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ABSTRACT Equilibrium statistical mechanics is much
concerned with problems involving intermolecular interactions,
either in lattices or in pure fluids or solutions. The possibility
of enzyme-enzyme interactions suggests that the same problems
might be studied profitably at steady state as well as at equi-
librium. In the systems we consider, each of the identical en-
zyme molecules of the system undergoes steady-state stochastic
cycling among states i = 1,.. . , n. But the molecules do not cycle
independently. Two neighboring molecules, in states i and j,
interact with a free energy wij (a function of the distance r in
the solution case). The instantaneous transition probabilities
between states for a given molecule will depend on the instan-
taneous interactions between the molecule in question and its
neighbors. The primar question of interest is how the enzyme
flux is influenced by the interactions. The general problem is
outlined here and some simple special cases are treated. The
discussion will be continued in a following paper [Hill, T. L.
(1977) Proc. NatL. Acad. Sci. USA 74, in press].

Problems that involve interactions between neighboring mol-
ecules, in a lattice or in a gas or solution, are among the most
interesting in equilibrium statistical mechanics. That these same
problems can be studied at steady state rather than at equilib-
rium is suggested by interacting enzyme systems. However,
new theoretical difficulties abound in the steady-state systems.
Monte Carlo computer methods will usually be required. In this
paper and its sequel [Hill, T. L. (1977) Proc. Nati. Acad. Sci.
USA 74, in press], we outline the general problem and then il-
lustrate the subject with assorted simple special cases. We use
enzyme terminology throughout, but the problem is not really
limited in this way.

These two papers are an extension of recent discussions (1-3)
of interacting enzymes considered as free energy transducing
systems. Here we emphasize the interactions themselves. In
much earlier work (4-12), certain more or less related special
cases have been investigated.

This topic is put forward here primarily as an interesting
problem in statistical physics. In this respect, large systems
present a more challenging theoretical problem, but finite
(oligomeric) systems are more important biologically. The
conventional analysis of the latter problem is basically an
equilibrium (12-15), or approach to equilibrium (14), treat-
ment. In contrast, we refer here, for large or small systems, to
an explicit kinetic study of steady states.

Lattice Problem. Let us now outline the problem for a lattice
of enzyme molecules (in one, two, or three dimensions). Our
primary interest is in the steady state, but the model would
obviously allow treatment of transients as well. The lattice
containsM identical enzyme molecules, each of which can exist

in n discrete molecular states with various possible transitions
between pairs of states. In the simplest cases, the n states com-
prise a single kinetic cycle, but in general the kinetic diagram
might contain several cycles (2). There is a complete set a0i1 of
first-order, or pseudo-first-order, rate constants for the possible
transitions i - j of each unperturbed enzyme molecule (i.e.,
in the absence of interactions). In general, the a Oi set is chosen
to correspond to a steady state at time t = co, rather than to
equilibrium (2).

There is an interaction free energy wiq between any two
nearest-neighbor molecules of the lattice, in states i and j, as
in the equilibrium Ising problem (15). The tvij, incidentally,
will have no effect on the thermodynamic force or forces
driving the steady-state enzymatic cycling of each enzyme,
because these forces are determined solely by the fixed con-
centrations of the ligand molecules that bind to or are released
from the enzyme molecule, in some of its states, during its cy-
cling (2). But the wij will affect the basic free energy levels (1,
2) and the steady-state flux or fluxes, per enzyme molecule,
because the rate constants al for the transitions of a particular
enzyme molecule of the lattice are altered instantaneously to
new values that depend on the instantaneous states of all the
nearest neighbors of the particular molecule. The rate constant
alterations have, of course, to be consistent with the we. This
still allows much latitude in the construction of a kinetic model
of interaction effects, but we shall adopt a definite and rather
natural convention in this regard in the following section.
We have to imagine, then, that each of theM enzyme mol-

ecules of the lattice is undergoing its own stochastic behavior,
i.e., making occasional instantaneous transitions within its ki-
netic cycle or diagram (2). However, this stochastic behavior
is not that of an independent enzyme but rather that of an en-
zyme whose transition probabilities at any time t depend in
some prescribed way (see the next section) on the states of all
of its nearest neighbors at t. This is a steady-state interactive or
cooperative (positive or negative) system, a 2-fold generalization
of the equilibrium Ising problem (the usual Ising problem is
limited to n = 2).
The steady-state properties of immediate interest are the

probabilities pi of each enzyme state (kept = 1) of the kinetic
diagram and the net mean flux or fluxes per enzyme molecule
(there is only one operational flux for a single-cycle enzyme).
These properties will be the same for all enzymes in the lattice
ifM co or ifM is finite but the lattice has periodic boundary
conditions (e.g., a one-dimensional ring of M molecules).
Otherwise there will be end effects. In addition to the above,
there are of course a great many other topics of obvious interest
such as probabilities for groups of molecules in various states,
fluctuations, noise, correlation functions, phase transitions,
critical behavior, cycle completion stochastics (16), etc. In
general, one can ask: (a) what influence do the nearest-neighbor
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interactions within the lattice have on the steady-state properties
of the unperturbed enzyme? and, conversely, (b) how do
steady-state conditions alter the equilibrium properties of co-
operative Ising systems?

Fluid Problem. The above is a sketch of the problem for a
lattice of enzyme molecules. The counterpart is a system of
identical enzyme molecules moving in a solvent and at a suf-
ficient concentration c so that inter-enzyme interactions are
significant. The interaction free energy wj(r) now depends on
the distance r between enzyme pairs (and on their mutual
orientation, in a more general treatment). To be interesting, in
the present context, we need w0j(r) to depend significantly on
ij as well as on r. The problem can be considered, again, in one,
two, or three dimensions. The three-dimensional case is ob-
viously realistic, and in fact a particular equilibrium case
(multiple binding of a ligand-e.g., protons-to interacting
protein molecules) has been studied in some detail (15, 17, 18).
The two-dimensional case is also realistic because many protein
or enzyme molecules (or complexes) in membranes are believed
to be able to diffuse in the plane of the fluid-like phospholipid
matrix. But whether there are experimental enzyme-interaction
effects of significant magnitude in real two- or three-dimen-
sional fluids is, of course, another question.

In the fluid problem, a given enzyme molecule has, instan-
taneously, neighboring molecules in various states and at
varying distances r. All of these neighbors, within range, con-
tribute to the total free energy of interaction of the given
molecule with its instantaneous environment. Correspondingly,
the unperturbed rate constants aii (applicable when c - 0)
of the given molecule are altered instantaneously in such a way
as to be consistent with the total interaction free energy (see
below).

There are two extreme cases (and a much more difficult in-
termediate case): (a) diffusion of enzyme molecules is fast rel-
ative to the time scale of transitions of the kinetic diagram; and
(b) transitions are fast compared to diffusion. Case a would
appear to apply to enzyme molecules in aqueous solution and
possibly also to enzymes in membranes, though the interme-
diate situation is probably also of importance in the membrane
case.

Lattice-Fluid Problem. Finally, we mention a generalized
lattice problem that serves as a bridge between the above lattice
and fluid (diffusion) problems. In fact, this model represents
a lattice approximation to the fluid problem. In a lattice of M
sites, N are occupied by enzyme molecules and M - N sites are
empty. A given enzyme molecule (on a site) may now have both
nearest-neighbor enzyme molecules and nearest-neighbor
empty sites (with no interaction). Otherwise, transitions ij of
an enzyme at a site, and the influence of nearest-neighbor in-
teractions on these transitions, are handled as in the original
lattice problem. A new feature here, however, is the additional
possibility that a molecule in state i at a given site can jump to
a nearest-neighbor site, provided that this site is empty. The
molecule is still in state i after the diffusional transition. Such
a transition competes, stochastically, with "biochemical"
transitions of the type i j at the original site. The unperturbed
rate constant for a jump between neighboring sites in either
direction is Ko, which one might take, for simplicity, to be the
same for all states i (because enzyme states usually differ from
each other only at the local level, e.g., by a relatively small
conformation change or by binding a small ligand). That is, the
"diffusion coefficient" is taken to be independent of state i.
"Unperturbed" refers here to jumps in which both the initial
and final sites in the jump have only empty nearest-neighbor
sites.

The jumping enzyme molecule, in state i, has a set of in-
stantaneous nearest neighbors in the initial site and another set
in the final site. The corresponding interaction free energies
will alter the two unperturbed rate constants KO, as described
at the end of the next section.

Relation between Rate Constants and Interactions. We
present in this section the convention (not unique) to be used
in assigning what we have called, above, "altered" rate con-
stants. Consider the inverse transitions i j and j - i for a
particular "central" enzyme molecule in the presence of an
arbitrary instantaneous nearest-neighbor environment that we
designate by e. In the solution problem, e includes neighbors
at all values of r within range of the central molecule. Let Wie
and wje be the interaction free energies between the central
molecule (in states i and j) and the enzyme molecules com-
prising e. For example, for a square lattice, if e happens to in-
clude two nearest-neighbor molecules in state k and two in state
m, then

wie = 2Wik + 2Wim, Wje = 2Wjk + 2Wjm. [1]
That is, pair-wise additivity of interaction free energies is as-
sumed (these are potentials of mean force; see p. 349 of ref.
15).

If aij and aji are the altered rate constants in the presence
of e, then detailed balance in a hypothetical equilibrium be-
tween states i and j requires that

aja = (aoi1/ao.i)e(wfe-wie)/kT. [21
Note that, because ij is arbitrary, the product of instantaneous
relations such as Eq. 2 around any cycle in the diagram will
give, because of cancellation of the ws,

I1+/H- = 110+/Ho0- = eX/kT [3]
where X is the thermodynamic force (2) operating in the cycle
in the positive (i j) direction (X is determined by ligand
concentrations only), 11+ is the product of as around the cycle
in the i - j direction, etc. Eq. 3 confirms that interactions do
not alter the force X.
The explicit assumption we make about individual rate

constants is that

a1ij = a0..efq(witew-je)/kT

aii = ao12e (Iffj)(Wje-wie)/kT) [4]

where fij is a constant fraction that depends on the pair ij (in
general) but not on e. In the language of Eyring's rate theory,
this is equivalent to assuming that the interaction free energy
between the ij transition state ("activated complex") of the
central molecule and e is an average of Wie and wje,

(1 -fij)Wie + fijWje, [5]
with the same fractional weights 1 - fi1 and fij used for all
contributors to e (e.g., the enzymes in states k and m in Eq. 1).
This seems plausible, at least. In fact, for simplicity, the choice
we shall usually make is the symmetrical one: fij = 1/2 for all
transitions ij.

Finally, we consider the altered rate constants for site-to-site
jumps in the hybrid lattice-fluid model. We consider the jump
for an enzyme molecule in biochemical state i from an initial
site with instantaneous environment e to a final (nearest-
neighbor) site with environment e'. Let K+ be the forward rate
constant and K- the reverse. Then, as in Eq. 2,

K+/K_ = e(wie-wje')/kT. [6]
It seems particularly natural, for this purely physical process,

Chemistry: Hill



Proc. Nati. Acad. Sci. USA 74 (1977)

to use the symmetrical choice for the individual rate con-
stants:

K+ = Koe(wte-wte')/2kT
Free
energyK_ = Koe(wie'-Wie)/2kT. [7]

Rate Constant Relations in Two-State Systems. Most sin-
gle-cycle enzyme systems have at least three states in the cycle.
However, some rate constants may be much larger than others
so that a more extensive cycle may reduce, effectively, to only
two states (2). Fig. 1A shows a two-state cycle, including the
special unperturbed rate constant notation to be used for this
simple case. The dominant cycling direction is, say, counter-
clockwise (aOOO > a'o,0'o). The well-known Michaelis-Menten
case is (3'o = 0 with ao pseudo-first-order.
Fundamental rate constant relations for the unperturbed

enzyme in Fig. 1 A and B are (2)

ao/a'o = e/kT, fo/WO = e(X-A)/kT

aoflo/a'oB'o = eX/kT [8]
where A and X - A are "basic free energy" (2) drops in the
transitions [1 -- 2 (left in Fig. 1A) and 2 -* 1 (right), respec-
tively], and X is the thermodynamic force, or total free energy
drop for one counterclockwise cycle (Fig. 1B).
The steady-state probabilities of the two states of the un-

perturbed enzyme are (2)

p=(=o + a'o)/(ao + W'o + do + a'o) 19]
P2 = (ao + 3'o)/(ao + #'o + fdo + a'o)

and the corresponding counterclockwise net flux per enzyme
molecule is

J = (ao3o - a'o3'o)/(ao + Wo + do + a'o). [10]
In the presence of an instantaneous environment e (i.e., one

or more enzyme molecules in states 1 and/or 2), the altered rate
constants are, according to Eq. 4,

a = a(efa(w1e-w2e)/kT

a' = aoe(1-fa)(W2-w1e)/kT

0 = fO3efa(w2e-we)/kT
-'= 0'(e(-fOi)(We-w2e)/kT [11]

Although we are considering a system at steady-state, because
there are only two states in the cycle, Eqs. 9 for the unper-
turbed system have the same form they would have at equi-
librium for the hypothetical system indicated in Fig. 1C, in
which there is a single inverse pair of transitions. That is, there
is a simulated combined "detailed balance" at the steady
state:

(ao + fl'o)PI = (do + a'o)P2- [12]
This quasi-equilibrium behavior has been pointed out before
(19).

In the presence of an instantaneous interacting environment
e, the combined rate constants corresponding to ao + I3'o and
(3o + a'o, above, are now a + 3' and fl + a', as given by Eqs. 11.

If we form the quotient (a + (3')/(f3 + a'), we obtain the simple
result

aX + (3= (aO + d°o) e(wle-w2e)/kT
+ a'" (do + a'o)

[13]

ifand only if the conditionfa + fe = 1 is satisfied. The signif-
icance of Eq. 13 is that it is precisely the altered "detailed bal-
ance" relation for the simulated "equilibrium" system of Fig.
1C in the presence of e (just as in Eq. 2 for any single transition
pair).- It therefore follows from Eq. 13 that the quasi-equilib-
rium nature of the unperturbed two-state system will persist

ce +o ItIo + toe
2

A B C

FIG. 1. (A) Two-state cycle with unperturbed rate constant
notation. The counterclockwise direction is dominant. (B) Basic free
energy changes for the unperturbed enzyme. See text (Eq. 8). (C)
Effective or simulated "detailed balance" at steady state (see
text).

even in the presence of an arbitrary interactive environment,
in the special casedf + f# = 1. Mathematically, in this case, the
steady state cannot be distinguished from an equilibrium. When
fa + fd = 1, then, steady-state population properties such as
state probabilities, probabilities of nearest-neighbor pairs and
triplets of different types, correlation functions, spatial distri-
bution functions, etc., will be the same as for the corresponding
equilibrium system with interactions.
The applicability of equilibrium population properties to

steady-state, two-state systems is, of course, extremely helpful
mathematically. We shall illustrate this, in the following paper,
for a one-dimensional lattice of two-state enzymes. In this case
we can take over results from the exactly soluble one-dimen-
sional equilibrium Ising problem. As another example, the
distinction between the two extreme diffusion cases a and b,
mentioned under Fluid Problem, disappears at steady state for
a two-state enzyme with fa + fo = 1.

Example: Two Enzyme Molecules with Two States. This
is the simplest example possible to illustrate interaction effects
on enzyme flux (or turnover). It can easily be worked out
completely, though this is not done here. The same problem for
two different enzyme molecules has been discussed elsewhere
(1, 2). To simplify the algebra, we deal primarily with the
special case of a one-way cycle (a'o = 'o =0 in Fig. 1A). Each
of the two identical molecules (M = 2) has states 1 and 2 (n =
2) and the pair of molecules (at a fixed distance apart, as in a
lattice) then has states 11, 12, 21, 22. The interaction free
energies are wii, W12, etc., and we introduce the notation YII
- e-w1/kT, Y12 e-w12/kT, etc. Using Eqs. 11, the rate constants
for the transitions in the one-way cycle are

11 12 or 11 21: ao(y12/Y11Ya
12 22 or 21 22: ao(Y22/Y1
12 11 or 21 11: f3o(Y11/Y12)k
22 12 or 22 - 21: fO(Yl2/Y22Y)- [14]

Thus, in the top line here, the transition is of type 1 2 (left
in Fig. 1A) and the environment e consists of one molecule in
state 1. For two-way cycles, the rate constants involving a'o and
fl'o are similar. Using the fact that the transition fluxes (2) into
and out of each pair-state (11, 12, etc.) must be equal at steady
state, we find

P12/P1 = (ao0/(o)(Y12/Y11Ya+f1
P22/P12 = (ao/flo)(Y22/Y12f+f [5

Together with 2:Pij = 1 and P12 = P21, Eqs. 15 suffice to de-
termine the four pAi. Incidentally, if we had included back re-
actions (a'o and (3'o), we would have found, instead of Eq.
15a,

p12 - aCo(y12/Y1)f + 'o(Y12/Y10_f 16
P11 O(YllY/Y12)' + a'o(y11/Y12)fa [16]
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FIG. 2. Kinetic diagram for a pair of three-state enzyme molecules
(M = 2, n = 3) with one-way transitions (arrows). All rate constants
are ao. State 33 is excluded because of strong repulsion between
molecules in this state. There are no other interactions. The numbers
in circles indicate relative steady-state probabilities of states.
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Eqs. 15 and 16 illustrate an important point made in the
previous section: the steady-state probability ratios in these
equations correspond to those of a quasi-equilibrium system
if and only if fa + fd = 1. For example, from Eq. 16 when fa
+hf = 1,

P12/P11 = [(ao + fl'o)/(13o + a'o)](y12/YI1), [17]

which simulates a detailed balance relation (compare Eq. 13).
But there is no need to employ this simplification here.
The flux per molecule, around the one-way cycle in Fig. 1A,

is the property of primary interest. It can be calculated in sev-

eral ways from Eqs. 14 and 15. For example,

J = 11 -"12+21 22= 12 11 +22 21

= ao(Y12/YllfYPl + ao(y22/y12)fp21

(ao/#o)(aoy22fay2ffi + floy 1ffydf)
yiifa+ft6 + 2(ao/1lo)yj2fa+fS + (ao/l0o)2y22f+f

[18]

This is to be compared with the unperturbed flux aoilo/(ao +
do) (Eq. 10), which also follows from Eq. 18 on putting yl =

Y12 = Y22 = 1 (no interactions).
In the special case wili = W12 = 0 andfa = fit = 1/2, Eq. 18

becomes

(ao/fo)(aoy221/2 + f3o) [19]

1 + 2(ao/flo) + (ao/(%)2Y22[
That is, in this case the two molecules interact (w22) only when
both are in state 2. Eq. 19 will be illustrated numerically in the
sequel. In the limit w22 Xo (strong repulsion), ao0o/(2aO
+ flo) (state 22 is not allowed). In the limit wv22 -ao, J -

flo/y221/2 0. That is, p22 (see Eqs. 14). When w22/kT is

very small,

aJ a+$°z| 1 2kT *(°( +:#)2°)+..|[0
If ao = /lo in Eq. 19,

J = ao(l + y221/2)/(3 + yu). [21]

By the method of Fig. 2 (2, 3), it is easy to derive the result
corresponding to Eq. 21 for a pair of molecules, each with a

one-way three-state cycle (n = 3). That is, we take (the states
are 1, 2, 3) a12 = a23 = a3l = ao, allw = 0except wU3, and f2s

211 121 112 3x

212 x2

B Open

FIG. 3. (A) Enumeration of all possible states of a closed linear
chain of six two-state molecules, with nearest-neighbor 22 pairs ex-

cluded owing to strong 22 repulsion. The only transitions indicated
(pairs of arrows) are for the second molecule in the chain (as an ex-

ample). See text for further details. (B) The five possible states of an
open chain of three two-state molecules, with 22 neighbors excluded.
These five states correspond to the five transitions shown in A (note
the states of the last three molecules in the chain of six).

= f31 = 1/2. We find, per molecule,
J = ao(4 + 5ys33/2)/3(5 + 3y331/2 + ye). [22]

The unperturbed flux (ye = 1) is ao/3.
Example: Two Enzyme Molecules with Excluded Pair-

States. Fig. 2 shows the kinetic diagram for a pair of three-state
molecules (M = 2, n = 3). There is a one-way cycle and all three
rate constants in the cycle are ao (as in Eq. 22). State 33, how-
ever, is excluded because of strong repulsion, w33/kT .

There are no other interactions. This is the case y3 = 0 in Eq.
22 (see also Eq. 21 with y22 = 0). All arrows in Fig. 2 are asso-

ciated with a rate constant ao. The numbers in circles give the
relative steady-state populations of the pair-states (2, 3). For
example, P12 = 2/15. This algebraic solution can be checked
by inspection (the net transition flux is zero at each pair-state).
Note that simulated detailed balance is absent because n > 2.
The flux per molecule can be seen, in various ways, to be
4ao/15. The following is a summary of fluxes per molecule for
such cases, with n = 2, 3, 4:

n = 2: J/ao = 1/2[0], 1/3[1]

n = 3: J/ao = 1/3[0], 4/15[1], 1/5[2]

n = 4: J/ao = 1/4[0], 9/41[1], 8/45[2], 1/7[3]. [23]

The number in brackets indicates the number of enzyme states
(out of n) involved in the strong repulsive interaction. For ex-

ample, for n = 4, [1] means that the pair-state 44 is excluded,
[2] means 33, 34, 43, 44 are excluded, etc. The [0] fluxes are the
unperturbed values. For a given n, the flux of course decreases
with an increasing number of exclusions.

112111
111112

it
6x

9x2

2x3

1
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Example: Closed One-Dimensional Two-State Chain with
22 Pairs Excluded. Consider a linear chain of M molecules of
the type shown in Fig. IA. The chain (or ring) is closed, as in-
dicated by the dotted line at the top of Fig. 3A (where M = 6).
All molecules have equivalent properties in a closed (but not
in an open) chain. The only interaction is w22/kT -ao. Hence,
all nearest-neighbor 22 pairs are excluded from the chain, but
otherwise there are no interaction effects.
The possible system-states for M = 6, as an example, are

enumerated in Fig. AA. The only transitions shown explicitly
in Fig. 3A are those (as an example) for the second molecule
in the chain (see the arrow at the top of the figure). These are
combined transitions, as in Fig. 1C. It is obvious that "detailed
balance" will obtain at steady state, producing quasi-equilib-
rium systemn-state probabilities. The relative probabilities of
individual states in Fig. 3A are (reading downward) 1, x, x2
X3, where x (ao + 3'o)/(fWo + ato).

Note that, because 22 pairs are excluded, the second molecule
in the chain can undergo the transition 1 - 2 only when the
first three molecules in the chain are in the state 111. This can
occur in five ways, because the remaining three molecules can
exist in the five states shown in Fig. 3B. These five states are all
of those possible for an open linear chain withM = 3 (i.e., the
state 212 in Fig. 3B is not excluded because this group of three
molecules has a state 1 molecule on either side of it in the
complete M = 6 chain).
The probability of the top state in Fig. 3A is I/Zcl, of state

121111 is x/1cl, etc., where Zac (cl closed) is the sum 1 + 6x
+ 9x2 + 2x3 (Fig. 3A). This sum has the form and significance
of an equilibrium grand partition function (15). The flux per
molecule (see Fig. 1A) is then, from the five transitions,

J = [(aoo- a'ox) + 3(aox - a'ox2) + (aox2- a'ox3)]/zcj.
[24]

Proceeding in this way, we find for M = 1 to 7,

J [(aofo - a'o/'o)/(fo + d'o)] X p.q.
M = 1: 1/(1 +x)=p.q. forM = 1

M = 2: 1/(1 +2x) = p.q. forM = 2,etc.
M = 3: 1/(1 + 3x)

M = 4: (1 + x)/(l + 4x + 2x2)

M =5: (1 + 2x)/(1+ 5x + 5x2)

M =6:(1 + 3x + x2)/( + 6x + 9x2+2x3)
M = 7: (1 + 4x + 3x2)/(1 + 7x + 14X2 + 7x3). [25]

The polynomial quotients (p.q.) can be written (see above)
op(M-3)/'Cl(M), where op = open.
Let 0(= P2) be the probability that any molecule of the chain

is in state 2. We can then easily calculate 6 from -cl(M). We
find that the p.q. in Eq. 25 is just O/x. Thus, for any M,

J = (aoIo - a'of'o)0/(ao + fl'o). [26]

This result can be verified or understood as follows. The two
separate rates for 2 1 are /3o0 and aook (see Fig. 1A), because
there is no interactive restraint on these processes. Then we
have

J = aoP - a'oO = floO- 'oP, [27]

where P is the probability that any one of theM triplets in the
chain is of the type 111. From Eq. 27 we first find that P = O/x
and then deduce for J the same result as in Eq. 26. Note, finally,
that P = p.q.

I am indebted to Dr. A. L. Fink for a helpful discussion.
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