1, the matrix F((q+1)2+1)×m has columns equal to 

fij1j2 = (vec(Zij1 ⊗ Zij2), δj1j2)′, and .

Lemma 4: The eigenvectors of the estimated covariance operators for (8) can be calculated 

as Φ̂X,k = VÂX,k, k = 0, 1, …, q, Φ̂W = VÂW, where the matrices ÂX,k, k = 0, 1, …, q and ÂW 

are obtained from fitting the intrinsic model

(9)

The estimated matrices of eigenvalues Λ̂X and Λ̂W are the same for both model (8) and 

model (9).

3.3 Estimation of principal scores

The principal scores are the coordinates of Ỹij in the basis defined by the LFPCA model (8). 

In this section, we propose an approach to calculating BLUP of the scores that is 

computationally feasible for samples of high-resolution images.

First, we introduce some notation. In Section 3.1, we showed that the SVD of the matrix Ỹ 

can be written as , where the n × Ji matrix  corresponds to the subject i. 

Model (8) can be rewritten as

(10)
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where, 

the subject level principal scores , ⊗ is the Kronecker product of 

matrices, and operation vec(·) stacks the columns of a matrix on top of each other. The 

following lemma contains the main result of this section; it shows how the estimated BLUPs 

can be calculated for the LFPCA model.

Lemma 5: Under the general LFPCA model (8), the estimated best linear unbiased 

predictor (EBL UP) of ξi and ζi is given by

(11)

where all matrix factors on the right side can be written in terms of the low-dimensional 

right singular vectors.

The proof of the lemma is given in Appendix. The EBLUPs calculations are almost 

instantaneous as the matrices involved in (11) are low-dimensional and do not depend on the 

dimension p. Section 6 in Appendix briefly describes how the framework can be adapted to 

settings with tens or hundreds of thousands images.

3.4 HF-LFPCA model with white noise

The original LFPCA model in Greven et al. (2010) was developed for functional 

observations and contained an additional white noise term. In this section, we show how the 

HD-LFPCA framework can be extended to accommodate such a term and how the extended 

model can be estimated.

We now seek to fit the following model

(12)

where εij is a p-dimensional white noise variable, that is E(εij) = 0p for any i, j and 

E(εi1j1εi2j2) = σ2δi1i2δj1j2Ip. The white noise process εij(υ) is assumed to be uncorrelated 

with processes Xi(υ) and Wij(υ).

Lemma 3 applied to (12) shows that  is an unbiased 

estimator of KW + σ2Ip. To estimate σ2 in a functional case, we can follow the method in 

Greven et al. (2010): i) drop the diagonal elements of  and use a bivariate smoother to 

get , ii) calculate an estimator . To make this 

approach feasible in very high-dimensional settings (p ~ 100, 000), we can use the fast 

covariance estimation (FACE) developed in Xiao et al. (2013), a bivariate smoother that 

scales up linearly with respect to p and preserves the low dimensionality of the estimated 

covariance operator. Thus HD-LFPCA remains feasible after smoothing by FACE.
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When the observations Yij’s are non-functional, the off-diagonal smoothing approach cannot 

be used. In this case, if one assumes that model (12) is low-rank then σ2 can be estimated as 

. Bayesian model selection approaches that estimate both 

the rank of PCA models and variance σ2 are discussed in Everson and Roberts (2000) and 

Minka (2000).

4 Simulations

In this section, three simulation studies are used to explore the properties of our proposed 

methods. In the first study, we replicate several simulation scenarios in Greven et al. (2010) 

for functional curves, but we focus on using a number of parameters up to two orders of 

magnitude larger than the ones in the original scenarios. This increase in dimensionality 

could not be handled by the original LFPCA approach. In the second study, we explore how 

methods recover 3D spatial bases when the approach of Greven et al. (2010) cannot be 

implemented. In the third study, we replicate the unbalanced design in and use time variable 

Tij from our DTI application and generate data using principal components estimated in 

Section 5. For each scenario, we simulated 100 data sets. All three studies were run on a 

four core i7-2.67Gz PC with 6Gb of RAM memory using Matlab 2010a. The software is 

available upon request.

First scenario (ID, functional curves)

We follow Greven et al. (2010) and generate data as follows

where  means that the scores ξik are 

simulated from a mixture of two normals,  and  with 

equal probabilities, a similar notation holds for ζijl. The scores ξik’s and ζijl’s are mutually 

independent. We set I = 100, Ji = 4, i = 1, …, I, and the number of eigenfunctions NX = NW 

= 4. The true eigenvalues are the same, , k = 1, 2, 3, 4. The orthogonal but 

not mutually orthogonal bases were

which are measured on a regular grid of p equidistant points in the interval [0, 1]. To explore 

scalability, we consider several grids with increasing number of sampling points, p, equal to 

750, 3000, 12000, 24000, 48000, and 96000. Note that a brute-force extension of the 
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standard LFPCA would be at the edge of feasibility for such a large p. For each i, the first 

time Ti1 is generated from the uniform distribution over interval (0, 1) denoted by U(0, 1). 

Then differences (Tij+1 − Tij) are also generated from U(0, 1) for 1 ≤ j ≤ 3. The times Ti1, …, 

Ti4 are normalized to have sample mean zero and variance one. Although no measurement 

noise is assumed in model (3), we simulate data that also contains white noise, εij(υ). The 

purpose of this is two fold. First, it is of interest to explore how the presence of white noise 

affects the performance of methods which do not model it explicitly. Second, the choice of 

the eigenfunctions in the original simulation scenario of Greven et al. (2010) makes the 

estimation problem ill-posed if data does not contain white noise. The white noise εij(υ) are 

assumed to be i.i.d. N(0, σ2) for each i, j, υ and independent of all other latent processes. To 

evaluate different signal-to-noise ratios we consider values of σ2 equal to 0.0001, 0.0005, 

0.001, 0.005, 0.01. Note that we normalized each of the data generating eigenvectors to have 

norm one. Thus, the signal-to-noise ratio, , ranges from 50 

(for p = 750 and σ2 = 0.0001) to 0.004 (for p = 96, 000 and σ2 = 0.01).

Table 1 and Tables 4 and 5 in the web-appendix report the average L2 distances between the 

estimated and true eigenvectors for Xi,0(υ), Xi,1(υ), and Wij(υ), respectively. The averages 

are calculated based on 100 simulated data sets for each (p, σ2) combination. Standard 

deviations are shown in brackets. Three trends are obvious: i) eigenvectors with larger 

eigenvalues are estimated with higher accuracy, ii) larger white noise corresponds to a 

decreasing accuracy, iii) for identical levels of white noise, accuracy goes down when the 

dimension p goes up. Similar trends are observed for average distances between estimated 

and true eigenvalues reported in Tables 6 and 7. These trends follow from the fact that for 

any fixed σ2, the signal-to-noise ratio decreases with increasing p and the performance of the 

approach quickly deteriorates once the signal-to-noise ratio becomes smaller than one.

Figure 8 (web appendix) displays the true and estimated eigenfunctions for the case when p 

= 12, 000 and σ2 = 0.012 and shows the complete agreement with Figure 2 in Greven et al. 

(2010). The boxplots of the estimated eigenvalues are displayed in Figure 4. In Figure 5, 

panels one and three report the boxplots of and panels two and four display the medians and 

quantiles of the distribution of the normalized estimated scores,  and 

, respectively. This indicates that the estimation procedures provides 

unbiased estimates.

Second scenario (3D)

Data sets in this study replicate the 3D ROI blocks from the DTI MS data set. We simulated 

100 data sets from the model

where  = [1, 38] × [1, 72] × [1, 11]. Eigenimages , and  are displayed in 

Figure 3. The images in this scenario can be thought of as 3D images with voxel intensities 
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on the [0, 1] scale. The voxels within each sub-block (eigenimage) are set to 1 and outside 

voxels are set to 0. There are four blue and red sub-blocks corresponding to  and , 

respectively. The eigenfunctions closest to the anterior side of the brain (labeled A in Figure 

3) are  and , which have the strongest signal proportional to the largest eigenvalue 

(variance), . The eigenvectors that are progressively closer to the posterior part of the 

brain (labeled P) correspond to smaller eigenvalues represented as lighter shades of blue and 

red, respectively. The sub-blocks closest to the P have the smallest signal, which is 

proportional to . The eigenimages  shown in green are ordered the same way. Note 

that  are uncorrelated with  However, both  and  are correlated with the 

 describing the random slope Xi,1(υ). We assume that I = 150, Ji = 6, i = 1, …, I, and 

the true eigenvalues , k = 1, 2, 3, and , l = 1, 2. The times Tij were 

generated as in the first simulation scenario. To apply HD-LFPCA, we unfold each image 

Yij and obtain vectors of size p = 38 × 72 × 11 = 30, 096. The entire simulation study took 

20 minutes or approximately 12 seconds per data set. Figures 13, 14, and 15 (web-appendix) 

display the medians of the estimated eigenimages and the voxelwise 5th and 95th percentile 

images, respectively. All axial slices, or z slices in a x-y-z coordinate system, are the same. 

Therefore, we display only one z-slice, which is representative of the entire 3D image. To 

obtain a grayscale image with voxel values in the [0, 1] interval, each estimated eigenvector, 

ϕ̂ = (ϕ̂
1, …, ϕ̂

p), was normalized as ϕ̂ → (ϕ̂ − minsϕ̂
s)/(maxsϕ̂

s − minsϕ̂
s). Figure 13 displays 

the voxel-wise medians of the estimator, indicating that the method recovers the spatial 

configuration of both bases. The 5-percentile and 95-percentile images are displayed in 

Figures 14 and 15, respectively. Overall, the original pattern is recovered with some small 

distortions most likely due to the correlation between bases (please note the light gray 

patches).

The boxplots of the estimated normalized eigenvalues,  and , 

are displayed in Figure 11. The eigenvalues are estimated consistently. However, in 6 out of 

100 cases (extreme values shown in red), the estimation procedure did not distinguish well 

between  and . This is probably due the relatively low signal.

The boxplots of the estimated eigenscores are displayed in Figure 12. In this scenario, the 

total number of the estimated scores ξik is 15, 000 for each k and there are 90, 000 estimated 

scores ζijl for each l. The distributions of the normalized estimated scores 

and  are displayed in the first and third panels of Figure 12, respectively. 

The spread of the distributions increases as the signal-to-noise ratio decreases. The second 

and fourth panels of Figure 12 display the medians, 0.5%, 5%, 95% and 99.5% quantiles of 

the distribution of the normalized estimated scores.

Third scenario (3D, empirical basis)

We generate data using the first ten principal components estimated in Section 5. We 

replicated the unbalanced design of the MS study and used the same time variable Tij’s. The 

principal scores ξik and ζijk were simulated as in Scenario 1 with , k = 1, …, 
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10. The white noise variance σ2 was set to 10−4. Thus, SNR is equal to 1.32. The results are 

reported in Table 8 of the web-appendix. The average distances between estimated and true 

eigenvectors for Xi(υ) and Wij(υ) are calculated based on 100 simulated data sets. Principal 

components and principal scores become less accurate as the signal-to-noise gets smaller.

5 Longitudinal analysis of brain fractional anisotropy in MS patients

In this section we apply HD-LFPCA to the DTI images of MS patients. The study 

population included individuals with no, mild, moderate, and severe disability. Over the 

follow-up period (as long as 5 years in some cases), there was little change in the median 

disability level of the cohort. Cohort characteristics are reported in Table 10 of the web-

appendix. The scans have been aligned using a 12 degrees of freedom transformation, 

meaning that we accounted for rotation, translation, scaling, and shearing, but not for 

nonlinear deformation. As described in Section 1, the primary region of interest is a central 

block of the brain of size 38 × 72 × 11 displayed in Figure 1. We weighted each voxel in the 

block with a probability for the voxel to be in the corpus callosum and study longitudinal 

changes of weighted voxels in the blocks (Reich et al., 2010). Probabilities less than 0.05 

were set to zero. Below we model longitudinal variability of the weighted FA at every voxel 

of the blocks. The entire analysis performed in Matlab 2010a took only 3 seconds on a PC 

with a quad core i7-2.67Gz processor and 6Gb of RAM memory. First, we unfolded each 

block into a 30, 096 dimensional vector that contained the corresponding weighted FA 

values. In addition to high dimensionality, another difficulty of analyzing this study was the 

unbalanced distribution of scans across subjects (see Table 9 in the web-appendix); this is a 

typical problem in natural history studies. After forming the data matrix Y, we estimated the 

overall mean as  and de-meaned the data. The estimated mean is 

shown at Figure 16. The mean image across subjects and visits indicates a shape 

characterized by our scientific collaborators as a “standard corpus callosum template”.

Model 1: First, we start by fitting a random intercept and random slope model (1). To 

enable comparison of the variability explained by processes Xi(υ) and Wij(υ), we followed 

the normalization procedure in Section 3.4 in Greven et al. (2010): Tij’s were normalized to 

have sample mean zero and sample variance one. The estimated covariance matrices are not 

necessarily non-negative definite. Indeed, we have obtained small negative eigenvalues of 

the covariance operators K̂X and K̂W. Following Hall et al. (2008) all the negative 

eigenvalues were set to zero. The total variation was decomposed into the “subject-specific” 

part modeled by process Xi and the “exchangeable visit-to-visit” part modeled by the process 

Wij. Most of the total variability, 70.8%, is explained by Xi (subject-specific variability) with 

the trace of KX = 122.53, while 29.2% is explained by Wij (exchangeable visit-to-visit 

variability) with the trace of KW = 50.47. Two major contributions of our approach is to 

separate the processes Xi and Wij and quantify their corresponding contributions to the total 

variability.

Table 2 reports the percentage explained by first 10 eigenimages. The first 10 random 

intercept eigenimages explain roughly 55% of the total variability, while the effect of the 
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random slope is accounting for only 0.80% of the total variability. The exchangeable 

variability captured by Wij(υ) accounts for 17.5% of the total variation.

The first three estimated random intercept and slope eigenimages are shown in pairs in 

Figures 6, 7, and in 17, 18, 19, 20 in the web-appendix, respectively. Figures 21, 22, and 23 

in the web-appendix display the first three eigenimages of the exchangeable measurement 

error process Wij(υ).

Each eigenimage is accompanied with the histogram of its voxel values. Recall that the 

eigenimages were obtained by folding the unit length eigenvectors of p ≈ 3 · 104 voxels. 

Therefore, each voxel is represented by a small value. For principal scores, negative and 

positive voxel values correspond to opposite loadings (directions) of variation. Each 

histogram has a peak at zero due to the existence of the threshold for the probability maps 

indicating if a voxel is in the corpus callosum. This peak is a convenient visual divider of the 

color spectrum into the loading specific colors. Because of the sign invariance of the SVD, 

the separation between positive and negative loadings is comparable only within the same 

eigenimage. However, the loadings of the random intercept and slope within an eigenimage 

of the process Xi(υ) can be compared as they share the same principal score. This allows us 

to contrast the time invariant random intercept with the longitudinal random slope and, thus, 

to localize regions that exhibit the largest longitudinal variability. This could be used to 

analyze the longitudinal changes of brain imaging in a particular disease or to help generate 

new scientific hypotheses.

We now interpret the random intercept and slope parts of the eigenimages obtained for the 

MS data. Figures 6 and 7 show the random intercept and slope parts of the first eigenimage 

, respectively. The negatively loaded voxels of the random intercept, , essentially 

compose the entire corpus callosum. This indicates an overall shift in the mean FA of the 

corpus callosum. This is expected and is a widely observed empirical feature of principal 

components. The random slope part, , has both positively and negatively loaded areas in 

the corpus callosum. The areas colored in blue shades share the sign of the random intercept 

 whereas the red shades have the opposite sign. The extreme colors of the spectrum of 

 show a clear separation into negative and positive loadings especially accentuated in 

the splenium (posterior) and the genu (anterior) areas of the corpus callosum; please note the 

upper and lower areas in panels 0 through 5 of Figure 7. This implies that a subject with a 

positive first component score ξi1 > 0 would tend to have a smaller mean FA over the entire 

corpus callosum and the FA would tend to decrease with time in the negatively loaded parts 

of the splenium. The reverse will be true for a subject with a negative score ξi1. The other 

two eigenimages of Xi(υ) and eigenimages of Wij(υ) are discussed in the web-appendix.

Next, we explored whether the deviation process Wij(υ) depends on MS severity by 

analyzing the corresponding eigenscores. To do this, we divided subjects according to their 

MS type into three sub-groups: relapsing-remitting (RR, 102 subjects), secondary 

progressive (SP, 40 subjects), and primary progressive (PP, 25 subjects). For each of the 

first ten eigenimages, we formally tested whether there are differences between the 

distributions of the scores of the three groups using the t-test and the Mann-Whitney-
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Wilcoxon-rank test for equality of means and the Kolmogorov-Smirnov test for equality of 

distributions. For the first eigenimage, the scores in the SP group have been significantly 

different from both those in RR and PP groups (p-values < 0.005 for all three tests). For the 

second eigenimage, scores in the RR group were significantly different from both SP and PP 

(p-values < 0.01 for all three tests). The two left images of Figure 8 display the group bean 

plots of the scores for the first eigenimage and the second eigenimages of Wij(υ), 

respectively.

In addition to MS type, the EDSS scores were recorded at each visit. We divided subjects 

into two groups according to their EDSS score: i) smaller than 5 and ii) larger than or equal 

5. As with MS type, we have conducted tests for the equality of distributions of the 

eigenscores of these two groups for all ten eigenimages. For eigenimages one and two, the 

distributions of eigenscores have been found to be significantly different (p-values <0.001 

for all three tests). The two right images on Figure 8 display group bean plots of the scores 

for the first eigenimage and the second eigenimage of Wij(υ), respectively.

We have also conducted a standard analysis based on the scalar mean FA over the CC for 

each subject/visit and fitted a scalar random intercept/random slope model. In this model, 

the random intercept explains roughly 94% of the total variation of the mean FAs. Figure 24 

displays bean plots of the estimated random intercepts stratified by EDDS score and MS 

type. For both cases there was a statistically significant difference between the distributions 

of the random intercepts (EDSS: p-values < 0.001; MS-type, SP vs RR and PP, p-values < 

0.002, for all three tests). Similar tests for the distributions of the random slopes did not 

identify statistically significant differences between groups. We conclude that this simple 

model agrees with the full HD-LFPCA mode, though the multivariate model provides a 

detailed decomposition of the total FA variation together with localization variability in the 

original 3D-space.

Model 2: Second, we fit model (8) using Zij,1 equal to a visit-specific EDSS score. Again, 

Zij,1’s were normalized to have sample mean 0 and sample variance 1. Table 3 reports 

percentages explained by the first 10 eigenimages in Model 2. Interestingly, the total 

variation explained by the random intercept and random slope in both models are 

approximately the same with 56.0% in Model 1 vs. 54.2% for Model 2. However, the 

random slope in Model 2 explains a much higher proportion of the total variation: 13.2% in 

Model 2 using EDSS versus Model 1 using time. The second component of the random 

slope explains almost 8.5% of the total variation. We have also explored whether the scores 

of Wij(υ) depend on MS type and EDSS score using the t-test, the Mann-Whitney-

Wilcoxon-rank test and the Kolmogorov-Smirnov test. For the first eigenimage, the SP type 

was significantly different from the RR (p-values < 0.01 for all three tests), though, it was 

not significantly different from the PP group. For the second eigenimage, the distribution of 

eigenscores for the SP type was significantly different from that of the scores for the RR (p-

values < 0.05 for all three tests), and not significantly different from the distribution of the 

scores of the PP type. For grouping according to EDSS score, the distributions of the 

eigenscores of the first two eigenimages have been found to be statistically different (p-

values <0.01 for all three tests). Figure 9 displays bean plots similar to Figure 8 for the 

distributions of the scores in the groups defined by MS types and EDSS. This indicates that 
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the deviation process Wij(υ) in Models 1 and 2 carries not only useful but also almost 

identical remaining information regarding severity of MS.

6 Discussion

The methods developed in this paper increase the scope and general applicability of LFPCA 

to very high dimensional settings. The base model decomposes the longitudinal data into 

three main components: a subject-specific random intercept, a subject-specific random 

slope, and reversible visit-to-visit deviation. We described and addressed computational 

difficulties that arise with high-dimensional data using a powerful approach referred to as 

HD-LFPCA. We have developed a procedure designed to identify a low-dimensional space 

that contains all the information for estimating of the model. This significantly extended the 

previous related efforts in the clustered functional principal components models, MFPCA 

(Di et al., 2008) and HD-MFPCA (Zipunnikov et al., 2011b).

We applied HD-LFPCA to a novel imaging setting considering DTI and MS in a primary 

white matter structure. Our investigation characterized longitudinal and cross sectional 

variation in the corpus callosum.

There are several outstanding issues for HD-LFPCA that need to be addressed. First, a key 

assumption of our methods is that they require a moderate sample size that does not exceeds 

ten thousands, or so, images. This limitation can be circumvented by adopting the methods 

discussed in Appendix. Second, we have not formally included white noise in our model. 

Simulation studies in Section 4 demonstrated that a moderate amount of white noise does 

not have a serious effect on the estimation procedure. However, a more systematic treatment 

of the related issues is required.

In summary, HD-LFPCA provides a powerful conceptual and practical step towards 

developing estimation methods for structured ultra high dimensional data.
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Appendix

Al. Large sample size

The main assumption which has been made in the paper is that the sample size, , 

is sufficiently small to guarantee that calculations of order O(n3) are feasible. Below we 

briefly describe how our framework can be adapted to settings with many more scans - on 

the order of tens or hundreds of thousands.

LFPCA equation (4) models each vector Ỹij as a linear combination of columns of matrices 

ΦX,0, ΦX,1, ΦW. Assuming that 2NX + NW < n, each Ỹij belongs to an at most (2NX + NW)-

dimensional linear space ℒ(ΦX,0, ΦX,1, ΦW) spanned by those columns. Thus, if model (4) 

holds exactly the rank of the matrix Ỹ does not exceed (2NX + Nw) and at most 2NX + Nw 

columns of V correspond to non-zero singular values. This implies that the intrinsic model 

(7) can be obtained by projecting onto the first 2NX + Nw columns of V and the sizes of 

matrices AX,0, AX,1, AW in (7) will be (2NX + Nw) × NX, (2NX + Nw) × NX, and (2NX + Nw) × 
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NW, respectively. Therefore, the most computationally intensive part would require finding 

the first 2NX + Nw left singular vectors of Y. Of course, in practice, model (4) never holds 

exactly. Hence, the number of columns of matrix V should be chosen to be large enough to 

either reasonably exceed (2NX + Nw) or to capture the most of the variability in data. The 

latter can be estimated by tracking down the sums of the squares of the corresponding first 

singular vectors. Thus, this provides a constructive way to handle situations when n is too 

large to calculate the SVD of Ỹ.

There are computationally efficient ways to calculate the first k singular vectors of a large 

matrix. One way is to adapt streaming algorithms (Weng et al., 2003; Zhao et al., 2006; 

Budavari et al., 2009). These algorithms usually require only one pass through the data 

matrix Ỹ during which information about the first k singular vectors is accumulated 

sequentially. Their complexity is of order O(k3p). An alternate approach is to use iterative 

power methods (see, for example, Roweis, 1997). As the dimension of the intrinsic model, 

2NX + Nw, is not known in advance, the number of left singular vectors to keep and project 

onto can be adaptively estimated based on the singular values of the matrix Ỹ. Further 

development in this direction is beyond the scope of this paper.

A2. Proofs

Proof of Lemma 1: Using the independence of Yi and Yk, the expectation of pairwise 

quadratics is

(13)

where δj1j2 is 1 if j1 = j2 and 0 otherwise. From the top equality we get the MM estimator of 

the mean, η̂ = n−1 ∑i,j Yij The covariances Kx and Kw can be estimated by de-meaning Yij as 

Ỹij = Yij − η̂ and regressing  on 1, Tij2, Tij1, Tij1Tij2 and δj1j2. The bottom equality 

can be written as , where  is a p2 × 1 dimensional 

vector, the parameter of interest is the p2 × 5 matrix 

, and the covariates are entries m 

the 5 × 1 vector fij1J2 = (l, Tij2, Tij1, Tij1Tij2, δj1j2)′. With these notations EYυ = KυF, where 

Ỹυ is p2 × m dimensional with  F is a 5 × m dimensional matrix with columns 

equal to fij1J2, i =1,…,I and j1,j2 = 1,…, Ji. The MM estimator of Kυ is thus K̂υ = ỸυF′(FF
′)−1 which provides unbiased estimators of the covariances Kx and Kw. If we denote H = F′

(FF′)−1, we get the result of the lemma.

Proof of Lemma 2: Let us denote by  and  the matrices denned by equations (5) 

with  substituted for . The 2n × 2n dimensional matrix  and 

the n × n dimensional matrix  are low-dimensional counterparts of K̂x and K̂W, 

respectively. Using the SVD representation Ỹij = VS1/2Uij, the estimated high dimensional 
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covariance matrices can be represented as  and , where the 

matrix D is 2p × 2n dimensional with orthonormal columns denned as

(14)

From the constructive definition of H, it follows that the matrices  and  are 

symmetric. Thus, we can construct their spectral decompositions,  and 

. Hence, high dimensional covariance matrices can be represented as K̂x 

= DÂXΛ̂XÂX′D′ and K̂w = VÂW Λ̂WÂW′V′, respectively. The result of the lemma now 

follows from the orthonormality of the columns of matrices D and V.

Proof of Lemma 3: With notational changes, the proof is identical to the proof of Lemma

1. Proof of Lemma 4: With notational changes, the proof is identical to the proof of 

Lemma

2. Proof of Lemma 5: The main idea of the proof is similar to that of Zipunnikov et 

al. (2011b). We assume that function η(υ,Tij) = 0. From the model it follows that ωi 

~ (0, Λω), where Λω is a covariance matrix of ωi When p ≤ Nx + JiNW the BLUP of 

ωi is given by 

 (see 

McCulloch and Searle, 2001, Section 9). The BLUP is essentially a projection and 

thus it does not require any distributional assumptions. It may be denned in terms 

of a projection matrix. If ξi and ζij are normal then the BLUP is the best predictor. 

When p > Nx + JiNw the matrix  is not invertible and the generalized 

inverse of  is used (Harville, 1976). In that case, 

Note that it coincides with the OLS estimator for ωi if ωi were a fixed parameter. 

Thus, the estimated BLUPs are given by .
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Figure 1. 
The 3D-rendering of the region of interest (left), a blue block containing corpus callosum, 

and the template brain (right). Views: R=Right, L=Left, S=Superior, I=Interior, A=Anterior, 

P=Posterior. For the purposes of orientation, major venous structures are displayed in red in 

the right half of the template brain. The 3D-renderings are obtained using 3D-Slicer (2011) 

and 3D reconstructions of the anatomy from Pujol (2010).
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Figure 2. 
The corpus callosum of a randomly chosen subject. Eleven axial slices are shown on the left. 

A histogram of the weighted FA values is on the right. Orientation: Interior (slice 0) to 

Superior (slice 10), Posterior (top) to Anterior (bottom), Right to Left. The pictures are 

obtained using MIPAV (2011).
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Figure 3. 

3D eigenimages of the 2nd simulation scenario. From left to right:  are in blue,  are 

in red,  are in green, the most right one shows the overlap of all eigenimages. Views: 

R=Right, L=Left, S=Superior, I=Interior, A=Anterior, P=Posterior. The 3D-renderings are 

obtained using 3D-Slicer (2011).
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Figure 4. 

Boxplots of the normalized estimated eigenvalues for process Xi(υ), , (left 

box) and the normalized estimated eigenvalues for process Wij(υ), , (right 

box) based on scenario 1 with 100 replications. The zero is shown by the solid black line.
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Figure 5. 
The left two panels show the distribution of the normalized estimated scores of process 

Xi(υ), . Boxplots are given in the left column. The right column shows the 

medians (black marker), 5% and 95% quantiles (blue markers), and 0.5% and 99.5% 

quantiles (red markers). Similarly, the distribution of the normalized estimated scores of 

process Wij(υ),  is provided at the right two panels.
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Figure 6. 

Eleven slices of . A histogram of the voxel intensities is on the right. The pictures are 

obtained using MIPAV (2011).
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Figure 7. 

Eleven slices of . A histogram of the voxel intensities is on the right. The pictures are 

obtained using MIPAV (2011).
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Figure 8. 
Model 1: Group bean plots according to MS type (left) and according to EDSS score (right).
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Figure 9. 
Model 2: Group bean plots according to MS type (left) and according to EDSS score (right).
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Table 1

Based on 100 simulated datasets, average distances between estimated and true eigenvectors of Xi,0(υ), 

standard deviations are given in parentheses.

(p, σ2)

(750, 1e-04) 0.034 (0.048) 0.07 (0.069) 0.074 (0.053) 0.081 (0.07)

(750, 5e-04) 0.031 (0.031) 0.055 (0.051) 0.084 (0.097) 0.112 (0.151)

(750, 0.001) 0.035 (0.039) 0.062 (0.054) 0.078 (0.059) 0.139 (0.206)

(750, 0.005) 0.035 (0.039) 0.072 (0.062) 0.096 (0.063) 0.159 (0.084)

(750, 0.01) 0.045 (0.036) 0.079 (0.054) 0.129 (0.102) 0.234 (0.103)

(3000, 1e-04) 0.031 (0.028) 0.064 (0.118) 0.09 (0.13) 0.109 (0.126)

(3000, 5e-04) 0.037 (0.032) 0.065 (0.048) 0.077 (0.06) 0.14 (0.136)

(3000, 0.001) 0.031 (0.027) 0.06 (0.044) 0.087 (0.062) 0.131 (0.07)

(3000, 0.005) 0.058 (0.035) 0.106 (0.058) 0.171 (0.09) 0.324 (0.096)

(3000, 0.01) 0.073 (0.028) 0.142 (0.048) 0.236 (0.074) 0.508 (0.072)

(12000, 1e-04) 0.031 (0.028) 0.062 (0.048) 0.077 (0.056) 0.134 (0.165)

(12000, 5e-04) 0.041 (0.036) 0.078 (0.05) 0.121 (0.069) 0.201 (0.081)

(12000, 0.001) 0.047 (0.04) 0.083 (0.054) 0.164 (0.114) 0.295 (0.118)

(12000, 0.005) 0.112 (0.032) 0.217 (0.064) 0.44 (0.216) 0.758 (0.153)

(12000, 0.01) 0.175 (0.031) 0.338 (0.093) 0.554 (0.132) 0.987 (0.071)

(24000, 1e-04) 0.035 (0.032) 0.066 (0.049) 0.09 (0.141) 0.146 (0.173)

(24000, 5e-04) 0.055 (0.045) 0.097 (0.061) 0.146 (0.09) 0.266 (0.098)

(24000, 0.001) 0.07 (0.038) 0.125 (0.047) 0.23 (0.167) 0.43 (0.15)

(24000, 0.005) 0.183 (0.049) 0.348 (0.097) 0.622 (0.208) 0.998 (0.11)

(24000, 0.01) 0.295 (0.043) 0.518 (0.117) 0.742 (0.102) 1.184 (0.07)

(48000, 1e-04) 0.046 (0.068) 0.076 (0.067) 0.103 (0.059) 0.175 (0.122)

(48000, 5e-04) 0.073 (0.035) 0.13 (0.056) 0.234 (0.1) 0.437 (0.099)

(48000, 0.001) 0.105 (0.051) 0.183 (0.065) 0.407 (0.23) 0.695 (0.192)

(48000, 0.005) 0.307 (0.08) 0.532 (0.151) 0.824 (0.208) 1.19 (0.086)

(48000, 0.01) 0.458 (0.084) 0.712 (0.1) 0.938 (0.074) 1.186 (0.126)

(96000, 1e-04) 0.045 (0.033) 0.087 (0.059) 0.146 (0.103) 0.246 (0.107)

(96000, 5e-04) 0.116 (0.081) 0.194 (0.094) 0.431 (0.268) 0.721 (0.218)

(96000, 0.001) 0.188 (0.089) 0.32 (0.121) 0.787 (0.339) 1.062 (0.216)

(96000, 0.005) 0.457 (0.065) 0.707 (0.107) 0.954 (0.125) 1.298 (0.074)

(96000, 0.01) 0.662 (0.105) 0.926 (0.103) 1.116 (0.075) 1.143 (0.153)
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Zipunnikov et al. Page 32

Table 2

Model 1 (Tij change): Cumulative variability explained by the first 10 eigenimages.

k cumulative

1 22.13 0.08 7.12 29.33

2 10.66 0.11 3.20 43.29

3 5.99 0.13 2.04 51.44

4 4.84 0.08 1.44 57.80

5 2.80 0.06 0.90 61.56

6 2.39 0.07 0.83 64.85

7 1.94 0.10 0.63 67.52

8 1.72 0.08 0.50 69.82

9 1.55 0.05 0.45 71.86

10 1.20 0.05 0.39 73.50

55.20 0.80 17.50 73.50

Ann Appl Stat. Author manuscript; available in PMC 2015 February 04.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Zipunnikov et al. Page 33

Table 3

Model 2 (Zij change): Cumulative variability explained by the first 10 eigenimages.

k cumulative

1 17.79 0.42 5.59 23.80

2 0.53 8.46 1.99 34.78

3 6.92 0.39 1.55 43.64

4 4.68 0.76 1.05 50.13

5 3.02 0.52 0.80 54.46

6 2.44 0.29 0.69 57.88

7 1.63 0.77 0.54 60.82

8 1.48 0.67 0.39 63.36

9 1.41 0.51 0.35 65.64

10 1.19 0.38 0.33 67.54

41.09 13.17 13.28 67.54
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