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Abstract

Deciphering the complexity and heterogeneity of cancer benefits from integration of proteomic 

level data into systems biology efforts. The opportunities available as a result of advances in 

proteomic technologies, the successes to date and the challenges involved in integrating diverse 

datasets are addressed in this review.

1. Introduction

While cancer is considered a disease of the genome, a mechanistic understanding of tumor 

initiation and progression is unlikely to be fully elucidated without integration of proteomics 

into the systems biology of cancer. Furthermore, as the most functional compartment 

encoded in the genome, the proteome remains a major source of cancer biomarkers and 

therapeutic targets. Substantial progress has been made in the field of proteomics to allow 

comprehensive profiling of complex proteomes, in-depth analysis of proteins in specific 

cellular compartments (Figure 1), in the microenvironment and in biological fluids. Mining 

the proteome extends beyond assessment of protein concentrations. It encompasses 

numerous types of modifications (Figure 2) that impact activity and functional states.

2. The diversity of approaches to interrogate the proteome

2.1 Mass spectrometry

Remarkable advances in mass spectrometry for protein analysis have occurred in the past 

two decades. The use of mass spectrometry simply for mass peak profiling without protein 

identification has become rather obsolete. Current instruments based on electrospray 

ionization provide very high sensitivity and scan speed that allow identification of a major 

protein form for virtually all proteins translated from expressed genes in a cell population1 

and allow comprehensive analysis of the proteome of serum and plasma and biological 

fluids across seven or more logs of protein abundance.2 Likewise improvements in Matrix 

Assisted Laser Desorption Ionization mass spectrometry have been introduced in part 

through the development of novel probes and optimized liquid matrices that have 

substantially improved sensitivity, which is particularly relevant to modified peptides.3 The 

characterization of common post-translational modifications in proteins notably 

phosphorylation and glycosylation is currently feasible.4, 5 While comprehensive proteomic 

profiling by mass spectrometry has limited throughput, quantitative profiling of a pre-

Address correspondence: S. Hanash. 

NIH Public Access
Author Manuscript
Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2015 February 04.

Published in final edited form as:
Wiley Interdiscip Rev Syst Biol Med. 2012 ; 4(4): 327–337. doi:10.1002/wsbm.1169.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



defined set of peptide products of proteins in complex mixtures through the use of multiple 

reaction monitoring (MRM) is currently feasible for exploratory and confirmation studies 

for proteins of interest that occur in moderate abundance.6

2.2 Parallel approaches to mass spectrometry

Proteins in complex mixtures may be captured and identified using affinity capture agents 

spotted onto microarrays which provides a high throughput approach to interrogation of the 

proteome.7 Coverage is dependent on the diversity of the capture agents, primarily 

antibodies that are available. A reverse process to interrogate the proteome involves arraying 

lysates, proteins and peptides. Recombinant proteins and synthetic peptides may be spotted 

onto microarrays and alternatively peptides and proteins may be synthesized directly on the 

microarrays.8-10 Aside from assessment of protein levels and interactions, the development 

of activity based probes allows a determination of protein functionality and alterations in 

protein activity associated with tumor initiation and progression that would be otherwise 

difficult to assess through genomics or through quantification of protein levels and 

modifications.11

3. Contribution of proteomics to systems biology of cancer

Here we review the added contribution of proteome level studies to the molecular profiling 

of cancer to elucidate pathways, networks and processes that inform about tumor 

development, progression and classification and that have a translational potential by 

yielding biomarkers for diagnostics and targets for therapeutics.12 A conceptual framework 

for the contribution of proteomics to the systems biology of cancer is presented in Figure 3.

3.1 The complementary nature of proteomic and transcriptomic data

The merits of quantitative proteomics as a complement to gene expression profiling depend 

on whether the proteome is strictly regulated at, and predicted from the transcriptome in 

cancer, in which case protein levels in cell and tissues may be simply inferred from gene 

expression data. Relatively few studies have critically addressed this issue. An informative 

study was based on the NCI-60 cancer cell line panel which represents nine cancer tissue 

types.13 Some 65% of genes for which mRNA and protein concentration data were available 

exhibited a statistically significant transcript-protein correlation. In a separate study, 

comparative analysis of mRNA and protein expression for 98 genes in lung 

adenocarcinomas revealed poor concordance for most genes.14 Even if concordance 

between RNA and protein levels is high, the specific compartment(s) in which a protein 

resides or the nature of interacting proteins in a disease process cannot be inferred from 

transcriptomic data alone and therefore evaluation of multiple protein compartments may be 

necessary to elucidate a cancer biological process. A proteomic study comparing metastatic 

and non-metastatic cell lines revealed a multi-layered TGFβ regulatory network by 

integrating data from cell surface, secreted and cytosolic proteins.15 Analysis of proteins 

from the separate proteomic compartments did not identify a dominant regulatory pathway, 

but analyzing the combined proteomic compartments together identified TGFβ as the most 

highly significant network. This combined analysis further revealed a complex regulation of 
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TGFβ, as a few TGFβ-interacting proteins from each compartment coalesced into a 

regulatory network by integration of the data.

Discordance between RNA and protein levels may reflect in part the role of translational 

control. The extent to which translational control in cancer may favor certain mRNAs over 

others has been explored in some detail. In many types of human cancers, eukaryotic 

initiation factors (eIFs) are either overexpressed or ectopically activated by Ras-MAPK and 

PI3K-mTOR signaling cascades.16 An isogenic cellular model of colorectal cancer transition 

from invasive carcinoma to metastasis was utilized to examine the role of translational 

control in metastasis.17 Changes in the level of mRNA association with polysomes occurred 

more than 2-fold greater than changes in the level of total cellular mRNA in the transition to 

metastasis. Distinct signatures of statistically over-represented gene functions in translated 

mRNAs were observed. An increase in the hyperphosphorylated form of the eIF4E-BP1 

protein in the metastatic cell line was found that may have contributed to increased 

activation of cap-dependent translation of certain mRNAs. A multitude of kinases have been 

investigated specifically for their role in 4EBP1 phosphorylation and stability in cancer, 

leading to the identification of several kinases that may be involved in cancer 

development.18 EIF4B, another translation initiation factor, has been found to regulate 

translation of proliferative and pro-survival mRNAs. Depletion of eIF4B in cancer cells 

attenuated proliferation and sensitized cells to genotoxic stress-driven apoptosis.19

It follows from these findings that integration of quantitative proteomics with transcriptomic 

profiling enhances the potential for delineating molecular signatures associated with cancer. 

A combined analysis of the transcriptome and proteome of lung adenocarcinomas yielded 

greater insights than either alone. Eleven components of the glycolytic pathway were shown 

to be associated with poor survival in the combined mRNA-protein datasets20. Proteomic 

analysis of prostate tumor tissue extracts, and integration with genomic data allowed 

construction of a multiplex gene signature representing progression of indolent cancer to 

aggressive disease.21

Integration of transcriptomic and proteomic profiles from mouse models of cancer with 

human cancer profiles can overcome limitations associated with human biospecimen based 

investigations as demonstrated in a recent study.22 Global comparisons of plasma proteomic 

profiles from a large set of various cancer mouse models revealed plasma protein signatures 

of lung cancer (Figure 4). Further integration of gene expression profiles from human lung 

tumor and profiles following gene knock-out manipulations in human lung cancer cell lines, 

NKX2-1/TITF1-regulated proteins were significantly elevated in lung adenocarcinoma 

mouse models, indicating that NKX2-1/TITF1, known as a lineage specific oncogene and a 

master regulator of lung development, regulates production of proteins that are released into 

circulation with tumor development. In addition, pathway analysis of plasma protein profiles 

revealed EGFR signature in an EGFR mutant lung adenocarcinoma mouse model, supported 

by comprehensive proteomic profile of subcellular compartments of EGFR mutant vs non-

mutant lung adenocarcinoma cell lines (Figure 4). Integration of tumor gene expression 

profiles with plasma protein profiles identified neuroendocrine signature in plasma from a 

small cell lung cancer mouse model (Figure 4). These findings suggest that plasma protein 

profile may reflect functionally relevant pathways or characteristics in tumor. Importantly, 

Hanash et al. Page 3

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2015 February 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



concordant findings were observed in human lung cancer plasmas. This study demonstrated 

that integrative analysis of multiple omics data from various materials is a powerful tool to 

identify relevant signatures in human cancer.

3.2 Interrogating the proteome adds functionality to cancer molecular profiling

There is increasing reliance on profiling protein post-translational modifications notably 

phosphorylation as part of an overall strategy to identify molecular features associated with 

aggressive tumors and metastasis, and targets for therapeutics and mechanisms of 

therapeutic response and resistance. Quantitative phosphoproteome and transcriptome 

analysis of MCF-7 human breast cancer cells stimulated with ligand yielded an 

understanding of tamoxifen resistance at a systems level.23 Following stimulation of ligands 

an enrichment in phospho-proteins was observed in sensitive compared with tamoxifen-

resistant cells. Parallel analysis of transcriptomic data suggested that deregulated activation 

of GSK3β (glycogen-synthase kinase 3β) and MAPK1/3 signaling might be associated with 

altered activation of cAMP-responsive element-binding protein and AP-1 transcription 

factors in tamoxifen-resistant cells. This hypothesis derived from the combined 

phosphoproteome and transcriptome data was validated by reporter assays and by testing in 

human clinical samples which revealed that inhibitory phosphorylation of GSK3β at serine 9 

was significantly lower in cancer patients that relapsed following treatment with tamoxifen. 

In another study breast tumor lysate arrays were interrogated using 146 antibodies to 

proteins relevant to breast cancer to determine whether such a functional proteomics 

approach improves breast cancer classification and can predict pathological complete 

response in patients receiving neoadjuvant taxane and anthracyclinetaxane-based systemic 

therapy in independent training and testing sets.24 Six breast cancer subgroups associated 

with different recurrence-free survival were identified based on a 10-protein biomarker 

panel in the training set and confirmed in the test set.

An approach that integrates phosphoprotein profiling was used to identify and quantify 

clinically relevant, drug-specific biomarkers for phosphatidylinositol 3-kinase (PI3K) 

pathway inhibitors that target AKT, phosphoinositide-dependent kinase 1 (PDK1), and 

PI3K-mammalian target of rapamycin (mTOR).25 A total of 375 PI3K pathway-relevant 

phosphopeptides containing AKT, PDK1, or mitogen-activated protein kinase substrate 

recognition motifs were interrogated, of which 71 were drug-regulated, some by all three 

inhibitors. Phosphospecific antibodies were produced against specific, drug-regulated 

phosphorylation sites as biomarker tools for PI3K pathway inhibitors.

Using the Met receptor as the major model system, a study combined multiplex 

phosphoproteomics, genome-wide expression profiling, and functional assays in various 

cancer cells addicted to oncogenic receptor tyrosine kinases.26 Met blockade was found to 

affect a limited subset of Met downstream signals. Only a restricted signature of transducers 

and transcriptional effectors downstream of Ras or phosphoinositide 3-kinase (PI3K) was 

inactivated. Met inhibition led to cell-cycle arrest as did Inhibition of Ras-dependent signals 

and PI3K-dependent signals also resulted in cell-cycle arrest. Inhibition of Met without 

inactivation of Ras or PI3K signaling did not affect proliferation. Interestingly a similar 

signature was observed by inhibition of epidermal growth factor receptor in a different 

Hanash et al. Page 4

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2015 February 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



cellular context. These findings pointed to the critical role of Ras and PI3K as determinants 

of therapeutic response.

Integrated proteomic and genomic profiling have yielded insights into the process of 

metastasis.In mice. Lkb1 deletion and activation of Kras (G12D) results in lung tumors with 

metastases. Integrated genomic and proteomic profiles of tumors from this model identified 

gene and phosphoprotein signatures associated with Lkb1 loss and progression to invasive 

and metastatic lung tumors.27 The combined inhibition of SRC, PI3K, and MEK1/2 in this 

model resulted in synergistic tumor regression.

Epithelial-mesenchymal transition (EMT) is a process associated with invasion and 

metastasis of epithelial tumors. Protein, phosphoprotein, phosphopeptide and RNA 

transcript abundance was assessed to develop a systems view of EMT.28 Findings included a 

coordinate metabolic reduction in a cluster of 17 free-radical stress pathway components 

which correlated with reduced glycolytic and increased oxidative phosphorylation enzyme 

capacity, consistent with reduced cell cycling and reduced need for macromolecular 

biosynthesis in the mesenchymal state. An attenuation of EGFR autophosphorylation and of 

IGF1R, MET and RON signaling with EMT was observed. In parallel, increased prosurvival 

autocrine IL11/IL6-JAK2-STAT signaling, autocrine fibronectin-integrin α5β1 activation, 

autocrine Axl/Tyro3/PDGFR/FGFR RTK signaling and autocrine TGFβR signaling was 

observed. Seemingly, paradoxical findings were observed in proteomic profiling of 

leiomyosarcoma, a common mesenchymal tumor type. Expression of the epithelial marker 

E-cadherin was significantly elevated in a subset of leiomyosarcomas and was correlated 

with better survival.29 The epithelial gene expression signature at the mRNA level was also 

associated with better survival. Transcriptome data revealed an inverse correlation between 

E-cadherin and E-cadherin repressor Slug (SNAI2) in leiomyosarcoma which was validated 

at the protein level. Knockdown of Slug expression in leiomyosarcoma cells significantly 

increased E-cadherin; decreased the mesenchymal markers vimentin and N-cadherin and 

significantly decreased cell proliferation, invasion, and migration. These studies based on 

proteome and phosphoproteome profiling integrated with genomic and transcriptomic 

findings have provided novel insights into tumor invasion and metastasis and determinants 

of therapeutic response and resistance. However they have covered a rather narrow spectrum 

of the proteome with a focus on a single post-translational modification namely 

phosphorylation. Undoubtedly additional insights may derive from assessment 30 of a wider 

spectrum of post-translational modification. A case in point is the cross talk between 

phosphorylation and O-linked beta-N-acetylglucosamine (O-GlcNAcylation) at the same 

amino acid residues which can be interrogated with current proteomic technologies. O-

GlcNAcylation is a ubiquitous, reversible process that modifies serine and threonine 

residues. A recent study identified 141 previously unknown O-GlcNAc sites on proteins that 

function in spindle assembly and cytokinesis, many of which are either identical to known 

phosphorylation sites.31 Induced overexpression of O-GlcNAc transferase increased the 

inhibitory phosphorylation of cyclin-dependent kinase 1 (CDK1) and reduced the 

phosphorylation of CDK1 target proteins. Advances in glycomics and glycoproteomics are 

likely to impact our understanding of the role of glycans and aberrant glycosylation in 

cancer.3230 Other chemical modifications of proteins and the role of proteases and 

hydrolases also remain under-explored.).

Hanash et al. Page 5

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2015 February 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Aside from quantitative assessment of protein levels and modification, activity-based 

profiling has substantial functional relevance to our understanding of cancer. Selective 

pharmacological probes are currently available that allow interrogation of enzyme activity in 

tumor cells that complement quantitative proteomics and other molecular profiling 

approaches to delineate key alteration and druggable targets in cancer.33

3.3 Building and mining protein networks and pathways

A fundamental contribution of systems biology is understanding networks and pathways that 

regulate cell processes and that may be dysregulated in cancer. Proteomics is integral to this 

understanding as evidenced from studies that explored a multitude of cancer types. To better 

understand prostate tumor progression, concurrent quantification of gene expression and 

protein levels was obtained following treatment of LNCaP prostate cancer cells. 34 The 

resulting data was integrated with a global network of protein interactions which identified 

the network of growth factor regulation of cell cycle as the main response module for 

androgen treatment in LNCap cells. The findings from this study suggested that growth 

factor signaling represented a secondary effect of the initial androgen stimulus likely 

transmitted from multiple growth factor receptors through pathways that constitute an 

interconnected network module. The implication is that a combination of targeted 

therapeutics are necessary to affect tumor growth. Resistance to cisplatin is a major issue in 

ovarian cancer treatment. A systems biology approach was used to examine global protein 

level and network level changes by comparing proteomics profiles between cisplatin-

resistant cell lines and cisplatin-sensitive cell lines.35 A list of 119 differentially expressed 

proteins was assembled which was expanded into a cisplatin-resistant activated subnetwork. 

Significant enrichment of proton-transporting ATPase and ATP synthase complexes was 

observed. Sub-network protein interaction function categories were examined using two-

dimensional visualization matrixes. Significant cellular physiological responses were found 

to result from endogenous, abiotic, and stress-related signals that correlated with known 

mechanisms of action of cisplatin. A colorectal cancer (CRC) study tested the hypothesis 

that small changes in the mRNA expression of multiple genes in the neighborhood of a 

protein-hub can be synergistically associated with significant changes in the activity of that 

protein and its network neighbors.36. It was further hypothesized that proteomic targets with 

significant fold change between phenotype and control may be used to “seed” a search for 

small sub-networks that are functionally associated with these targets. Proteomic targets 

having significant expression changes in CRC from two independent proteomic screens 

were selected. Random walk based models of network crosstalk were used to develop novel 

reference models to identify sub-networks that are statistically significant in terms of their 

functional association with these proteomic targets. Synergistic changes in the activity of 

identified sub-networks were assessed based on genome-wide screens of mRNA expression 

in CRC. Cross-classification experiments to predict disease class yielded excellent 

performance using only a few subnetworks pointing to the utility of this approach to 

discover pertinent sub-networks.

Phosphoproteomics was applied to the identification of Ras-regulated phosphorylation 

events through the analysis of immortalized human bronchial epithelial cells with and 

without the expression of oncogenic Ras.37 A majority of the Ras-targeted events identified 
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consisted of a [pSer/Thr]-Pro motif, that indicated involvement of proline-directed kinases. 

Integrating the phosphorylated signatures into the Pathway Interaction Database, yielded 

Ras-regulated pathways, including MAPK and other novel signaling cascades. Another 

independent study also used phosphoproteomics to identify tyrosine phosphorylated proteins 

in isogenic human bronchial epithelial cells and human lung adenocarcinoma cell lines, 

expressing either of the two mutant alleles of EGFR (L858R and Del E746-A750), or a 

mutant KRAS allele, which occur commonly in human lung adenocarcinomas.38 Tyrosine 

phosphorylation of signaling molecules was greater in cells expressing the mutant EGFRs 

than in cells expressing wild type EGFR or mutant KRAS. Bayesian network analysis 

revealed that polymerase transcript release factor might be a potentially important 

component of the ERBB signaling network.

Proteomics has been featured in numerous studies of the systems biology of breast cancer. 

Resistance to endocrine treatment, such as anti-estrogens, often occurs in breast cancer and 

estrogen receptor (ER)-positive breast cancer research has been viewed as an ideal example 

of how systems biology can be applied to better understand this disease.39 A search for 

mechanisms leading to the development of antiestrogen-resistance was based on analysis of 

the gene and protein expression patterns of the human breast carcinoma cell line T47D and 

its resistant derivative T47D-r.40 Thirty-eight proteins were found to be reproducibly up- or 

down-regulated in T47D-r versus T47D with concordant differential expression at the RNA 

level including cathepsin D, Rab11a and MxA, and the secreted protein hAG-2. For 11 

proteins, the corresponding mRNA was not found to be differentially expressed, and for 

eight proteins an inverse regulation was found at the mRNA level pointing to discordant 

RNA and protein levels.

To identify regulators of intracellular signaling in breast cancer, 541 kinases and kinase-

related molecules were targeted with small interfering RNAs (siRNAs), and their effects on 

signaling was determined with lysate arrays interrogated with 42 phospho and total 

proteins.41 Network-based analysis identified the MAPK subnetwork of genes along with 

p70S6K and FRAP1 as the most prominent targets that increased phosphorylation of AKT, a 

key regulator of cell survival. The siRNA screen revealed bi-directionality in the AKT and 

glycogen synthase kinase 3 interaction which was unexpected.

The insulin-like growth factor (IGF-1) signaling network was analyzed in the ER- MDA-

MB231 breast cancer cell line.42 Lysate arrays were utilized to measure changes in protein 

phosphorylation after IGF-1 stimulation. A computational procedure integrated mass action 

modeling with particle swarm optimization to train the model against the experimental data 

and infer model parameters. The trained model was used to identify drug combinations that 

minimally increased phosphorylation of other proteins elsewhere in the network. 

Experimental testing of predictions based on the model revealed that optimal drug 

combinations inhibited cell signaling and proliferation, compared with non-optimal 

combination of inhibitors which increased phosphorylation of nontargeted proteins and 

rescued cells from cell death. These studies, though limited in their interrogation of the 

proteome clearly demonstrate the added value of proteome level data.
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4. Methods and tools to assist in integrating proteomics into systems 

biology of cancer

An overview of publicly available databases relevant to proteomics studies in cancer 

research has been presented recently.43 The review covers general use protein databases, 

gene/protein expression databases, gene mutation and single nucleotide polymorphisms 

databases, tumor antigen databases, protein-protein interaction, and biological pathway 

databases. Another recent comprehensive review has focused on major protein 

bioinformatics databases and resources that are relevant to comparative proteomics 

research.44 It encompasses sequence databases, family databases, structure databases, 

function databases, and both gel electrophoresis and mass spectrometry based proteomics 

databases. Here we highlight some of the recently developed databases that have a relatively 

broad scope or that focus on a particular cancer type.

The Human Protein Atlas project aims to create a map of protein expression patterns in 

normal cells, tissues and cancer based on antibody profiling.45 Currently, more than 11,000 

unique proteins corresponding to over 50% of all human protein-encoding genes have been 

analyzed. All protein expression data, including underlying high-resolution images, are 

published on the free and publically available Human Protein Atlas portal (http://

www.proteinatlas.org). The database is particularly useful when candidates are identified in 

a particular study and there is a need to determine levels of expression in different normal 

and tumor tissues and cell populations. The Quantitative Assay Database (QuAD)46 

provides methods and reagents for monitoring cancer related signaling pathways and 

biological processes with mass spectrometry through multiple reaction monitoring. The 

purpose of the QuAD is to also share methods and disseminate reagents for studying cancer 

biology spanning from cell lines to limited amounts of clinical samples. It is envisioned that 

additional information using other analytical platforms will be incorporated as the database 

grows.

dbDEPC47 is a curated database that contains over 4,000 protein entries, from 331 

experiments across 20 types of human cancers.48 The database may be used to search for 

particular proteins to determine their range of expression and changes as may be related to 

genomic aberrations. Information is provided pertaining to experimental design, and tools 

are available for filtering and for network analysis.

There are also numerous databases with a restricted focus. Apoptosis is implicated in a large 

number of human diseases. Many quantitative proteome studies of apoptosis have been 

performed to gain insight into proteins involved in this process. A research group in Norway 

has established an ApoptoProteomics database for storage, browsing, and analysis of the 

outcome of large scale proteome analyses of apoptosis derived from human, mouse and 

rat.49 This database has also been used to identify hundreds of caspase substrates from 

apoptosis. The Pancreatic Expression database50 typifies an effort focused on a single 

disease. It is a component of the European Union project,51 whose mission is to develop 

novel molecular diagnostic tools for the prevention and diagnosis of pancreatic cancer. The 

database currently includes over 60,000 measurements derived from transcriptomics, 
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proteomics, genomics and miRNA profiles from various sources.52 The data model is 

generic allowing its application to other cancers.

EBI has established a biological sample oriented database, BioSD.53 The database is 

intended to: 1) record and manage sample information consistently and to link sample 

information to assay data across multiple resources; 2 ) minimize data entry efforts for the 

user, enabling submission of sample descriptions only once; 3) support cross database 

sample queries by sample description; and 4) build a continuously growing set of 

consistently annotated samples that are used in multiple experiments.

A protocol has been developed for the identification of alternatively spliced peptide 

sequences from tandem mass spectrometry datasets.54 This approach is suitable for human 

and mouse datasets. Application of the method was illustrated with a study of the Kras 

activation-Ink4/Arf deletion mouse model of human pancreatic ductal adenocarcinoma. A 

novel integrated approach, named CAERUS, has been described for the identification of 

gene signatures to predict cancer outcomes based on the domain interaction network in the 

human proteome.43 A model was developed to score each protein by quantifying the domain 

connections to its interacting partners and the somatic mutations present in the domain. 

Proteins were then defined as gene signatures if their scores were above a preset threshold. 

The correlation of expression levels between a gene signature and its neighboring proteins 

was determined. The results of the quantification for each subject were then used to predict 

cancer outcome by a modified naïve Bayes classifier. A list of cancer-associated gene 

signatures and domains was also compiled to provide testable hypotheses. The utility of this 

approach was demonstrated for breast and ovarian cancer datasets.

The integrated analysis of diverse datasets including proteomics represents a statistical and 

computational challenge. Integration of diverse data may be hampered by lack of 

standardization of identifier nomenclature among proteins, genes, and microarray datasets. 

A study compared three freely available internet-based identifier mapping resources for 

mapping UniProt accessions (ACCs) to Affymetrix probesets identifications (IDs): DAVID, 

EnVision, and NetAffx55 which uncovered a high level of discrepancy among the mapping 

resources. Methods continue to be developed that address various needs related to data 

integration and mining, a sampling of which is presented here. A Partial Least Squares 

Regression (PLSR)-based data integration strategy, has been proposed for simultaneous 

analysis of proteomic data, gene expression data and classical clinical parameters.56 PLSR 

allows visualization of complex datasets and collapses multidimensional data into fewer 

relevant dimensions for data interpretation. PLSR facilitates identification of functionally 

important modules by performing comparison to databases on known biological interactions. 

A novel Bayesian model was developed that extends the applicability of multivariate, multi-

way ANOVA-type methods to multi-source data.57 The method has the capability of finding 

covariate-related dependencies between the sources. It estimates the multivariate covariate 

effects and their interaction effects for the discovered groups of variables and partitions the 

effects to those shared between the sources and to source-specific ones. Other methods have 

been proposed for cross-platform biological data integration, such as eScience-Bayes 

strategy,58 an adjusted RV coefficient approach,59 and a sparse simultaneous component 

method.60
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5. Looking ahead

Advances in proteomics technologies and development of related resources are likely to 

contribute substantially to the systems biology of cancer and to translate knowledge into 

applications from diagnostics to therapeutics. Important issues for the field include 

feasibility of interrogating the entire complement of proteins expressed in cells, tissues and 

biological fluids that span 6-8 logs of protein abundance; ability to determine not only 

quantitative levels of proteins sets but also their post-translational modifications and 

functional states. Given the remarkable advances in mass spectrometry and array 

technologies we have witnessed in the past decade, it is likely that such rate of growth will 

be maintained for the foreseeable future. Such advances in broad proteomic profiling 

technologies need to be paralleled with similar advances in our ability to interrogate defined 

panels of proteins with the necessary sensitivity, specificity and quantitative reproducibility 

for translational applications.

Other fields that promise to contribute to the systems biology of cancer beyond genomics 

and proteomics include metabolomics and glycomics. The challenge is in developing 

efficient means for data integration and for testing derived hypotheses. However a full 

understanding of cancer pathogenesis will be incomplete without such a comprehensive 

systems based effort.
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Figure 1. Proteomic profiling of cancer cells
Freshly isolated tumor cells or cancer cell lines to be compared are cultured in the presence 

of isotopically labeled amino acids. Media, biotinylated cell surface proteins and whole 

lysates are isolated separately and analyzed. Cell lysates may be further fractionated for 

separate analysis of sub-compartments (e.g. nuclear proteins), or protein subgroups (e.g. 

phosphoproteins).
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Figure 2. 
The wide world of protein modifications that affect function and yield biomarkers and 

therapeutic targets
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Figure 3. 
Conceptual framework for the contribution of proteomics to the systems biology of cancer
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Figure 4. plasma protein signatures of lung cancer derived from analysis of mouse models of 
cancer
The heat map displays clustering together of lung cancer mouse models’ plasma proteome 

data. Below is a comparison between human lung adenocarcinoma plasmas and human lung 

non-adenocarcinoma plasmas of levels of proteins associated with an NKX2.1 signature 

identified in lung adenocarcinoma. An EGFR related protein network identified in plasma 

from an EGFR mutant lung cancer mouse model is shown. A list of proteins associated with 

a neuroendocrine signature in small cell lung cancer plasma is presented numbers refer to 

plasma protein case/control ratios and corresponding gene expression ratios in tumor tissue 

from the SCLC mouse model compared to controls.
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