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Summary

Background—Stress is a critical risk factor affecting both the development of and the relapse to 

drug addictions. Drug addictions are caused by genetic, environmental and drug-induced factors. 

The objective of this hypothesis-driven association study was to determine if genetic variants in 

stress-related genes are associated with heroin addiction.

Methods—112 selected genetic variants in 26 stress-related genes were genotyped in 852 case 

subjects and 238 controls of predominantly European ancestry. The case subjects are former 

heroin addicts with a history of at least one year of daily multiple uses of heroin, treated at a 

methadone maintenance treatment program (MMTP). The two most promising SNPs were 
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subsequently tested in an African-American sample comprising of 314 cases and 208 control 

individuals.

Results—Nineteen single nucleotide polymorphisms (SNPs) in 9 genes (AVP, CRHR1, CRHR2, 

FKBP5, NR3C2, AVPR1A, GAL, GLRA1, and NPY1R) showed nominally significant association 

with heroin addiction. The associations of two FKBP5 SNPs that are part of one haplotype block, 

rs1360780 (intron 2) and rs3800373 (the 3' untranslated region), remained significant after 

correction for multiple testing (Pcorrected =0.03; OR = 2.35, Pcorrected = 0.0018; OR = 2.85, 

respectively). The two SNPs also showed nominally significant association (P <0.05) with heroin 

addiction in an independent African-American cohort. FKBP5 is a co-chaperone that regulates 

glucocorticoid sensitivity. These FKBP5 SNPs were previously associated with diverse affective 

disorders and showed functional differences in gene expression and stress response. This study 

also supports our and others’ previous reports of association of the GAL SNP rs694066 and the 

AVPR1A SNPs rs11174811, rs1587097 and rs10784339 with heroin and general drug addiction, 

respectively.

Conclusions—This study suggests that variations in the FKBP5 gene contribute to the 

development of opiate addiction by modulating the stress response. These findings may enhance 

the understanding of the interaction between stress and heroin addiction.
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1. Background

Addiction to opiates and the illicit abuse of prescription opioids is a growing epidemic. 

Addiction to drugs is a chronic relapsing brain disease caused by a combination of genetic, 

epigenetic, environmental and drug-induced factors. Stress is a critical risk factor affecting 

both the development of addictive disorders, by promoting drug seeking and excessive drug 

intake, and the relapse to addictive behaviors, since drug withdrawal can increase stress 

response, and stress increases reward-seeking behavior, such as reinstatement of drug-taking 

behavior (Koob and Kreek, 2007; Sinha, 2008; Ulrich-Lai and Herman, 2009; Kreek et al., 

2012). Studies showed a high rate of various types of childhood trauma exposure and 

affective disorders comorbidity among individuals with opioid dependence (Mills et al., 

2005; Nelson et al., 2006; Sansone et al., 2009). The response to stress is influenced by 

genetic and environmental factors and has high inter-individual variability. A plastic neural 

circuitry that includes the hippocampus, amygdala, hypothalamus, brainstem and prefrontal 

cortex coordinates the response systems (McEwen and Gianaros, 2011).

Adrenal secretion of glucocorticoids is one of the mechanisms of response to stress. Stress 

exposure, as well as endogenous opioids and drugs of abuse, activate the hypothalamic-

pituitary-adrenal (HPA) axis. Consequently, corticotropin-releasing hormone (CRH, CRF) 

and arginine vasopressin (AVP) are released from the hypothalamic paraventricular nucleus 

(PVN) and are transported to the anterior pituitary and stimulate adrenocorticotropic 

hormone (ACTH) secretion, which in turn stimulates glucocorticoid synthesis and release 

from the adrenal cortex. CRF is also produced in other brain regions and activates the 
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sympathetic nervous system to release epinephrine and norepinephrine from the adrenal 

glands. It also stimulates the mesocorticolimbic dopamine system that mediates the 

rewarding effects associated with drug use. High levels of glucocorticoids can “sensitize” 

CRF systems in the extra hypothalamic brain stress systems (extended amygdala)(Koob, 

2010).

Glucocorticoids regulate the activity of the HPA axis through negative feedback via the 

glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). These receptors 

regulate the expression of genes necessary for coping with stress. The functions of the GR 

and the MR are partly moderated by chaperone proteins including the heat shock protein 90 

(Hsp90) co-chaperone FKBP5 (FKBP51, FK506-binding protein 51). Glucocorticoids have 

many other effects when bound to glucocorticoid receptors (e.g., modulation of 

cardiovascular function, immunologic status, arousal, learning and memory). They can also 

alter the methylation patterns of genes (Stephens and Wand, 2012).

Numerous molecular genetic studies have evaluated the association between polymorphisms 

in stress-related genes and affective disorders (Domschke and Reif, 2012), but only a few 

studies have reported an association of variants in these genes with specific drug addictions. 

We have previously performed association studies of heroin addiction that include several 

genes related to stress response (Levran et al., 2008; Proudnikov et al., 2008; Levran et al., 

2009). These studies identified, in these genes, association of SNPs in the galanin gene 

(GAL) in European Americans, the AVP receptor gene (AVPR1A) in African Americans, 

and the ACTH receptor gene (MC2R) in Hispanics. A different AVPR1A SNP was shown to 

be associated with general drug use disorders by another group (Maher et al., 2011), and 

NPY2R SNPs were associated with alcohol and cocaine dependence (Wetherill et al., 2008).

Here, we report the results of a case-control hypothesis-driven association study of 112 

SNPs from 26 genes related to stress response, with heroin addiction, in a sample of 1090 

subjects of predominantly European ancestry. The study is a major expansion of our 

previous study (Levran et al., 2008) to which 517 samples, 12 additional stress-related 

genes, and several new SNPs in genes included in the previous study were added. The study 

employed more stringent inclusion criteria for ancestry, based on biographic ancestry scores 

obtained by STRUCTURE analysis of 155 Ancestry Informative Markers (AIMs). This 

study included a validation sample of different ethnicity (African-American) for the most 

significant results.

2. Methods

2.1. Subjects

Discovery sample—The 1090 subjects of this study are part of a larger cohort recruited 

by the Kreek laboratory for the study of the genetics of specific drug addictions. There were 

852 cases (33% female; mean age 40±12) and 238 controls (49% female; mean age 42±16). 

The subjects were selected based on phenotype (history of severe heroin addiction, normal 

controls) and self-identified European ancestry (including a Middle-Eastern contribution). 

Other ethnicities were excluded (e.g., Africans, Hispanics, Asians, Native Americans or 

mixed ancestry). Ancestry was verified by a family history questionnaire and STRUCTURE 
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analysis (see below), and specific inclusion criteria were employed to obtain relative 

homogeneity and to limit population stratification. To be included in the discovery sample, 

an individual had to show at least a 50% European, Middle-Eastern or both ancestry 

contributions and less than 25% contribution from another specific ancestry. This study is a 

major expansion of our previous study (Levran et al., 2008). The current study includes a 

majority of the samples from the original study.

The case subjects were former heroin addicts with a history of at least one year of daily 

multiple uses of heroin, treated at a MMTP at the time of recruitment. The case subjects 

were recruited at the Rockefeller University Hospital (n = 238), the Manhattan Campus of 

the VA NY Harbor Health Care System (n = 55) and the Dr. Miriam and Sheldon G. 

Adelson Clinics for Drug Abuse Treatment and Research, in Las Vegas (n = 264) and Israel 

(n = 295). The control sample was mainly from the NYC community (n = 208) and was 

recruited at the Rockefeller University Hospital by newspaper and online advertisement. 

Additional controls were recruited at the Adelson clinic in Israel (n = 30). Ascertainment of 

cases and controls was made by personal interview performed in a similar manner at the 

recruiting places, using several instruments: the Addiction Severity Index (McLellan et al., 

1992), Kreek-McHugh-Schluger-Kellogg Scale (KMSK) (Kellogg et al., 2003) and 

Diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM-IV). The 

following exclusion criteria from the healthy control category were used: (1) at least one 

instance of drinking to intoxication or any illicit drug use in the previous 30 days; (2) a 

history of alcohol drinking to intoxication or illicit drug use, more than twice a week, for 

more than six consecutive months, and (3) cannabis use for more than 12 days in the 

previous 30 days or past cannabis use for more than twice a week for more than four years. 

Subjects with active DSM-IV axis I disorder were excluded from the study. All subjects 

completed a family history questionnaire and relatives were excluded from the study. The 

Institutional Review Boards of the Rockefeller University Hospital, the VA New York 

Harbor Healthcare System and the Tel Aviv Sourasky Medical Center (Helsinki Committee) 

approved the study. All subjects signed informed consent for genetic studies.

Validation sample—The two most significant FKBP5 SNPs were subsequently tested in 

an independent African-American (>50% African ancestry, non-Hispanic) sample 

comprising of 314 (37% female) cases and 208 (52% female) control individuals. The 

average African contribution was ~80% in both cases and controls, with similar pattern of 

distribution of the other ancestry clusters (5% each of Europe, Middle East and Central 

Asia). The case sample was recruited at the Rockefeller University Hospital (n = 230), the 

Manhattan Campus of the VA NY Harbor Health Care System (n = 63) and the Dr. Miriam 

and Sheldon G. Adelson Clinic for Drug Abuse Treatment and Research in Las Vegas (n = 

21).The control sample was recruited at the Rockefeller University Hospital. Ethnicity 

verification by STRUCTURE analysis, recruitment and ascertainment were as described for 

the discovery sample.

2.2. Genes/SNPs selection and array design

Twenty-seven genes were selected based on their known function in response to stress 

(Table 1, Table S1). In addition to the genes included on the original hypothesis-driven 
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“addiction” array (GS0007064-OPA; Illumina, San Diego, CA, USA) (Hodgkinson et al., 

2008) that was used in our original association studies (Levran et al., 2008; Levran et al., 

2009), we have added 12 stress-related genes to the current array (GS0013101-OPA). Out of 

the 68 new SNPs from stress-related genes that were selected for the new array based on 

previous reports of potential functionality and/or association with stress response, 13 SNPs 

were not technically suitable for this platform based on the Illumina Assay Design Tool, and 

55 SNPs were added to the new array. A total of 143 SNPs from these stress-related genes 

were included in the array, out of which 88 SNPs were from the original “addiction” array 

(Table S1).

2.3. Genotyping

Blood samples were taken and DNA was extracted and quantified using standard methods. 

DNA (700 ng) was precipitated as described (Levran et al., 2008). Genotyping was 

performed on a 1536-plex GoldenGate Custom Panel at the Rockefeller University 

Genomics Resource Center according to the manufacturer’s protocol. Random samples were 

genotyped in duplicate. Analysis was performed with BeadStudio software v2.3.43 

(Illumina). The genotype data for all SNPs were visually inspected to verify and correct 

automatic calling. Genotype data were filtered based on SNP call rates (> 99%), minor allele 

frequency (MAF) in controls > 0.05, and deviation from Hardy-Weinberg equilibrium 

(HWE) in controls (P < 0.001) (Table S1). Of the 143 SNPs genotyped, 14 SNPs were 

excluded from analysis based on low quality (n = 6), more than 3 clusters (n = 4), or failure 

on some of the plates that did not reflect ambiguous clustering (n = 4), and 17 SNPs were 

excluded from analysis based on MAF < 0.05 in this sample. Since the HCRT gene was 

represented by only one SNP with MAF < 0.05 in this sample, this gene is not included in 

the final gene list. The total analysis was performed with 112 SNPs from 26 genes (Table 

S1).

2.4. Assessment of ancestry contribution using AIMs

Of the original 186 AIMs from the GS0007064-OPA panel (Hodgkinson et al., 2008), 171 

SNPs with adequate quality were included in the new panel, and 155 AIMs with high quality 

scores were used for analysis. Biographic Ancestry Scores (e.g., fractions of genetic 

affiliation of the individual in each cluster) were estimated by STRUCTURE 2.2 with seven 

clusters (K). Each subject was anchored against genotypes of 1051 samples from 51 

worldwide populations represented in the Human Genome Diversity Cell Line Panel (http://

www.cephb.fr/HGDP-CEPH-Panel), as described (Ducci et al., 2009). To be included in the 

discovery sample, an individual had to show at least a 50% European, Middle-Eastern, or 

both ancestry contribution and less than 25% contribution from another specific ancestry. 

The decision to include both European and Middle-Eastern clusters was based on their low 

population differentiation (Tian et al., 2009). Studies showed especially close relationship 

between Middle Eastern and Southern European populations (Atzmon et al., 2010). To be 

included in the validation sample, an individual had to show at least a 50% African ancestry 

contribution.

In the discovery sample, the mean (SD) European ancestry contribution score was 0.73 

(0.32) with median of 0.89. The mean Middle Eastern score was 0.21 (0.30) with median of 
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0.03. The means and medians of the other five ancestries were <0.05 (<0.05). In the 

validation sample, the mean African score was 0.8 (0.11) with median of 0.82. The 

European, Middle Eastern and Central Asia mean and median scores were 0.05±0.01 (0.04). 

The means of the other three ancestries’ scores were 0.01±0.01.

From the original cohort of self-identified European and/or Middle-Eastern subjects, 57 

subjects were excluded because they did not meet the inclusion criteria. Seven subjects were 

excluded based on a major conflict between their self-identified ethnicity and STRUCTURE 

results. Twenty-two subjects with ambiguous self-identified ancestry and six subjects who 

self-identified as African Americans were included based on STRUCTURE results.

2.5. Statistical analysis

Quality control for the SNP genotypes was carried out as follows. Exact tests for deviation 

from HWE were performed with the PLINK program, with SNPs to be rejected based on the 

recommended threshold of P < 0.001 in control individuals. Pairwise linkage disequilibrium 

(LD) and haplotype blocks were estimated using Haploview 4.2. Analysis of block of LD 

was performed using the Confidence Intervals algorithm for block definition (Gabriel et al., 

2002), with stringent criteria of LD (D' lower bound of 0.9). Association analysis was 

performed for each SNP separately by logistic regression in the PLINK program, where in 

different analyses the genotype was coded as a linear allelic effect (genotypes AA, AB, and 

BB were given numerical values 0, 1, and 2, respectively), and as two groups reflecting a 

dominant or recessive inheritance model. Sex was included as a covariate. Ancestry 

contribution scores (European and Middle Eastern for the discovery sample and African for 

the validation sample) were initially included as predictor covariates but had no significant 

effects on the dependent variable so they were not included in the final analysis. The 

multiple testing issue was addressed by assuming 67 independent SNPs following the 

method suggested by Duggal et al. (Duggal et al., 2008). Based on analysis of block of LD 

in controls, there are 45 “non-independent” SNPs, including seven redundant SNPs in 

complete LD (r2 = 1) so that, with Bonferroni correction, P values were corrected by 

division of 0.05 by 67. P values were further adjusted for testing three models of inheritance 

by division by 1.7 (= √3) based on Mantel (Mantel, 1980). Thus, P = 4.4E-04 (0.05/113.9) 

was chosen as the threshold for significance.

3. Results

A total of 1090 subjects (852 cases and 238 controls) met the inclusion criteria and were 

included in the association analyses. The ethnicity of all subjects was verified as 

predominantly European using STRUCTURE analysis of 155 AIMs (Fig. 1). Genotypes of 

112 SNPs (MAF > 0.05) from 26 stress-related genes were analyzed for association with 

heroin addiction (Table 1, Table S1). The European and Middle Eastern ancestry 

contribution scores did not show independent effects on the dependent variable indicating 

that the associations are not due to population stratification. No SNP showed deviation from 

HWE (P < 0.001) in controls. One SNP (rs10213647) showed deviation from HWE in cases 

only (P = 0.0004). Based on LD analysis in controls, there are 45 correlated SNPs, including 
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seven redundant SNPs in complete LD (r2 = 1), suggesting an “effective” number of 67 

independent SNPs.

Nineteen SNPs in nine genes showed nominally significant association of genotype with 

heroin addiction (Table 2). The top signals are from the following genes: AVP, CRHR1, 

CRHR2, FKBP5, NR3C2, AVPR1A, GAL, GLRA1 and NPY1R. Two tightly-linked FKBP5 

SNPs, rs1360780 and rs3800373, from intron 2 and the 3' UTR, respectively, remained 

significant after correction for multiple testing (Pcorrected = 0.03; OR = 2.35; 95% CI,1.5–3.7 

& Pcorrected = 0.0018; OR = 2.85; 95% CI,1.8–4.6, respectively). The two SNPs also 

showed nominally significant association in the same direction (P = 0.04, OR = 1.49; 95% 

CI, 1.01–2.18 & P = 0.03, OR = 1.54; 95% CI 1.04–2.30, respectively) with heroin 

addiction in an independent African-American sample comprising of 314 cases and 208 

control individuals that was used for validation and generalization. The African ancestry 

contribution score did not show independent effects on the dependent variable indicating 

that the associations are not due to population stratification.

LD analysis revealed that some of the top results are likely to be related, as some SNPs are 

in strong LD. As is shown in Fig. 2, the four FKBP5 SNPs are linked (D' >.89), of which 3 

SNPs (rs3800373, rs1360780, and rs9470080) are tightly linked (r2 >.77). The three GLRA1 

and the five AVPR1A SNPs are tightly linked (r2 > .96, r2 > .62, respectively). In contrast, 

the two GAL SNPs showed lower levels of LD.

4. Discussion

The strongest results of this study are of four linked FKBP5 SNPs, two of which (rs1360780 

and rs3800373, from intron 2 and the 3' UTR, respectively) remained significantly 

associated with heroin addiction after correction for multiple testing. The odd ratios (OR) 

were relatively high (> 2) and the more abundant alleles (C and A, respectively) were the 

“risk alleles”, while the less abundant alleles can be considered “protective alleles”. The two 

SNPs also showed nominally significant association in an independent African-American 

sample that was used for validation and generalization. These two FKBP5 SNPs are in 

strong LD across different ethnic groups. The FKBP5 gene was not included in our previous 

association study (Levran et al., 2008).

FKBP5 is considered a negative transcriptional regulator of steroid receptors. FKBP5 is a 

component of steroid hormones receptor hetero-complexes along with the Hsp90 and the 

p23 protein. It binds the immunosuppressive drugs FK506 (tacrolimus) and rapamycin. 

FKBP5-Hsp90 hetero-complex regulates GR sensitivity via an ultra-short negative feedback 

loop (Galigniana et al., 2012). When cortisol binds the GR in the cytoplasm, the complex 

enters the nucleus and GR regulates transcription of glucocorticoid-responsive genes. 

FKBP5 regulates GR sensitivity by preventing translocation of the GR complex to the 

nucleus.

Several rodent studies shed light on the relationship between stress, drug addiction, and 

FKBP5. Chronic morphine administration and precipitated withdrawal were shown to 

change Fkbp5 expression in the locus ceruleus and the VTA, and blockade of FKBP5 with 
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FK506 attenuated dependence development (Homayoun et al., 2003; McClung et al., 2005). 

Recent studies found that Fkbp5 expression in the mouse striatum was strongly activated by 

acute and chronic administration of opioids (Piechota et al., 2012). Fkbp5 whole brain 

expression was shown to be regulated by oxycodone (Hassan et al., 2010). Fkbp5 KO mice 

display a reduced response to chronic social defeat stress. Under basal conditions, deletion 

of Fkbp5 did not change anxiety or depression-like behavior. However, exposure to stressors 

led to a more active coping behavior and decreased HPA axis reactivity and GR expression 

(Touma et al., 2011; Hartmann et al., 2012). Glucocorticoid administration was shown to 

decrease DNA methylation in Fkbp5 in brain and blood, and this decrease was associated 

with behavioral deficits (Lee et al., 2011; Yang et al., 2012).

FKBP5 SNPs were shown to be associated with stress response and affective disorders (e.g., 

(Binder, 2009; Willour et al., 2009; Velders et al., 2011)). Impaired GR sensitivity was 

detected in major depression patients that were carriers of the FKBP5 rs1360780 T allele 

(Menke et al., 2013). FKBP5 SNPs were associated with baseline and peak cortisol response 

to social stress test in healthy individuals (Mahon et al., 2013). An fMRI study of African-

American subjects showed that carriers of the rs1360780 T allele had an attention bias 

toward threat, increased hippocampal activation to stress, and difference in hippocampal 

shape during performance of an attention-bias task (Fani et al., 2013).

Several studies support the hypothesis that genetic or epigenetic modifications in FKBP5 

modulate the effect of the environment on the HPA axis and the risk for stress-related 

disorders (gene×environment interaction). These studies suggest that dysregulation of the 

HPA axis function in childhood may have long-lasting effects. FKBP5 variants were shown 

to interact with childhood trauma to predict depression, suicidality, aggression, and PTSD 

(e.g.,(Binder et al., 2008; Xie et al., 2010; Appel et al., 2011; Bevilacqua et al., 2012; 

Boscarino et al., 2012; Roy et al., 2012; Klengel et al., 2013)). Binder’s group (Binder et al., 

2004; Binder et al., 2008; Klengel et al., 2013) identified the less abundant alleles of four 

SNPs (H2 haplotype, including the rs1360780 T allele) to be the “risk alleles” that moderate 

child abuse-related risk for adult PTSD, in African Americans. They also showed that this 

allele increased FKBP5 expression and caused relative GR resistance. Similar results were 

obtained by others (Xie et al., 2010; Appel et al., 2011). In contrast, Roy et al. (Roy et al., 

2010; Roy et al., 2012) identified the more abundant alleles of these SNPs (H1 haplotype, 

including rs1360780 C allele) as the “risk alleles” for suicide attempt in substance-

dependent African Americans. They found no association of FKBP5 SNPs and substance 

dependence (alcohol, cocaine, or opiate). A study of aggression in Italian males from the 

same group (Bevilacqua et al., 2012) reported a dosage effect of rs1360780 alleles with 

larger effect of the less abundant allele. The Bevilacqua et al. study suggested an association 

of the more abundant FKBP5 haplotype with substance dependence in a subgroup of 127 

subjects with mixed-drug dependencies and high comorbidity with Axis I psychiatric 

disorders. Notably, the current study does not include subjects with active DSM-IV axis I 

disorder; therefore the addiction is not secondary to psychiatric disorders in this cohort. 

Since this study has limited information about trauma exposure, we cannot address the 

suggestion of gene × environment interaction at this point.
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A possible mechanism of action of FKBP5 SNP rs1360780 was suggested by a recent study 

by The Binder’s group (Klengel et al., 2013). They found that differential DNA CpG 

methylation in FKBP5, in carriers of the FKBP5 rs1360780 T allele that were exposed to 

childhood trauma, increased the risk of developing stress-related psychiatric disorders in 

adulthood. A bioinformatics analysis suggested that SNP rs3800373 may cause the loss of 

exon splicing enhancer motive that may cause exon skipping (Liu et al., 2000).

Several other SNPs were identified by this study with only nominal significant association 

that may not reflect true association; nonetheless, additional support for these findings is 

provided by several previous association studies of related phenotypes and evidence of 

functionality. The AVPR1A 3' UTR SNPs rs11174811, rs1587097 and rs10784339 were 

previously associated with a non-specific drug use disorder in European-Americans (Maher 

et al., 2011). SNP rs11174811 is located in potential seed recognition sites for microRNAs 

(miRs) miR-526b and miR-578 and was shown to disrupt miR/mRNA interactions, in vitro 

(Nossent et al., 2011). The other two AVPR1A SNPs are in strong LD with SNP rs11174811. 

SNP rs3803107 is located very close (358 bp) to SNP rs11174811, so their association 

signals are most probably related. We have previously reported an association between 

another AVPR1A SNP (rs3759292) in the 5' flanking region and heroin addiction in African 

Americans (Levran et al., 2009). SNP rs3759292 is rare in European populations and was 

excluded from analysis in this study based on very low allele frequency (< 0.05).

The finding of this study also supports our previous report of association between GAL SNP 

rs694066 and heroin addiction (Levran et al., 2008). This variant was also shown to be 

associated with depression in a gender-dependent manner in Han Chinese (Wang et al., 

2013). A GAL haplotype that includes SNPs rs694066 and rs3136541 was associated with 

alcoholism in Finnish and Plains American Indian men (Belfer et al., 2006).

In addition, CRHR1 SNP rs242939 was associated with depressive disorders in Han Chinese 

(Liu et al., 2006; Xiao et al., 2011; Liu et al., 2013) and British females (Engineer et al., 

2013). NPY1R SNP rs4518200 is in strong LD with the 3' UTR SNP rs4552421 that is part 

of a haplotype that was associated with nicotine dependence in Han Chinese (Wei et al., 

2012).

This study supports the hypothesis that atypical GR sensitivity underlies the 

pathophysiology of drug addiction, and contributes to addiction continuation and relapse 

(Kreek et al., 2005). Drug exposure generates chronic stress, activates the stress response 

and creates reward sensitization and a negative emotional state. Active heroin addicts have 

hypo-responsive (blunted) HPA system that may be caused by a preexisting trait or 

consequence of long term heroin abuse and/or exposure to trauma. The modulation of the 

stress response by FKBP5 variants, possibly in combination with other stress-related genes 

variants, may contribute to the development of heroin dependence by increasing sensitivity 

to both stress and heroin effect.

The identification of specific stress-related genetic variants involved in heroin addiction has 

potential clinical implications. It identifies treatment targets, supports treatment options 

suggested by animal studies, and has the potential to optimize therapeutic interventions by 
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identifying patients who are at specific risk for stress-related relapse and/or patients that 

would benefit from specific interventions based on their genotype, especially early in the 

addiction cycle.

In summary, this study provides evidence for the involvement of specific genetic variants in 

several stress-related genes with heroin addiction. It is plausible that combinations of alleles 

and gene-gene interactions underlie the genetic basis of heroin addiction. Future studies with 

greater statistical power should examine the contributions of simultaneous variations in 

several genes. The study suggests that functional genetic variations in the FKBP5 gene, 

which is involved in glucocorticoid sensitivity, affect the risk for heroin addiction. It is 

important to verify whether the associations of these gene variants are specific to heroin 

addiction or are shared with other drug addictions. Additional association and functional 

studies utilizing different drug addictions, populations with different ancestries, and broader 

SNP coverage are required to further corroborate these findings and define the role of 

FKBP5 and the other genes variations indicated, as contributing factors to heroin addiction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic representation of the individual admixture estimates
The estimates are based on STRUCTURE analysis using K=7. Each vertical line represents 

one individual, and subjects are displayed according to their predominant cluster 

contribution (see Methods). The clusters correspond to the geographical regions based on 

the HGDP sample. Color code: Africa (1) (blue), Europe (2) (red), Middle East (3) (green), 

Central Asia (4) (purple), Far East Asia (5) (cyan), Oceania (6) (amber), and America (7) 

(light blue).
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Figure 2. Pairwise Linkage Disequilibrium (LD)
LD between SNPs in four genes was derived from genotypes of controls. The pairwise 

correlation between SNPs was measured as D' (in red) and r2 (in black). The values are 

shown (x100) in each box. The color scheme indicates the magnitude of the value. When the 

value is equal to 1.0 no number is given. a. AVPR1A. b. FKBP5. c. GAL. d. GLRA1.
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Table 1

Stress-related genes

Symbol Gene name

AVP arginine vasopressin

AVPR1A arginine vasopressin receptor 1A

AVPR1B arginine vasopressin receptor 1B

CARTPT CART prepropeptide

CCK cholecystokinin

CRH corticotropin releasing hormone

CRHBP corticotropin releasing hormone binding protein

CRHR1 corticotropin releasing hormone receptor 1

CRHR2 corticotropin releasing hormone receptor 2

FKBP5 FK506-binding protein 51

GAL galanin

GALR1 galanin receptor 1

GLRA1 glycine receptor, alpha 1

HCRTR1 hypocretin receptor 1

HCRTR2 hypocretin receptor 2

MC2R melanocortin 2 receptor

NPY neuropeptide Y

NPY1R neuropeptide Y receptor Y1

NPY2R neuropeptide Y receptor Y2

NPY5R neuropeptide Y receptor Y5

NR3C1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)

NR3C2 nuclear receptor subfamily 3, group C, member 2 (mineralocorticoid receptor)

OXT oxytocin

OXTR oxytocin receptor

PITX1 paired-like homeodomain transcription factor 1

SERPINA6 corticosteroid binding globulin

Genes are sorted by alphabetical order
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