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Abstract

To date semi-empirical or surrogate modeling has demonstrated great success in the prediction of 

the biologically relevant properties of polymeric materials. For the first time, a correlation 

between the chemical structures of poly(β-amino esters) and their efficiency in transfecting DNA 

was established using the novel technique of logical analysis of data (LAD). Linear combination 

and explicit representation models were introduced and compared in the framework of the present 

study. The most successful regression model yielded satisfactory agreement between the predicted 

and experimentally measured values of transfection efficiency (Pearson correlation coefficient, 
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0.77; mean absolute error, 3.83). It was shown that detailed analysis of the rules provided by the 

LAD algorithm offered practical utility to a polymer chemist in the design of new biomaterials.

Keywords

combinatorial library; computational modeling; machine-learning algorithms; polymeric gene 
delivery; prediction of biological response

Introduction

Logical analysis of data (LAD) has been recently utilized to build data mining/machine 

learning models, which were successfully applied to the development of diagnostic and 

prognostic systems in medicine as well as to the focused design of polymeric 

biomaterials.[1] The medical applications of LAD vary from differential diagnosis of 

selected types of pneumonias and prognosis in ovarian and breast cancer research[2] to risk 

assessment among cardiac patients.[3] In the field of biomaterials design, combinatorial 

computational models can be of utmost importance for prediction of the cellular response to 

implanted medical devices.[4] In particular, LAD was applied to examine cell growth on the 

surface of polymers comprising a library of 112 polyarylates.[5] LAD identified patterns of 

physicochemical parameters, adequately classified each polymer as high, medium, or low 

cell growth substratum, and established correlations between cellular response and polymer 

properties that are uniquely relevant to the specific polymer chemistry.

Since LAD already has a well-established reputation in solving of a large number of data 

analysis problems, it would be invaluable to test its applicability to more sophisticated tasks 

in the design of novel biomaterials. During the past fifteen years, gene therapy has attracted 

considerable attention in the field of chemistry, medicine, pharmaceutical sciences, and 

biotechnology due to its great potential in treating various types of genetic disorders and 

cancer.[6] Despite the significant promise and advances in gene therapy research, results of 

numerous clinical trials have yet to attain a compelling record of success. As an alternative 

to the viral gene delivery systems, recent studies suggest that nonviral gene delivery systems 

may hold advantages due to their low immunogenecity, the absence of endogenous virus 

recombination, reproducibility and lower costs.[7] Additional benefits include unlimited 

DNA size for packaging and the possibility of chemical modifications for specific tissue or 

cell targeting. However, the efficiency of nonviral delivery systems is noticeably lower than 

that of viral vectors.

Among known categories of nonviral gene delivery (e.g., naked DNA delivery and lipid-

based delivery), polymer-based delivery has attracted considerable attention.[6] Self-

assembled complexes of DNA and synthetic polymers termed “polyplexes”[8] are stabilized 

by electrostatic interactions between the anionic phosphate groups of the DNA and the 

cationic groups of the polymer.[8] Diverse types of polycationic polymers have been studied 
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extensively, including linear, branched, dendritic, and block or graft copolymer 

architectures.

Recent advances in cationic polymer-based gene delivery include incorporation of 

biodegradability into the polymer design to decrease toxicity, and the development of 

combinatorial approaches to synthesis and screening of these materials.[9] The backbone of 

most nondegradable polymeric gene carriers contains a carbon–carbon or amide bond, 

which do not degrade under physiological conditions. Such carriers cannot be completely 

removed by physiological clearance systems, which leads to their accumulation in cells and 

therefore, increased cytotoxicity.[6] In contrast, biodegradable polycations contain a 

degradable region represented by a hydrolysable ester linkage. As a consequence, they 

exhibit lower cytotoxicity and higher (or comparable) transfection efficiency relative to 

nondegradable polycations such as poly(L-lysine) or polyethyleneimine (PLL and PEI, 

respectively). It has been shown in several publications by Langer and co-workers[9-11] that 

poly(β-amino esters) are a particularly promising biodegradable class of polymers due to 

their high in vitro transfection efficiency and relatively straightforward synthesis. This group 

of authors pioneered[12] the solution-phase parallel synthesis and characterization of a large, 

structurally diverse library of degradable poly(β-amino esters). The most promising 

candidates in terms of transfection efficiency were successfully identified by high-

throughput screening of all polymers in the library.[9]

Kohn and co-workers[13-16] have demonstrated in several publications that quantitative 

structure-activity relationship (QSAR) data modeling, described as surrogate modeling, is a 

useful tool for prediction of both protein adsorption on, and cellular response to, the surface 

of polymeric materials. Moreover, surrogate modeling may serve as a guide for the rational 

design of candidate materials for further investigation and focused applications. The purpose 

of the present study was to assess the utility of logical analysis of data (LAD), a novel 

surrogate modeling tool for prediction of polymeric DNA carriers using the gene delivery 

data obtained by Anderson et al.[9]

Methods and Models

Gene Delivery by Poly(β-amino esters)

As described in detail by Anderson et al.,[10] transfection assays were performed in vitro 

with all polymers at six different polymer/DNA ratios to investigate the influence of the 

ratio itself, molecular weight, and chain end group on the transfection efficiency of each 

polymer.[9] COS-7 cells were used in conjunction with plasmid DNA encoding the firefly 

luciferase reporter gene (pCMV-Luc). Overall 12 000 transfection experiments were carried 

out by means of high-throughput methods.[9] The specific dataset used in this work was 

reported in Supplemental Table 2 of ref.[9]

LAD Methodology

LAD was originally developed by Hammer and coauthors.[17,18] This method uses 

combinatorics, optimization, and Boolean logic to detect structural information present in 

datasets. Classification is the major application of LAD, directly comparable and 

competitive with other machine-learning methods. One of the distinctive features of LAD is 
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its ability to explain the classification of new observations in a way consistent with previous 

classifications archived by the algorithm.[19] The other specific feature of LAD is the 

recognition of hidden logical patterns that distinguish observations in one class from the all 

other observations and that govern the phenomena of interest. LAD identifies patterns 

expressed in terms of input variables or predictors (e.g., molecular descriptors) and renders 

the prediction in terms of positive or negative outcomes. The LAD approach was developed 

such that it is equally amenable to datasets contain numerical or binary variables.[19]

The conventional LAD methodology, primarily designed for the detection of patterns and 

classification, has been recently extended to deal with regression problems.[20] The resulting 

algorithm can be viewed as the iterative construction of a set of binary predictors. The form 

of the binary predictors resulting from the LAD regression function may suggest relations 

between the original variables that may not be apparent at first glance. The additional set of 

generated binary predictors is unattainable by most regression approaches, where numerical 

products of two or three of the original variables are used as additional predictors. The 

present study is an initial attempt to apply this methodology to the nontrivial problem of 

polymeric gene delivery. All LAD results reported in this paper were obtained using the 

RUTCOR software.b

Cross-Validation

The results presented in this paper were cross-validated by means of the k-folding method of 

statistics. The total set of observations was randomly partitioned into k (using k = 10) 

approximately equal subsets. One of these subsets was defined as the test set. The model 

was built using the remaining k − 1 subsets, which formed the training set, and then tested 

on the k-th subset. This process was repeated k times by changing a subset taken as a test set. 

The quality of the method was gauged by the calculated average accuracy for the entire 

iterative process.[1]

Selection of Modeling Variables

The multitude of experimental variables introduced in ref.[9] and Supplemental Table 1, 3, 

and 4 (e.g., polymer molecular weight, particle size, and complex surface charge) represents 

a serious challenge for surrogate modeling even in the case of high quality experimental 

measurements. Therefore, to avoid excessive complexity of our models and to make the 

consequent data analysis feasible, we restricted ourselves to structure-related variables such 

as stoichiometric ratio, the nature of end groups and the number and type of molecular 

descriptors.

Alternative Predictive Techniques

Several alternative predictive techniques were employed in the present study for comparison 

with LAD to assess its superiority in solving the nontrivial problem of gene delivery 

prediction. These were neural networks represented by polynomial neural network 

(PNN)[21,22] and artificial neural network (ANN), support vector regression (SVR), and 

linear regression (LR) method.[23] The ANN used in this study is represented by feed-

bRUTCOR facility has to be contacted with regard to the software accessibility.
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forward network with one hidden layer. The software included in the Weka package[23] was 

used for LR, SVR, and ANN methods. The custom-made simulation package was adopted to 

build PNN models.[21,22]

Computational Models

Accurate prediction of physical and biorelevant polymer properties based on their chemical 

structure still remains a challenge for quantitative structure-activity relationship (QSAR) 

approaches. Conventional QSAR approaches use various modes of regression such as 

simple linear regression and neural networks, which require input of fixed-size numerical 

vectors usually represented by molecular descriptors. Descriptors can be derived from 

experimental properties or computed from chemical structure. In the present study only 

conformation independent, two-dimensional (2D) descriptors were utilized for the sake of 

computational efficiency and due to their previous success in building surrogate models for 

prediction of bioresponse.[13-15]

Two modeling approaches hereafter referred to as linear combination and explicit 

representation models were proposed to provide a quantification of polymers from the 

poly(β-amino esters) library.[9]

Linear Combination Model

Each polymer was represented by its composite monomers (i.e., amino and diacrylate 

monomers) and their stoichiometric ratio. For example, diacrylate monomer C and amino 

monomer 32 were denoted as C32-1.0, C32-1.20, etc. A set of molecular descriptors for 

each of these polymers was generated as follows.

First, the set of descriptors was calculated for the individual amino and diacrylate 

monomers. These descriptors were denoted as

(1)

where n is the total number of descriptors. For example, descriptors for the polymer C32 

were defined as

(2)

The stoichiometric ratio was included by means of parameter ν

(3)

and the descriptors were computed for each specific polymer at certain amine/acrylate ratio 

as a linear combination, i.e.,

(4)
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Thus, descriptors were computed using the Dragon software package[24] for a total of 30 (18 

amino and 12 diacrylate) monomers that comprised 76 polymers listed in Supplemental 

Table 2.[9] For the linear combination model, two sets of descriptors were generated. The 

extended set comprised 472 descriptors, which were organized into 12 groups ranging from 

constitutional descriptors to Eigenvalue-based indices according to the default classification 

of the Dragon software. The selected set consisted of 42 empirical descriptors representing 

the group of molecular properties (the general rational for this type of selection is outlined in 

the section “Selected descriptor set”).

Explicit Representation Model

For the explicit representation model,68or60(depending on availability and the quality of 

experimental data) polymers of 10–11 monomers length were built by means of the polymer 

builder module provided in the MOE modeling package.[25] The basic structures of poly(β-

amino esters) that originated from the conjugate addition of primary or bis(secondary 

amines) to diacrylates[10] were computationally reproduced accounting for amine–amine and 

(for the sake of comparison) amine–diacrylate terminal groups. In this case the extended and 

selected sets comprised 184 (i.e., the total number of 2D descriptors in MOE package) and 

21 descriptors, respectively, where the later set was formed from the entire (i.e., extended) 

one by focused selection (see the section “Selected descriptor set” for more details).

For both models monomer subunits were sketched using a molecular editor (ISIS/Draw, 

MDL) and then 2D structures were transferred to MOE and geometry optimized using the 

MM94 molecular mechanics force field. The optimization procedure was carried out with 

gradient of 0.05, cutoff of 8, and dielectric constants of 1 and 80 for molecular interior and 

exterior, respectively. Convergence was achieved on average after 5 000 iteration steps. 

Finally, the 2D descriptors mentioned above were calculated for the extended and selected 

sets of the linear combination and explicit representation models by means of the Dragon 

and MOE programs, respectively. Additionally, all computational models presented here 

were built for only two stoichiometric ratios: 1:1 and 1.2:1. Since the most successful 

poly(β-amino esters) in terms of transfection efficiency were C32, JJ28, and C28, identified 

at these specific compositions, the corresponding datasets contained the largest number of 

experimental data points and these stoichiometric ratios were the most suitable for both 

computational models. Results from the computational models are summarized in Table 1. 

Structure of polymers in sdf format are available on-line as Supporting Information from the 

journal website.

Results and Discussion

Characterization and Comparison of Predictive Models

The predictive ability of the surrogate regression models obtained from LAD, LR, SVR, and 

ANN were characterized by calculating the average Pearson correlation coefficient which 

can vary from −1 to 1,[26] and the mean absolute error (MAE) between the predicted and 

actual values of transfection efficiency. The MAE was computed as the average difference 

in absolute value between the predicted and the actual transfection efficiency of each 

polymer over the entire dataset. The results obtained by these algorithms for the linear 
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combination and explicit representation computational models built for the extended and 

selected descriptor sets are shown in Table 2 and 3. Four data sets that differ with respect to 

model representation, descriptor set, and stoichiometric ratio are presented in these two 

tables. The results attained for the linear combination model using PNN and LAD are 

compared in Table 4 To elucidate possible advantages (or disadvantages) of LAD in 

performing analysis of complex biorelevant data, we included for comparison several 

regression algorithms that have significantly different biases for comparative assessment of 

the results obtained for given datasets.

It is worth mentioning that the Pearson correlation and the MAE criteria, although related, 

suggest two different ways of interpreting the results in Table 2 and 3. While the MAE 

criterion tells how close (on average) the predicted values are to the actual transfection 

efficiency values, the correlation coefficient indicates the degree of linearity of the 

relationship between the predicted and experimental values of transfection efficiency. 

Therefore, among the four datasets examined, both datasets shown in Table 2 were 

identified as the best in terms of average absolute correlation and MAE. Indeed, the absolute 

average correlation of 0.77 obtained for the explicit model dataset after applying the 10-fold 

cross-validation is the highest among the other datasets and it is associated with the lowest 

MAE, which confirms superiority of this particular model representation (see also Figure 1 

and 2). It is a common practice in the field of surrogate modeling to prioritize the MAE 

criterion.[13] From this perspective the overall statistical performance was better for the 

explicit representation model than for the linear combination model (see Table 2).

The absolute average correlation obtained by LAD for the datasets used in conjunction with 

the linear combination model compare favorably with those obtained using PNN. However, 

the cross-validation decreases the accuracy of LAD results by about 70% for the linear 

combination model based on both extended and selected descriptor sets (Table 4).

It needs to be emphasized that a feature selection procedure was employed to improve the 

performance of linear combination model in the case of the extended descriptor set(s). The 

feature selection (or rather feature construction) protocol adopted in the LAD regression is 

completely automatic and guided by the optimization process. The algorithm uses a 

technique called column generation that allows identifying binary logical predictors that 

should be added to the set of currently known features in order to improve the quality of the 

regression function. The issue of variable selection was also addressed in PNN modeling. In 

the training part of the computational protocol, PNN was constrained to use no more than 5–

7 descriptors from the entire pool of 472 descriptors initially included in the linear 

combination model. As one can see from Table 4, use of the feature selection procedure, 

however, did not improve the resulting LAD and PNN correlations. All the above 

demonstrates a weakness of the linear combination model and suggests that the explicit 

representation model is more advantageous in the case of poly(β-amino esters).

The next question to be addressed is: how does the specific size of a descriptor set and 

chemical “nature” of the chosen descriptors influence the accuracy of the predictive models? 

In Table 3 results for the explicit model are compared for (a) the much smaller extended set 

of descriptors (i.e., 184) and (b) the selected set of geometrical descriptors, which consists of 
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21 structure and property related quantities. It is somewhat surprising that there was no 

significant difference in correlation coefficient obtained by LAD, LR, and SVR algorithms 

for the extended and selected set of descriptors. Noticeable improvement in correlation and 

MAE was observed only for the ANN algorithm while overall quality of prediction for all 

four tested algorithms was rather poor. On other hand, the LAD results for the explicit 

model based on the selected 21 descriptors demonstrated high correlation and very low 

MAE when stoichiometric ratio of 1:1 was included in the model and the corresponding 

experimental data set has been employed.

The influence of the chemical composition of poly(β-amino esters) on modeling results 

requires special consideration. According to experimental findings[9] the highest transfection 

efficiency was obtained for polymers C32, JJ28, and C28, which were synthesized at 

monomer ratios with an excess of the amino components. The highest transfection efficiency 

for these, the most effective, polymers corresponds to the stoichiometric ratio 1.2:1 (see 

Supplemental Table 2 of ref.[9]). These results deviate from the trend reflected in the 

correlations obtained for the explicit model with the selected descriptor set (see Table 2 and 

3): the correlation coefficient is much lower for amino terminated polymers at monomer 

ratio of 1.2:1 (i.e., 0.14) than for amino- and diacrylate-terminated polymers at 

stoichiometrically equivalent contribution from both types of monomers (i.e., 0.77). A 

possible explanation for this deviation can be found in the experimental observations. 

Anderson et al.[9] have shown that only polymers with molecular weights above 10 000 Da, 

but none of the low molecular weight polymers, were able to transfect efficiently. These 

differences in the size or molecular weight of poly(β-amino esters) were not included in the 

present computational models and therefore the influence of experimental stoichiometry on 

transfection efficiency could not be captured.

It is still remains somewhat questionable what key factor is responsible for such a noticeable 

difference in correlation for two relatively similar datasets. Numerical analysis of 

experimental data from both 1.2:1 and 1:1 datasets has revealed that the observed 

inconsistency in correlations can also be related to the quality of experimental data 

employed in modeling. Relatively high “numerical noise” and the absence of uniformity in 

the 1.2:1 experimental dataset (so called classification errors) get reflected in significant 

lowering of the overall accuracy of prediction.

Prediction of Transfection Efficiency by LAD Regression

Results of the LAD prediction of transfection efficiency obtained for the explicit 

representation model with the selected set of descriptors (stoichiometric ratio 1:1, 60 

polymers) are compared with experimentally determined values in Figure 1-3. We recall that 

due to the small size of experimental data sets, it was not possible to separate a subset of 

polymers for external validation without significant reduction of the accuracy of prediction. 

Thus, the k-folding cross-validation approach described in the “Methods” section was 

adopted to validate the LAD regression.

LAD regression yielded good agreement between the experimental and predicted estimates 

of bioresponse with average Pearson correlation coefficient r = 0.77 (Figure 1). One can see 

nearly even distribution of data points along the 45-degree bisector in the regions of medium 
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and high transfection efficiency while a certain tendency for clustering can be observed in 

the less significant region of low transfection. Anexcellent agreement between actual and 

predicted values (aside for a few outliers) can be noted in Figure 2, where the error bar 

corresponds to MAE.

The LAD algorithm adopted in the present work constructs an optimal set of rules in such a 

way that the least absolute error of a linear regression function is minimized in the 

associated 0–1 vector space. Once a set of rules has been identified LAD performs mapping 

of each polymer to 0–1 vector space[1] that can be regarded as a transformation procedure 

similar to that implemented by the SVR algorithm.[27] Projecting the polymers in this rule-

based 0–1 space appears to be especially useful because it renders the data amenable to a 

more accurate analysis. The present study exploited this feature by performing standard 3-

means clustering[28] in the 0–1 representation of polymers. The actual and predicted values 

of transfection efficiency for the clusters were obtained (Figure 3). The entire set of 60 

polymers is represented by three clusters that include the polymers with high, medium, and 

low transfection efficiency. One can see satisfactory agreement between experimental and 

predicted values that belong to the clusters with high and low DNA transfection, while 

predicted values of the medium range cluster are slightly lowered.

From the analysis given above one can see that LAD has the obvious advantage in finding 

good correlation for the 1:1 dataset compared with the other well-known predictive 

methodologies due to its ability to handle numerically and phenomenologically challenging 

datasets. Its success is associated with the exceptional ability of LAD to deal with three of 

the most common datasets problems, such as classification errors, missing attributes (i.e., 

experimental values), and small errors in the measurements of numerical attributes.[19]

Selected Descriptor Set

Conventional machine-learning methods from linear regression to neural networks utilize as 

inputs fixed-size numerical vectors. Therefore, the chemical substances must be represented 

by the numerical vectors of the same dimension known as descriptors, which are usually 

derived by means of different encoding techniques (e.g., group contribution, topological 

methods,[29,30] etc.) or obtained experimentally. Computation of descriptor values can vary 

from trivial (e.g., molecular weight) to complex and time-consuming (quantum chemical 

properties).

There are several approaches that can be used to select the descriptors, which are 

inexpensive to compute and which capture the most relevant physical or chemical features 

of molecular systems or/and the process of interest.[31] The approach adopted by Landrum et 

al.[31] to build predictive models for virtual library of polymer catalysts can be defined as 

intuitive. The authors limited the descriptor set to descriptors that are presumably important 

in determining the properties of catalyst or the identity of ligands. Their final descriptor set 

contained ten descriptors such as electrotopological state indices, connectivity and shape 

descriptors, as well as surface factor descriptors responsible for the degree of steric 

crowding. Abramson et al.[5] applied a similar tactic to identify the most significant 

descriptors for prediction of cell growth on polymeric biomaterials using LAD models. In 

this case the authors combined experimentally derived descriptors such as glass transition 
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temperature (Tg) and air–water contact angle (θ) with three new structural descriptors that 

captured information about the chemical composition of the specific class of polymers (i.e., 

polyarylates). Correlations between the chemical composition of polyarylates and the 

selected descriptors were established previously.[5]

Alternative approaches to the selection of descriptors can be called rational, as successfully 

employed by Smith et al. in a series of publications devoted to prediction of bioresponse to 

the surface of biodegradable polymers using ANN and PNN.[13-15] In these studies, a 

decision tree algorithm was used to rank descriptors in order of their correlation to 

fibrinogen adsorption and cell growth data and to select 3–5 descriptors. Including a 

multitude (i.e., about 800) of descriptors in the networks would have been impractical and 

even meaningless in view of the problem of data overfitting. It became an essential part of 

the modeling approach developed by Smith and co-authors to identify a priori descriptors 

that were relevant to the specific type of bioresponse.

In the present work, we have adopted an approach that can be defined as focused. On the one 

hand, the challenging nature of gene delivery problem does not allow one to make a 

reasonably educated guess regarding the correlation of the QSAR descriptors to transfection 

efficiency. Therefore an intuitive choice in this case is infeasible. On the other hand, the 

rational approach can provide a set of automatically chosen (even if they are relevant) 

descriptors that may not allow one to gain desirable and comprehensive insight into 

relationships between chemical structure of the polymers and their performance in terms of 

gene delivery. Hence, the descriptors chosen for this case must reflect the structural 

specificity of the polymers and contain information about their physicochemical 

characteristics that can be modified, if there is a need, in the process of combinatorial 

synthesis. The total list of such descriptors includes descriptors from two groups: 

geometrical descriptors (in the MOE definition – atom and bond counts[25]) and physical 

properties (Table 5). Representatives of these descriptor groups encode information about 

the hydrophilic or hydrophobic nature of polymers, their chain flexibility, number and type 

of hydrogen bonds, molecular weight and surface area which are of utmost importance for 

focused polymer design. As discussed in the next section, we have demonstrated how 

descriptor-based rules of LAD can be used to identify and characterize the most and least 

successful poly(β-amino esters) in terms of DNA transfection.

LAD identification and Characterization of Poly(β-amino esters)

The LAD regression (or Pseudo-Boolean regression)[20] is based on a set of rules. Each rule 

is described in terms of constraints[2] on the values of one or two predictors (in our case 

descriptors). Once a set of rules has been identified, each polymer can be represented as a 0–

1 vector, with each entry corresponding to one the rules in the following way: if a rule is 

satisfied by the polymer, then its corresponding entry is equal to 1, otherwise, it is equal to 

0. In this representation, each rule can be defined as a synthetic descriptor, constructed from 

values of original descriptors. The LAD regression function is given by a sum of the rules 

where each rule is multiplied by a coefficient. A prediction value for each polymer, which is 

derived from this LAD function, is a sum of coefficients of the rules that are satisfied by a 

polymer.
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Table 6 summarizes results of application of the LAD regression function for the explicit 

representation model built for 60 polymers at 1:1 stoichiometric ratio using the selected 

descriptor set (i.e., the best among all models in its predictive accuracy). In the first column 

numerical values of the coefficients of the LAD rules were substituted by a general 

description of the contribution of the rules to transfection efficiency of selected poly(β-

amino esters). “Positive” specifies contribution to high transfection and “negative” indicates 

contribution to low transfection. Each row in Table 6 corresponds to a rule: the second 

column gives the rule’s definition and the last column (i.e., prevalence) shows the number of 

polymers satisfying that rule.

The rules in Table 6 can be interpreted as indicators of specific features of polymers that 

related to a high or low value of transfection efficiency. For example, the first rule defined 

as “the number of nitrogen atoms is at most 10” is associated with five polymers, namely, 

AA24, D24, F94, E86, II28, which support high transfection efficiency. A similar positive 

contribution to the transfection level comes from 31 polymers which satisfy the 

simultaneous rule: “the number of hydrogen atoms is at least 167” and “the number of 

hydrophobic atoms is at least 95.” The same approach can be used to identify structural 

features of the least effective polymers in terms of DNA transfection efficiency.

Alternatively, one can consider the role of a specific descriptor in the rules in which this 

descriptor participates. For instance, the descriptor SMR appears in two rules of Table 6. In 

both rules, the large value of SMR (in one of these rules it is combined with a smaller value 

of the a_acc descriptor) implies a positive contribution to the predicted value. Similarly, 

small values of the vdw_vol descriptor contribute to low predicted values of transfection 

efficiency. In the case of the a_hyd descriptor, the trend is inverted: a value of a_hyd above 

95 contributes negatively to the predicted value, while a value smaller than or equal to 95, 

combined with a low value of a_nH, contributes positively to the predicted value of 

transfection.

LAD analysis also makes use of the so-called incidence matrix of the rules. This matrix 

shows which polymers are influenced by which rules. Each entry of this matrix is either 1 or 

0, depending whether the polymer in that row satisfies the rule in that column or not. Such 

information allowed us to extract rules that are satisfied by the three best performing 

polymers reported in ref.,[9] particularly polymers C32, JJ28, and C28 (see Figure 4). First, 

the rules were extracted for C32, JJ28, and C28 from datasets corresponding to 1:1 and 1.2:1 

stoichiometric ratios. Next, the rules, which exhibit similar trends for both compositions 

were identified and summarized in Table 7.

The value of the information summarized in Table 7 is two-fold. On the one hand, the 

numerical estimates obtained can serve as an excellent guide to a synthetic chemist in his 

search of specific geometrical and physical parameters for polymers with high propensity to 

DNA delivery. On the other hand, the descriptors identified can help one to gain useful 

insights into the physicochemical nature of potentially successful polymer candidates. The 

structural descriptors such as number of carbon and hydrogen atoms capture information 

about chemical composition and, if considered together, may indicate the importance of 

aliphatic chains. The number of hydrogen bond acceptors indirectly emphasizes the role of 
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nitrogen and oxygen atoms (see Figure 4) in hydrogen bonding interactions between 

polymers and DNA. The number of rotatable bonds shows the necessity for polymer chains 

of interest to possess a certain degree of conformational flexibility.

In focused polymer design a researcher attempts to correlate biological response with 

structural characteristics as well as with specific physicochemical properties of a polymer. 

The physicochemical properties reflect different types of intramolecular forces (e.g., 

hydrophobic, ionic, van der Waals), which are involved in interactions between a polymer 

and biochemical environment. In the case of poly(β-amino esters) the appearance of 

logP(o/w) and SlogP descriptors clearly indicates the importance of hydrophobic 

interactions. Molecular refractivity, which is calculated using Lorentz–Lorentz function,[30] 

encodes the molecular volume and the strength of London dispersive forces in 

intermolecular interactions.[32] Molecular volume also appears in Table 7 as the vdw_vol 

descriptor, although the summary of the rules for the entire set of polymers (see Table 6) 

reveals that this property contributes to low transfection efficiency of selected poly(β-amino 

esters). In contrast, the descriptor associated with polymer surface area (vdw_area) 

contributes positively to bioresponse. This positive association concurs with the presence of 

surface effects (e.g., DNA condensation) that were found experimentally.[ 9] The later 

examples emphasize the necessity of thorough analysis of the rules obtained by LAD to 

ensure successful rational biomaterials design.

Conclusion

Since the basic concepts of LAD were introduced by Hammer and co-workers,[17,18] there 

have been a number of applications that demonstrated the competitive performance and 

great flexibility of the LAD methodology. The utility of LAD has been established in pattern 

detection, support set selection, theory formation, etc.; however, classification appears to be 

the most widely used application of LAD that is comparable with other well established 

methods in this field. Recently Bonates and Hammer[20] developed a new LAD algorithm 

that employs principles of combinatorial optimization and mathematical programming to 

extend the LAD methodology to the regression setting. This algorithm has been tested in 

preliminary computational experiments and was shown to be comparable to standard 

regression algorithms in terms of mean absolute error and correlation. The major advantage 

of the new LAD regression algorithm is its ability to capture hidden correlations similar to 

how the conventional LAD algorithm discovers hidden patterns.

Polymeric gene delivery provides a unique opportunity to examine the ability of the LAD 

algorithm to deal with a challenging biological problem. The experimental measurements 

reported by Langer and co-authors that formed data sets analyzed in the present work 

preclude unambiguous identification of the parameter(s) that most control DNA transfection. 

It is very likely that the relationship between polymer structure and transfection efficiency is 

an extremely complex biological process that challenges computational approaches that 

adopt descriptor-based surrogate modeling.

Accuracy of the prediction reported here can probably be improved by performing external 

validation on additionally synthesized and characterized sets of poly(β-amino esters) or 
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including such measured parameters as actual molecular weight, particle size and surface 

charge as descriptors into the predictive model. Including the latter characteristic would also 

illuminate the role of electrostatic interactions in spontaneous binding and condensation of 

DNA by poly(β-amino esters).

Despite the many challenges presented by the experimental data itself, the LAD regression 

algorithm demonstrated clear superiority in establishing good correlation with Pearson 

coefficient of 0.77 and MAE of 3.83 when its performance was compared with that of other 

traditional regression algorithms. It has also apparent that the degree of success depends 

significantly on the modeling representation and the molecular descriptors selected for this 

particular case. The predicted values of the transfection efficiency obtained by means of 

LAD regression function are in strong agreement with reported experimental values.[9]

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
LAD predictions are shown versus experimental results on transfection efficiency for the set 

of 60 polymers (two polymers with the highest values of transfection efficiency are omitted 

for the clarity of the graphical image). Error bars represent MAE.
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Figure 2. 
Comparison of predicted and experimental results for the dataset of 60 polymers. Error bars 

represent MAE.

Gubskaya et al. Page 16

Macromol Theory Simul. Author manuscript; available in PMC 2015 February 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Results of standard 3-means clustering procedure for the dataset of 60 polymers projected in 

the rule-based 0–1 space.
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Figure 4. 
Chemical structures of acrylate and amino monomers which compose the most effective 

polymers from the poly-(β-amino ester) library, namely C32, JJ28, and C28.
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Table 1

Characteristics of models and datasets employed in the present study.

Model Stoichiom. ratio Number of polymersa) Number of descriptors Dataset

Linear combination 1.2:1 76 472 Extended

Linear combination 1.2:1 76 42 Selected

Explicit 1:1 60 21 Selected

Explicit 1.2:1 68 21 Selected

Explicit 1.2:1 68 184 Extended

a)
Number of polymers was selected depending on availability of experimental data.
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Table 2

Correlations obtained for linear combination (stoichiometric ratio 1.2:1, 76 polymers) and explicit 

(stoichiometric ratio 1:1, 60 polymers) models. The selected descriptor sets are shown.

Model Linear combination Explicit

Method Pearson r MAE Pearson r MAE

LAD 0.26 10.30 0.77 3.83

LR −0.32 13.07 0.01 4.59

SVR 0.32 19.27 −0.04 4.71

ANN 0.30 18.95 −0.15 10.29
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Table 3

Correlations obtained for the explicit representation model (stoichiometric ratio 1.2:1, 68 polymers). The 

selected and extended descriptor sets are shown.

Dataset Selected Extended

Method Pearson r MAE Pearson r MAE

LAD 0.14 12.87 0.21 9.76

LR −0.09 14.42 0.37 11.22

SVR 0.06 12.08 0.13 13.97

ANN 0.28 15.26 0.03 23.88
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Table 5

Total list of descriptors chosen for the selected descriptor set.

Name Definitiona)

Atom and bond counts

a_nH Number of hydrogen atoms

a_nC Number of carbon atoms

a_nN Number of nitrogen atoms

a_nO Number of oxygen atoms

a_acc Number of hydrogen bond acceptor atoms

a_don Number of hydrogen bond donor atoms

a_hyd Number of hydrophobic atoms

lip_acc Number of acceptors (i.e., O and N atoms)

lip_don Number of OH and NH atoms

b_double Number of double bonds (non aromatic)

b_rotN Number of rotatable bonds

b_rotR Fraction of rotatable bonds (with respect to heavy atoms)

Physical properties

density Molecular mass density

logP(o/w) Log of the octanol/water partition coefficient (from linear atom type model)

SlogP Log of the octanol/water partition coefficient (from atomic contribution model)

mr Molecular refractivity (from linear atom type model)

SMR Molecular refractivity (from atomic contribution model)

TPSA Polar surface area (from group contribution model)

vdw_area Area of van der Waals surface (in connection table approximation)

vdw_vol van der Waals volume (in connection table approximation)

Weight Molecular weight

a)
Definitions in this table correspond to those adopted in MOE simulation package.[25]
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Table 6

Summary of LAD rules for explicit representation model (stoichiometric ratio 1:1, 60 polymers) with the 

selected descriptor set employed. Significance of contribution to transfection efficiency (TE) is shown in 

descending order.

Contribution to TE Rulesa) Prevalence

Positive a_nN > 10 5

a_nH ≤ 167 AND 31

a_hyd ≤ 95

vdw_area ≤ 2 240.18 31

a_nC > 110 17

SMR > 54.6295 23

a_nO > 30 19

a_nH > 167 28

Weight ≤ 2059.51 34

a_acc ≤ 30 AND 16

SMR > 54.6295

b_rotN > 100.5 29

Negative SlogP > 6.6284 37

a_nH ≤ 167 AND 9

TPSA > 443.39

Density > 0.714308 39

TPSA ≤ 443.39 31

b_double > 12.5 5

b_rotR > 0.627451 44

vdw_vol ≤ 2 842.91 34

mr > 55.9334 25

vdw_vol ≤ 2 842.91 25

AND logP(o/w) ≤ 6.9525

logP(o/w) > 6.9525 29

a_hyd > 95 21

a_nH ≤ 167 AND 29

vdw_vol ≤ 2 842.91

a_acc ≤ 30 51

a_nN > 10 AND 2

b_rotN ≤ 100.5

lip_acc > 40 13

a)
Numerical values associated with each rule are given for 10 monomers length polymer chains.
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Table 7

Summary of the LAD rules covering C32, JJ28 and C28 polymers for stoichiometric ratios 1:1 and 1.2:1.

Descriptor Rules for 1:1 Rules for 1.2:1

a_nH >167 >172

a_nC >110 >111.5

a_acc ≤30 ≤33

b_rotN >105.0 >100.5

b_rotR >0.62 >0.63

density >0.71 >0.71

logP(o/w) >5.20 >6.95

SlogP >4.62 >6.62

mr >56.98 >55.93

vdw_vol ≤28.93 ≤28.42
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