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ABSTRACT Two examples of enzyme systems with inter-
actions, at steady state, are treated here. In both cases, the en-
zyme cycle has two states and quasi-equilibrium in spatial dis-
tributions obtains at steady state (because f4 + f,, = 1). The first
example is a dilute solution of enzyme molecules in a solvent.
The flux (turnover) per molecule is expanded in powers of the
enzyme concentration (a "virial" expansion). Aggregation of the
enzyme molecules in solution is considered as a special case.
In the second example, we treat an arbitrary lattice of enzyme
molecules, with nearest-neighbor interactions, using the well-
known quasi-chemical approximation. The flux per molecule
is obtained. Critical behavior and hysteresis are illustrated.

This paper is the third in a series (1, 2) concerned with the effect
of enzyme-enzyme interactions on steady-state kinetic prop-
erties of enzymes. This subject can also be described by saying
that we are beginning to extend some well-known molecular
interaction problems in equilibrium statistical mechanics to
steady-state conditions. For the present, at least, our primary
concern is with the theoretical problem itself rather than with
possible biological applications.
We have not treated transients yet except incidentally in our

Monte Carlo work (see below).
This paper is devoted to the two topics mentioned in the title.

In both of these cases, we can use the quasi-equilibrium ap-
proach explained in ref. 1: an isolated ("unperturbed") enzyme
molecule has the states and rate constants shown in Fig. 1; and
fh + fp = 1 in equations 11 of ref. 1.

Strictly steady-state systems (i.e., where quasi-equilibrium
does not apply) are usually much more difficult to treat theo-
retically because there is no general method available corre-
sponding to the partition function formalism that is applicable
to equilibrium systems. Some simple special cases of this type
will be discussed in a fourth paper (see also ref. 1). Also, Monte
Carlo calculations on strictly steady-state lattice systems have
been initiated in collaboration with Yi-der Chen, as well as
Bragg-Williams calculations with Leonard Stein.
Dilute two-state enzyme in solution
An introductory account of this topic was included in the pre-
vious paper (2). We consider a dilute solution of two-state en-
zyme molecules (Fig. 1), with fa + f3 = 1. Hence the steady-
state population distributions are those of an equilibrium system
(1). There are pairwise-additive interactions wjs (lj = 1,2) that
perturb the enzyme flux; these might depend on the rotational
orientation of the two molecules as well as on their distance
apart, r. Equations (40.1) through (40.12) of ref. 3 show how
to include rotational coordinates without complicating the

formalism. Our object is to express J/Jo, where J is the flux per
molecule and Jo the unperturbed flux per molecule (equation
10 of ref. 1), as a power series in the enzyme concentration or
number density p (= N/V). The method used is general. We
carry the work as far as the third "virial" coefficient.
The two-dimensional version of this and the following section

would apply to enzyme molecules moving-in a "clean" mem-
brane (e.g., black-lipid or liposome).

It is advantageous to regard the solution of volume V as open
with respect to enzyme molecules (grand partition function
method). Let IN be the total flux when there are N molecules
in V. Then, on averaging over N,

J= E JNQNXN/ QNXN,
N N

[1]

where QN is the canonical partition function (4) and X the ab-
solute activity. The flux per molecule J (above) is J/N in this
notation, where

N = E NQN XN/J/ QNXN.
N N

[2]
The unperturbed flux Jo (above) is the same quantity as J' in
Eq. 1.

This is formally the same problem as in equations (12-14),
(12-17), (15-78), and (15-81) of ref.; 4 for the electric polar-
ization of an imperfect gas (JN replaces the electric moment
MN). As in equation (15-78), we use Eq. I to write J as a single
power series in A. In this series we then replace A by the con-
centration activity z = QIA/V and replace QN by the config-
uration integral ZN, from equation (15-5) of ref. 4. Finally, we
replace z by p, using equation (15-11), and divide by JjpV. The
result is

°o + [a2 + (2 V2 -)V

+ [a3 + 2 (2Js2 - i) a2V

+ (hZ3- J2Z Z2 I) V2] 2 + [3]
6I32JIV22V2+

where (4)
a2 = -2b2, a3 = -3b3 + 8b2

2Vb2 = Z2 V2, 6Vb3 = Z3 - 3VZ2 + 2V3.
The term in p is the same as in equation 50 of ref. 2.
The explicit expression for Z2 is

Z2 = f[(I - Oo)2Yl + 20o(l - Oo)Y12 + OSY22]dradTb, [4]

Abbreviations: BW, Bragg-Williams; QC, quasi-chemical.
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FIG. 1. Two-state cycle with unperturbed rate constant notation.

The counterclockwise direction is supposed dominant.

where yq = e-wj/kT, 0o is the unperturbed probability of state
2 (equation 9b, ref. 1), and Ta represents the translational and
rotational coordinates of molecule a [equations (40.11) and
(40.90), ref. 3] of the pair a,b. The zero of w1v is infinite sepa-
ration (r = co). Similarly, for Z3 we have

Z3 = [(I - Oo)3y1(ab)yjj(ac)yjj(bc)
+ 3(1 -0o)20oylj(ab)y12(ac)y12(bc)
+ 3(1 -0)0o)y12(ab)y12(ac)Y22(bc)

+ 0Oy22(ab)y22(ac)y22(bc)]dradrbdTc. [5]
The notation y12(ac), for example, means that molecule a is in
state 1 and molecule c is in state 2.
We turn now to J2 and use the a,a' transitions to evaluate this

quantity (the f,f' transitions give the same result, on using fa
+ ft = 1). From Eq. 4, the probability that both a and b are in
state 1 and are located in dTad Tb is (1 - 0o)2ylldradTb/Z2. In
this case the probability of a 11 -- 12 or 21 transition, per unit
time, is 2aoyj2fa/yljfL (equation 11, ref. 1). These two proba-
bilities are multiplied together. We must add a similar term for
12 or 21 22 (a) and subtract terms for 22 -- 12 or 21 (a') and
12 or 21 - 11 (a'). Finally, we factor out Ji - Jo = ao(I - Oo)
- aA0 and integrate, to obtain

J2= (2J1/Z2) f[(1 - 0O)y111"fay12fa
+ 0OY121 faY22fa]dTad Tb. [6]

The same type of argument can be used for J3. There are six
terms rather than four, as above. For example, for 111 -- 211,
121, or 112 (a) we have
(1 - Oo)3yll(ab)yll(ac)yll(bc)dTadTbdTc

Za

X 3aoyi2fa(ba)yj2fa(ca)
y11fa(ab)yj1fa(bc)

We combine the six terms, factor out Ji, and integrate:

j3 = (3J,/Z3)s[(1 - 0o)2yll-fa(ab)ylllufa(ac)y,2fa(ba)
x y12fa(ca)yjj(bc) + 2Oo(l -Oo)yjj1-fa(ab)y121-fa(ac)
x y12fa(ba)y22fa(ac)y12(bc) + 0Ay12lfa(ab)y12lfa(ac)

X y22fa(ab)y22fa(ac)y22(bC)]dradTbdrc. [7]

Eqs. 4 through 7 may now be substituted into Eq. 3. The
coefficient of p in Eq. 3 (the second "virial" coefficient in the
flux) becomes

V It[-(1 0M)Yl fay 2fa + OYy121 faY22fa]V
- [(1 - o)2yli + 20o(l - Oo)Y12 + 0oY22]1 dTadTb. [8]

The integrand is zero except when molecules a and b are close
enough to each other to interact. If the state change (1 z± 2) has

no effect on the interaction free energy (i.e., if Y11 - Y12 - Y22),
the integrand is zero everywhere and J = Jo. If the wq depend
on intermolecular distance r only, then Eq. 8 becomes
J0- 14wrr2dr, as in equation 53, ref. 2. If in this case we also have
W11 = W12 and W22 = W11 + W, where W/kT <<1 (i.e., the 22
interaction differs slightly from the 11 and 12 interactions), then
Eq. 8 simplifies to

Oo(0o-fa) f yl(W/kT)4irr2dr. 19]

This is similar to equation 20 of ref. 1 and to equation 48 of ref.
2. The radial distribution function of the enzyme molecules is
y11.
The necessary ingredients for the third "virial" coefficient

in Eq. 3 are given above. But we leave further details to the
interested reader (see also Eq. 12, below).

Enzyme aggregation in solution
This section is concerned with the most important special case
of the above quite general approach. We suppose here that
enzyme-enzyme attractive interactions are strong enough to
lead to the formation of aggregates of sizes two, three, four, etc.
For example, we might have nonspecific (no distinction be-
tween states 1 and 2) associating forces supplemented by quite
specific forces that influence the enzyme flux in an aggregate.
We suppose further that the nonassociating forces (e.g., "hard"
interactions) between monomers, dimers, etc. have no effect
on enzyme flux. This is probably a very realistic assumption.
The effects of interactions on the flux of the enzyme molecules
of an aggregate are handled as for the small systems (M =
2,3, * * ) already discussed in refs. 1 and 2, and discussed further
in parts four and five (to be published). We give only general
relations here and do not consider explicit models for the ag-
gregates.

Fortunately, the theory of aggregation in solution (5) is al-
ready available, so very little new work is required here. One
way to proceed is to introduce the necessary notation (5) for an
equilibrium solution of aggregates into Eq. 3. We have done
this, but it is much simpler to use equations (34)-(37) of ref. 5
directly. These equations give the number density p8 of ag-
gregates of size s (s = 1,2, *- ) as power series in p. We denote
the total enzyme flux of a dimer by Jol, of a trimer by Jool, etc.
Then the mean flux per enzyme molecule is simply

J = (PlJ + P2Jol + P3Joo0 + *--)/P [10]

since

P = P1 + 2P2 + 3P3 + --- [11]

On substituting equations (34)-(36) of ref. 5 into Eq. 10, and
dividing by J- Jo, we obtain the special case of Eq. 3,

Jo [ Ji

+ - 2) (-4K2 + bilo - 4b2o)K2

+ (Ji -!3)K3j 2+*, [12]

where K, is the equilibrium constant for s-mer formation from
monomers, and b1lo and b2o are nonassociative cluster integrals
(4, 5) for monomer-dimer and monomer-monomer, respec-
tively. The "equilibrium" between states 1 and 2 can be taken
care of explicitly, if necessary, essentially as in ref. 6 (where a
binding equilibrium is treated). The quantities in square
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brackets are the second and third flux "virial" coefficients. If
there are no interaction effects on the flux within the aggre-
gates, then Joi = 2J1, Jooi = 3J1, etc., and we obtain J/Jo = 1.
As already mentioned, particular models are needed (e.g.,
equations 25 of ref. 1) to evaluate (Jo,/JI) -2, etc. The inter-
ested reader can easily write out the term in p3 in Eq. 12, using
the additional terms given in equations (34)-(37) of ref. 5.

Incidentally, in the first method mentioned above (direct use
of Eq. 3), we encounter also J2o, Jo, J11o, etc. In accordance
with our assumptions, these are set equal to J2? J3? J, + Jol, etc.,
respectively.

Finally, we note that Eqs. 10-12 do not show explicitly that
they refer to two-state enzymes with Ia + f#i = 1. They might
therefore provide the basis for an approximate treatment of flux
and aggregation in much more complicated cases.

Quasi-chemical approximation of enzyme lattice
In the previous paper (2) we used the Bragg-Williams (BW)
approximation for a steady-state lattice (z nearest neighbors)
of interacting two-state enzyme molecules (Fig. 1), with Ia +
fib= 1 (1). In the same paper, we gave an exact treatment of the
one-dimensional system (z = 2), with far = fib= 1/2. In both
cases we could use a quasi-equilibrium approach (1, 2). The
objective of the present section is to introduce the quasi-
chemical (QC) approximation (with Ia + f# = 1) as a refine-
ment of the BW approximation. It is well-known (4) that QC
is a significant improvement on BW, and also that QC is exact
in one dimension. Hence, an incidental by-product of the
present section is the extension of the exact one-dimensional
treatment (2) from Ia = fi = 1/2 to fIa + fib = 1.
A rather similar enzyme kinetics problem was discussed in

1952 (7). We use the same method here. A characteristic of the
QC approximation is that the nearest-neighbor pairs of the
lattice can be treated as statistically independent of each other,
except for QC and conservation relations (4). It is this feature
that we exploit below.
There areM enzymes in the lattice. The fraction of these in

state 2 is 0 N2/M. The numbers of nearest-neighbor pairs of
the different types, in this approximation, are (4)

N111M = (z/2)(1 - 0)(# + 1 - 20)/(fl + 1)
N121M = N21/M = (z/2)20(1 - 0)/(fi + 1)
N22/M = (z/2)0(ft - 1 + 20)/(# + 1), [13]

where

#2= 1 - 40(1- 0)[1 - (ylyY/22)]2 [14]
If an enzyme is in state 1, the probability r that any particular

one of its z nearest neighbors is in state 1 is determined by r/(l
-r) = N1,/N,2 (here we use the assumed statistical indepen-
dence of pairs, mentioned above). This gives

r = (,8 +1-20)/(B + 1). [15]
Similarly, if an enzyme is in state 2, the probability p that a
particular nearest neighbor is in state 1 is determined by p/(l
- p) = N21/N22. Hence,

p = 2(1 -0)/(# + 1). [16]
If an enzyme is in state 1, the probability that j of its z nearest

neighbors are in state 2 is then

R, = z!rzJ(1 - ry/j!(z - j)!. [17]
If the "central" enzyme is in state 2, replace r by p and R1 by
P1. These are the probabilities of different environments for

the central molecule; they are needed for the corresponding
instantaneous rate constants (which we designate by a(j), a'(j),
etc.). Explicitly, from equation 11 of ref. 1 and fa + f,6 = 1, we
have

a(j)/ao = # = sij'= 2/s2 s{2

a(J)/ao = #tj)/fO = (S12/Y12)Z1j
X (S22/y22)i/(sl/yll)zI'(sl2/Y,2)i, [18]

where Sik Yikf"
Using the a,a' transitions, the flux per enzyme molecule is

J= E [(1 - 0)Rja(1j) - Pia]
j=0

ao(l - a) [rsl2 +(I r)822]Z

_-a49 [PS12YI1 + (1-P)s22YI2]z [19]
S11YI2 S12Y22

After some manipulation, we find the alternate but equivalent
forms

-= (aol:-+ ,a) (1-0)

F(13+1-220)sl2 2s22 ]z
L (# + 1)sii (# + 1)8121Xi +

( g- agol\)
aoo + A0

X [2(l -O)s12Yll + (A- 1 + 2)s22Y21Zas + 1)S1lYI2 (# + l)s12y22 J

[20]

[21]

The variable x = (ao + flQ)/(flo + aQ) plays the role here of
an "activity" (1, 2). Its relation to 0 follows immediately from
the simulated detailed balance (1) expression

[a(j) + 1')](1 - 0)R1 = [$3(j) + a°]0Pj [22]
for 1 - 2 transitions with j nearest neighbors in state 2. We find
(for any j)

[23]

in agreement with equation (14-61) of ref. 4. In numerical
calculations, one would assign 0 a value and then calculate J and
x from Eqs. 20 and 23. One can show that these equations agree
with one-dimensional and BW results in ref. 2 as special or
limiting cases. As is well known (4), Eq. 23 can show a phase
transition. The critical value of Y11Y22/Y22 is z2/(Z - 2)2.

Special Case. We turn now to the special case (2) Yul = Y12
= 1Ila = f# = 1/2, jo = 0. This is a Michaelis-Menten enzyme
with 22 interactions only. To be more explicit (2), w1l is ar-
britrarily chosen as zero, w12 = wil, and w22 54 wil. Equation
20 becomes in this case

J/Io = x(l - 0)[(# + 1 - 20 + 20yL2)/(# + 1)]z. [24]
The behavior of J(x)/#o and 0(x) (Fig. 2) is similar to that seen
in figure 4, ref. 2. When Y22 = 1, J/Plo = x/(1 + x) (unper-
turbed); that is, J = Jo.
The critical point occurs at

Y22 = z2/(z - 2)2, x = [(z - 2)/z]z
0 = 1/2, J/(o = (1/2)[(z - 2)/(z - 1)]z. [25]

For example, if z = 6 (hexagonal planar lattice), y22 = 2.25 (w22
= -472 cal molh' at 20'C), x = 0.088, and J/fo = 0.131.

Chemistry: Hill
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FIG. 2. Example of a phase transition, at steady state, in a lattice of enzyme molecules with z = 6 and Y22 = 3, according to the quasi-chemical
approximation. The flux per molecule (as J/,6O) and the fraction of molecules in state 2 (as 0/10) are plotted against the "activity" x. The stable
phase transition occurs at the dotted line. Metastable transitions (broken lines) lead to a "bow-tie" hysteresis loop (arrows) in the flux. Hysteresis
in 0 is not shown. The straight lines show asymptotic behavior at small x.

One can show analytically that, in a phase transition, J/#o
has the same value in the two phases (2). See also Fig. 2. This
is not the case in less symmetrical, strictly steady-state models
(part four, to be published). The kind of "bow tie" hysteresis
loop (2) that could occur in the flux is illustrated in Fig. 2, where
Y22 = 3 and z = 6.

It is well known (4) that 0 is a symmetrical function of lnx.
The center of symmetry is at ) = 1/2, x = y Z/2 This is also the
value of x at which the phase transition occurs, if Y22 is larger
than the critical value. For small x, 0 - x and J/VBo - x. For
large x, 0 - 1 - y-x' andJ/0oA y .Z/2. This last result is
in agreement with Eq. 18: 3(z) = floy`Z/Z (since 0 -- 1). When
y22 is large, J/#o_ x up to the point of phase transition, x =
yZ/2. Then J/flo y-Z/2 = constant, beyond this value of x.
The example in Fig. 2 comes fairly close to exhibiting these
properties. Note especially that J/#0 here is very small com-
pared to the maximum possible flux, Jo/#O -- 1 (as x -1 oA). The

same asymptotic behavior was found earlier (2) for the one-
dimensional and BW systems.

In the limit y22 - 0 (strong ws22 repulsion), we obtain
x= [0/(1-0)][(1- 0)/(1- 20)]z J/fo = 0. [26]

These should be compared with the exact results for z = 2 (1,
2).
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