Skip to main content
. 2015 Jan 23;13:6. doi: 10.1186/s12955-014-0196-y

Table 4.

Performance of mapping algorithms in different ranges of observed EQ-5D

Mapping algorithm Observed UK EQ-5D values of 0.75-1.00 used (n = 91) Observed UK EQ-5D values of 0.50-0.75 used (n = 114) Observed UK EQ-5D values of less than 0.50 used (n = 45)
Mean predicted EQ-5D (observed) MAE RMSE Mean predicted EQ-5D (observed) MAE RMSE Mean predicted EQ-5D (observed) MAE RMSE
Crott 0.8433 (0.8750) 0.0851 0.1086 0.6873 (0.6615) 0.1159 0.1457 0.4639 (0.2064) 0.2656 0.3040
Jang 0.8316 (0.8909) 0.0608 0.1033 0.6773 (0.7410) 0.0637 0.1230 0.5397 (0.4518) 0.0879 0.1462
Kim EJ 0.9430 (0.8826) 0.0604 0.0994 0.8219 (0.7111) 0.1108 0.1343 0.7321 (0.4991) 0.2330 0.2527
Kim SH 0.8937 (0.8826) 0.0111 0.0767 0.7758 (0.7111) 0.0646 0.0968 0.6774 (0.4991) 0.1783 0.2031
Kontodimopoulos 0.9145 (0.8750) 0.1225 0.1569 0.6532 (0.6615) 0.1414 0.1854 0.4215 (0.2064) 0.2684 0.3271
Longworth 0.8105 (0.8750) 0.0667 0.1196 0.6176 (0.6615) 0.0439 0.1556 0.3734 (0.2064) 0.1671 0.2496
McKenzie 0.8206 (0.8750) 0.1180 0.1559 0.5954 (0.6615) 0.1496 0.1937 0.3377 (0.2064) 0.1804 0.2200
Proskorovsky 0.7481 (0.8750) 0.1268 0.1622 0.5596 (0.6615) 0.1019 0.1673 0.4206 (0.2064) 0.2143 0.2634
Versteegh 0.8967 (0.8978) 0.0010 0.0893 0.7387 (0.7134) 0.0255 0.1473 0.5579 (0.3296) 0.2282 0.3598