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Abstract

Mathematical modeling of disease transmission has provided quantitative predictions for health 

policy, facilitating the evaluation of epidemiological outcomes and the cost-effectiveness of 

interventions. However, typical sensitivity analyses of deterministic dynamic infectious disease 

models focus on model architecture and the relative importance of parameters but neglect 

parameter uncertainty when reporting model predictions. Consequently, model results that identify 

point estimates of intervention levels necessary to terminate transmission yield limited insight into 

the probability of success. We apply probabilistic uncertainty analysis to a dynamic model of 

influenza transmission and assess global uncertainty in outcome. We illustrate that when 

parameter uncertainty is not incorporated into outcome estimates, levels of vaccination and 

treatment predicted to prevent an influenza epidemic will only have an approximately 50% chance 

of terminating transmission and that sensitivity analysis alone is not sufficient to obtain this 

information. We demonstrate that accounting for parameter uncertainty yields probabilities of 

epidemiological outcomes based on the degree to which data support the range of model 

predictions. Unlike typical sensitivity analyses of dynamic models that only address variation in 

parameters, the probabilistic uncertainty analysis described here enables modelers to convey the 

robustness of their predictions to policy makers, extending the power of epidemiological modeling 

to improve public health.
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Introduction

Epidemiological models can serve as powerful tools to predict and understand the dynamics 

of infectious diseases. These models allow us to target control measures and use limited 

resources more efficiently. However, the predictions of a model are highly dependent on the 

quality of the data used for parameterization. Therefore, it is crucial that proper care is given 

to the provenance and precision of data available, and that uncertainty in model outcomes be 

addressed. Epidemiological models can be broadly classified as deterministic or stochastic, 

where deterministic models have fixed parameter values and stochastic models have 

probabilistic values (Anderson and May, 1991; Keeling and Rohani, 2008; Vynnycky and 

White, 2010). Although stochastic simulations of disease transmission more often convey 

uncertainty by characterizing the probability of an epidemiological outcome as part of an 

uncertainty analysis (e.g. Fraser et al., 2009), deterministic models typically do not. As a 

case in point, the study of influenza has been markedly advanced by a number of insightful 

deterministic models (e.g. An der Heiden et al., 2009; Chen and Liao, 2008; Crowe et al., 

2011; Flahault et al., 2006; Krumkamp et al., 2010; Medlock and Galvani, 2009; Mercer et 

al., 2011; Mylius et al., 2008; Nuño et al., 2007; Roberts et al., 2007; Tracht et al., 

2011;Tuite et al, 2010). However, while sensitivity analysis is performed on these models 

and the relative importance of parameters' contributions to uncertainty in the model 

outcomes determined, global outcome uncertainty has not been examined. Uncertainty 

analysis and its representation of the total possible uncertainty in model outcomes would 

strengthen policy makers' confidence in the interpretation of results and enhance their ability 

to act accordingly. Indeed, uncertainty analysis has been previously applied to infectious 

disease models without public health interventions (Blower and Dowlatabadi, 1994; 

Chowell et al., 2004; Coelho et al., 2008; Matser et al., 2009; Samsuzzoha et al., 2013; 

Sanchez and Blower, 1997) and has been recommended by experts for many fields of 

mathematical modeling, including medical decision making, as an optimal approach to 

presenting model predictions (Briggs et al., 2012). In the case of dynamic transmission 

modeling, however, authoritative best practices have not included uncertainty analyses 

(Pitman et al., 2012). General modeling guidelines recommend the methodology used in a 

probabilistic sensitivity analysis, in which both global parameter uncertainty and output 

uncertainty are addressed, as the best practice method for uncertainty analysis (Briggs et al., 

2012) but that ideal has not been extended to dynamic transmission models, for which its 

implementation has been challenging (Pitman et al., 2012). Moreover, previous applications 

of uncertainty analysis methodology to dynamic models have not extended the technique to 

the evaluation of public health interventions that are important for reducing diseases 

transmission or avoiding epidemics altogether.

One challenge to the estimation of epidemiological parameters is the imprecision of the 

relevant data, stemming from hurdles to acquisition, privacy restrictions, and/or the need for 

analysis during outbreaks. Unfortunately, parameterizing a deterministic epidemiological 

model with the best point estimates based on minimal data can convey a misleading degree 

of certainty to policy makers. Conversely, policy makers who are aware that models are 

parameterized with weakly supported point estimates may be overly dismissive of 

deterministic predictions that might yet have significant validity. These issues can be 
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addressed by incorporating the uncertainty of parameters directly into an analysis by 

probabilistically re-sampling data or likely distributions of parameters to calculate a 

distribution of predictive outcomes given the model as part of a probabilistic uncertainty 

analysis (Blower and Dowlatabadi, 1994; Elderd et al., 2006; Helton and Davis, 2003; 

Marino et al., 2008; Sanchez and Blower, 1997).

One of the most common modeling approaches for evaluating interventions in dynamic 

systems is the construction of a differential equation model of a disease, such as the standard 

deterministic Susceptible-Infected-Recovered (SIR) model (Anderson and May, 1991; 

Keeling and Rohani, 2008; Vynnycky and White, 2010). From the differential equation 

model, a closed-form solution can be calculated for the basic reproductive number, R0, the 

average number of secondary infections that would follow upon a primary infection in a 

naïve host population (Anderson and May, 1991; Keeling and Rohani, 2008; Van den 

Driessche and Watmough, 2002; Vynnycky and White, 2010). In a population where there is 

pre-existing immunity due to either vaccination or previous infection, the effective 

reproductive number, Re, is defined as the average number of secondary infections following 

a primary infection in a population that is not completely naïve, as is true when vaccination 

or treatment is implemented (Keeling and Rohani, 2008; Vynnycky and White, 2010). Re is 

of particular interest in public health because interventions that bring its value below one are 

predicted to eradicate the disease (Keeling and Rohani, 2008; Vynnycky and White, 2010). 

Thus, the Re = 1 threshold often serves as a target for designing effective intervention 

policies (Keeling and Rohani, 2008; Vynnycky and White, 2010).

While deterministic SIR models can provide valuable estimates of the impact of 

interventions, they are often hampered by two critical limitations. First, the model often 

lacks realism and stands as just one of several competing models that are compatible with 

the same empirical evidence. This concern is typically addressed by comparing model 

predictions to real-world data (Helton and Davis, 2002, 2003; Keeling and Rohani, 2008; 

Vynnycky and White, 2010), but can also be addressed using Bayesian model averaging, 

model selection, and expert elicitation (Hoeting et al., 1999; Lloyd, 2009; Kass and Raftery, 

1995; Saltelli et al., 2004). Second, the best parameter estimates (needed for the closed-form 

solution of Re) are often inexact. To address this concern, sensitivity analyses are used to 

explore the relationship between model parameters and outcomes. Specifically, one or more 

parameters are perturbed and the corresponding effects on outcomes are examined (Marino 

et al., 2008). The perturbation can be done either by evaluating the effect of arbitrarily small 

changes in parameter values (e.g. ±1%, as in Massad et al., 2009) or by evaluating the 

effects across a range of values defined by plausible probability density functions (e.g. 

Amaku et al., 2003, 2009). However, because the values of other parameters are held fixed 

at best point estimates, these strategies do not account for interaction effects in non-linear 

dynamic models, and do not assess global uncertainty in parameters or outcome.

A global probabilistic sensitivity analysis allows the contribution of each parameter to 

model outcomes to be investigated while also taking into account the uncertainty of other 

model parameters (Blower and Dowlatabadi, 1994; Marino et al., 2008; Sanchez and 

Blower, 1997; Wu et al., 2013). Uncertainty in parameter values can be accounted for by 

sampling randomly from empirical data or from probability density functions fit to empirical 
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data. Such sampling techniques include bootstrapping, Monte Carlo sampling, and Latin 

hypercube sampling (Blower and Dowlatabadi, 1994; Hastings, 1970; Helton and Davis, 

2002, 2003; Metropolis et al., 1953; Marino et al., 2008; Sanchez and Blower, 1997). The 

model output generated from parameter samples can then be analyzed using linear (e.g. 

partial correlation coefficients), monotonic (e.g. partial rank correlation coefficients) and 

non-monotonic statistical tests (e.g. sensitivity index) to determine the contribution of each 

parameter to the variation in output values (Blower and Dowlatabadi, 1994; Helton and 

Davis, 2002, 2003; Marino et al., 2008; Sanchez and Blower, 1997; Wu et al., 2013). The 

model itself may also be treated as an uncertain parameter and varied in the sensitivity 

analysis to determine the effect that the choice of model has on the output. This technique, 

known as Bayesian model averaging, can be computationally infeasible (Hoeting et al., 

1999; Kass and Raftery, 1995; Saltelli et al., 2004). Even the most thoroughly data-driven 

studies often only report the results of a global sensitivity analysis in terms of a ranking of 

parameters' relative contributions to outcome uncertainty, without reporting the outcome 

uncertainty itself. Probabilistic uncertainty analysis provides additional utility, carrying data-

driven parameter uncertainty through to the model outcomes, yielding probabilistic 

distributions rather than single value estimates of possible outcome values (Blower and 

Dowlatabadi, 1994; Elderd et al., 2006; Helton and Davis, 2003; Marino et al., 2008; 

Sanchez and Blower, 1997). A probabilistic outcome distribution serves as a gold standard 

for conveying the robustness and uncertainty of model results to policy makers that has yet 

to be widely adopted by the epidemiological modeling community.

Here, we illustrate methodology by which parameter uncertainty can be incorporated into 

model predictions using an example of influenza antiviral and vaccination intervention, 

comparing model predictions that include uncertainty analysis to predictions that only 

include sensitivity analysis in order to reveal the importance of analyzing both parameter 

and output uncertainty in deterministic modeling studies. Performing a probabilistic 

sensitivity analysis and extending parameter uncertainty into the model predictions, we 

assess uncertainty in outcome, a procedure that allows researchers to provide public health 

officials with fundamentally important information – especially for key threshold 

considerations such as the probability of disease eradication at each level of an intervention 

– so that decision makers may precisely weigh the cost of the intervention against the 

potential for and extent of success.

Methods

Mathematical model

We implemented a compartmental model of influenza transmission that divides individuals 

into susceptible (S), latent (E), infected (I), recovered (R), treated (T), vaccinated (V), and 

hospitalized (H) states (Fig. 1). Values for parameters relevant to the calculation of Re, 

which included secondary attack rate θ, duration of infectiousness 1/δ, treatment efficacy εT, 

vaccine efficacy εV, contact rate c and probability of hospitalization from influenza infection 

pH, were obtained from literature on seasonal influenza (Table 1; Belshe et al, 1998; 

Cauchemez et al, 2004; Halloran et al., 2007; Longini et al., 1982; Mossong etal., 2008; 

Sullivan et al., 1993; Thompson et al., 2003, 2004). Susceptible individuals acquire infection 
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following contact with an infectious individual (I or T) with a force of infection λ, given by 

λ = β((I/N) + (1 − εT)(T/N)), where β is the product of the contact rate c and the probability 

of infection given contact with an infectious individual 1 − (1 − θ)δ, θ is the secondary attack 

rate or the proportion of individuals who will become infected upon contact with an 

infectious individual during the total infectious period, δ is one divided by the duration of 

infectiousness, N is the total number of individuals in the population, and εT is the efficacy 

of antiviral treatment at reducing infectiousness. A proportion 1 − εV of vaccinated 

individuals (V) become infected following contact with an infectious individual with a force 

of infection λ, where εV is the efficacy of the vaccine at reducing susceptibility. A 

proportion pT of individuals who become infected (E) are treated with antivirals, proceeding 

into the treated class (T) at a rate σ. These individuals (T) have a reduced ability to infect 

susceptible individuals, based on the efficacy of antivirals εT. The remaining infected 

individuals (1 − pT)E proceed to the infected class (I) at a rate σ. Infected (I) and treated (T) 

individuals recover from infection at a rate δ and proceed to the recovered class (R). Infected 

individuals (I) are also hospitalized (H) at a rate η, from which they recover (R) at a rate κ, 

or die from infection at a rate μ. The flow of individuals from one compartment to another is 

described by the ordinary differential equations:

Reproductive number

Our outcome of interest was the probability with which Re was suppressed below one for a 

given set of parameter values. To facilitate direct evaluation of outcome under uncertainty 

based on our model, we derived an expression for Re using the next generation matrix 

method (Van den Driessche and Watmough, 2002) from this model:

(1)

where η = pHδ/(1 – pH), S = S0, V = V0, and E = I = T = H = R = 0.

Uncertainty analysis

We evaluated outcomes from Eq. (1), incorporating parameter uncertainty, to assess whether 

different levels of treatment (pT) and vaccination (V0/N) would effectively lower Re to below 

one, thus achieving the termination of transmission. Treatment (pT) and vaccination (V0/N) 

are considered to be controllable variables that can be changed based on the intervention 

approach, in contrast to the model parameters that have known values and do not change 

with intervention. To compare with the typical approach, we first calculated Re using the 
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best point estimates – the mean of the data or distribution from the literature – for the values 

of the parameters, without incorporating parameter uncertainty (see Table 1 for parameter 

values and distributions). We then performed an uncertainty analysis (Saltelli et al., 2008): 

for each parameter, we sought to use the most informative data available in the literature, in 

the form of data from an experiment or a distribution that had been fitted to such data. We 

sampled from each parameter's distribution to perform the uncertainty analysis. The methods 

for estimating the uncertainty distributions for secondary attack rate θ, duration of 

infectiousness 1/δ, vaccine efficacy εV, treatment efficacy εT, proportion of infected 

individuals hospitalized pH, and contact rate c from available data are detailed in the 

Appendix. The probability that Re was less than one was then calculated across the full 

range of combinations of the variables pT and V0/N. We performed this calculation by 

computing Re for fixed variables pT and V0/N while randomly sampling the other parameters 

from their uncertainty distributions. Repeating this process of Monte Carlo sampling for the 

other parameters and calculating Re 10,000 times enabled us to generate a distribution of all 

possible values for our outcome Re for each pair of variables pT and V0/N. The probability 

that Re was below one for each pair of variables pT and V0/N was therefore equal to the 

number of Re values less than one divided by 10,000.

We assumed that the parameter distributions were independent of each other because joint 

distribution data were not available. In reality, it is unlikely that all model parameters are 

independent. In general, correlation between parameters would be expected to reduce the 

overall uncertainty in outcome predictions. To assess whether issues of parameter 

independence would significantly impact our outcome, we repeated our analysis while 

imposing complete inverse correlation between the parameters θ and δ. These parameters 

correspond to pathogen virulence and duration of infectiousness, which theory suggests may 

be correlated (Galvani, 2003).

Sensitivity analysis

To assess the contribution of each parameter to the overall uncertainty in Re, we performed 

one-way and global probabilistic sensitivity analyses. For the one-way sensitivity analysis, 

we varied each parameter individually across the 90% confidence interval of its uncertainty 

distribution and determined the minimum and maximum Re value achieved at various 

combinations of vaccination and treatment coverages. The coverages were chosen to 

correspond to potential plausible levels achievable in the United States (Centers for Disease 

Control and Prevention, 2009). We plotted the results of the one-way sensitivity analysis in 

a series of tornado diagrams, corresponding to the different combinations of treatment and 

vaccination levels. For the global sensitivity analysis, we performed both partial rank 

correlation coefficient (PRCC) and sensitivity index calculation at different combinations of 

fixed treatment and vaccinations levels. Detailed methodology on PRCC calculation can be 

found in Blower and Dowlatabadi (1994), as well as Wu et al. (2013). To calculate the 

sensitivity index for the parameters in Xi (i.e. c, δ, pH, εT, θ, and εV), while fixing the 

proportion of individuals treated and vaccinated, we evaluated the following equation 

(Saltelli et al., 2008) for each parameter:

Gilbert et al. Page 6

Epidemics. Author manuscript; available in PMC 2015 February 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(2)

where VXi (EX∼i (Re|Xi)) is the variance of the expected value of model output Re when 

holding Xi fixed across all its possible values and allowing the other parameters to vary, and 

V(Re) is the variance of Re. This sensitivity index quantifies the degree to which our 

outcome Re is expected to vary when a given parameter is known exactly. It ranges from 

zero to one, with higher values indicating greater sensitivity of an outcome to the parameter 

uncertainty.

Results

Model predictions without uncertainty

When point estimates of parameter values were used, our compartmental model predicted 

that proportions of influenza vaccination above 0.54 or treatment above 0.64 would reduce 

Re below one regardless of the value of the other proportion (Fig. 2). A combination of 

lower vaccination and lower treatment levels were also predicted to reduce Re below one 

(Fig. 2), indicating that vaccinating less than 54% of susceptible individuals and treating less 

than 64% of infected individuals could prevent an epidemic provided these interventions are 

implemented at the same time.

Model predictions with uncertainty

Inclusion of parameter uncertainty demonstrated that higher treatment and vaccination levels 

were required to reduce Re below one with a probability greater than 50% (Fig. 2). When 

intervention was based exclusively on vaccination, only proportions of vaccination above 

0.69 reduced Re below one with a probability above 90% (Fig. 2). Reducing Re below one 

with a probability above 99% requires a minimum of 0.76 vaccine coverage (Fig. 2). When 

intervention was based exclusively on treatment, even higher levels of treatment were 

required to reduce Re below one with the same probability as that for vaccination. 

Proportions of treatment above 0.87 could reduce Re below one with a probability above 

90% (Fig. 2). No level of treatment was alone able to reduce Re below one with a probability 

above 99% (Fig. 2). The levels of vaccination and treatment previously estimated to achieve 

eradication (Re<1) without uncertainty analysis are predicted to only do so with probability 

50% with uncertainty analysis. These findings indicate that, compared to the model's 

predictions without the inclusion of parameter uncertainty, increased levels of intervention 

are required to reduce Re below one with a high probability.

When the maximum level of treatment or vaccination achievable is known, the probability 

of the reduction of Re below one can be depicted with a fixed level of the known variable 

and varying levels of the unknown variable (Fig. 3). For example, about three out often 

people choose to be vaccinated for influenza in a given year (Centers for Disease Control 

and Prevention, 2009). For this situation, the outcomes can be depicted with varying levels 

of treatment and a fixed proportion of vaccination of 0.3 (Fig. 3). With this level of 

vaccination, proportions of treatment above 0.66 could reduce Re below one with a 

probability above 90%, and proportions of treatment above 0.94 could reduce Re below one 
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with a probability above 99%. Conversely, if it is already known that there are only enough 

antivirals in a country's stockpile to treat 3 out of 10 infected people during an outbreak, 

policy makers can be best served by information on the probability of eliminating an 

epidemic of influenza when the proportion of infected individuals who are treated is 0.3 

(Fig. 3). With this level of treatment, proportions of vaccination above 0.57 could reduce Re 

below one with a probability above 90%, and proportions of vaccination above 0.66 could 

reduce Re below one with a probability above 99%. These results provide a basis for 

decision-making regarding mitigating an epidemic that incorporates probability of 

successful eradication given existing and potential levels of intervention.

Imposing an anticorrelation between parameters θ and δ moderately reduced the level of 

vaccination needed to reduce Re below one relative to that depicted in Fig. 2. However, the 

breadth of uncertainty around the effect of treatment remained the same. In addition, the 

breadth of uncertainty around the effect of vaccination remained high as well as centered 

around the deterministic prediction. Accordingly, correlation between parameters appears 

not to impact our conclusion that a full uncertainty analysis reveals key information for 

evaluating the predictions of epidemiological models.

Sensitivity analysis

Our sensitivity analysis to determine the sources of uncertainty in our outcome Re 

demonstrated that we need more data (in order of priority) on secondary attack rate θ, 

treatment efficacy εT, vaccine efficacy εV, contact rate c, duration of infectiousness 1/δ and 

probability of hospitalization from influenza infection pH, respectively, to provide greater 

predictive power to estimate Re (Fig. 4 and Tables 2 and 3). Secondary attack rate θ and 

treatment efficacy εt have the greatest contributions to uncertainty in Re. The one-way 

sensitivity analysis demonstrated that when θ was varied across the 90% confidence interval 

of its uncertainty distribution and all other parameters are held fixed, the greatest range in Re 

was achieved, with a minimum value of 0.4 and maximum of 1.6, depending on the level of 

vaccination and treatment implemented (Fig. 4). The next widest ranges of Re values 

occurred when εT and εV were varied across the 90% confidence interval of their uncertainty 

distributions (Fig. 4). The difference between the minimum and maximum Re values when 

varying εT or εV was greatest when treatment or vaccination coverage, respectively, was 

highest (Fig. 4).

The global sensitivity analyses (PRCC and sensitivity index) confirmed that θ and εT had the 

greatest influence on Re, even when uncertainty in the other parameters was controlled for 

(Tables 2 and 3). The PRCCs for θ and εT were positive and negative, respectively, greater 

than the PRCCs for the remaining parameters, and statistically significant, indicating that 

there is a strong monotonic relationship between the parameters and Re (Table 2). Lower 

values of Re were achieved, regardless of vaccination or treatment coverage, when θ was 

decreased or εT increased. Parameter εV had the next highest absolute PRCC value and was 

inversely and monotonically correlated with Re, with εV becoming more influential as 

vaccination coverage increased. Sensitivity index calculations confirmed that θ and εT were 

the most influential parameters, with θ contributing to between 87.2% and 96.6% of the 
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uncertainty in Re estimates and εT to between 2.4% and 10.1% (Table 3). The remaining 

parameters contributed to less than 1% of the uncertainty in Re.

The relative importance of parameters is partly determined by the lack of data on these 

parameters, but is also in accord with the important roles played by θ, εT, and εV in the 

calculation of Re (Eq. (1)): θ is raised to the power of δ and multiplied by the proportion of 

individuals who are susceptible S0/N. Parameters εT and εV additionally serve as multipliers 

in Eq. (1).

Discussion

Here we demonstrated that incorporation of parameter uncertainty into the analysis of 

deterministic models provides a key tool for policy decisions regarding levels of public 

health interventions needed to halt an epidemic. These results hold true even for a relatively 

well-investigated disease such as influenza. Without the inclusion of parameter uncertainty, 

mathematical analysis often yields a single threshold value corresponding to the level of an 

intervention that presumably leads to a successful outcome. We have shown that such a 

threshold value for an intervention suggests an undue level of robustness for a model's 

predictions regarding the mitigation of a potential epidemic. In reality, the levels of 

vaccination and treatment indicated by deterministic modeling halt an outbreak only about 

half of the time. Procuring a more palatable chance of success will take greater levels of 

intervention, the amount of which depends critically on the data available on key 

parameters. Quantifying the relationship between levels of interventions and the 

probabilities of success requires uncertainty analysis, and communicating this probabilistic 

understanding to policy makers is of vital importance.

For instance, we found that without the inclusion of parameter uncertainty, our model 

predicted that levels of vaccination above 54% or treatment coverage above 64% could 

successfully control a flu epidemic. These results may mislead a decision maker into 

thinking that an influenza epidemic would definitely be avoided if 54% of a population were 

vaccinated or 64% treated and the subsequent development of public policy to promote this 

coverage level. However, we saw that when parameter uncertainty was incorporated and 

uncertainty in the model outcome was analyzed, predicted intervention levels would only 

successfully control an epidemic 50% of the time; much higher coverage levels – closer to 

70% for vaccination and 90% for treatment – were needed to be 90% certain these 

interventions would successfully control an epidemic. The same principle holds true for 

stochastic epidemiological models that do not perform uncertainty analysis, since often these 

models alone do not capture the full plausible range of parameter values and therefore do not 

convey the total uncertainty in model outcomes. Quantification of uncertainty provides 

policy makers the opportunity to weigh deployment of resources against risks in choosing 

the appropriate combination of vaccination and treatment coverage levels at the beginning of 

or potentially before the start of an epidemic in order to successfully mitigate the number of 

infections and deaths.

Sources of outcome uncertainty can additionally be identified by deterministic sensitivity 

analysis to indicate where to direct further empirical research efforts. Typically, in 
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epidemiological modeling of disease transmission, deterministic sensitivity analyses are 

performed by taking the derivatives of outcome variables at best point estimates or by 

analyses of slight perturbations without explicit regard to sampling error. This approach is 

not ideal when the parameters are not precisely known or when the model is nonlinear, as 

the analysis is only informative at the point estimates from which it is computed. The one-

way sensitivity analysis performed on our influenza model is an example of a deterministic, 

local sensitivity analysis. While the one-way sensitivity analysis ranked each parameter in 

order of importance, as well as gave ranges of possible Re values, it did not control for 

uncertainty in the other parameters, account for interactions between parameters, or quantify 

the probability that Re would be less than one. A global sensitivity analysis that takes the 

uncertainty of all parameters into account is more appropriate for epidemiological models of 

disease transmission. The global sensitivity analyses performed on our influenza model also 

ranked the parameters in order of importance, but controlled for global parameter 

uncertainty. They demonstrated that secondary attack rate most influenced our outcome Re. 

Accordingly, to model influenza transmission more precisely, additional research studies 

should focus on precise estimation of the secondary attack rate. However, PRCC and 

sensitivity index calculation did not indicate the potential ranges of Re that were achieved at 

the different vaccination and treatment levels, nor did it give an indication regarding how 

likely different intervention levels were to succeed (i.e. reduce Re below one). The 

information regarding the total uncertainty in Re estimates for each intervention level and 

the probability of intervention success was only gained through the probabilistic uncertainty 

analysis.

While we used a relatively basic model of influenza to illustrate our methodology, the 

approach that we advocate can be applied more generally by incorporating additional details 

into the model structure. For example, age structure would be highly appropriate to include 

when investigating potential vaccination policies for influenza. Moreover, other disease 

models might not require a recovered compartment because recovery is either not possible 

(e.g. HIV/AIDS) or immunity is not acquired (e.g. gonorrhea; Vynnycky and White, 2010). 

The model structure should reflect the important disease characteristics. However, 

regardless of model complexity, parameter uncertainty will always exist and will always 

impact model predictions. Therefore, an uncertainty analysis is necessary for all types of 

dynamic transmission models.

Because it is not always clear what the model structure for a disease should be, uncertainty 

in model specification also exists. Uncertainty in model specification, if incorporated into an 

analysis (Hoeting et al, 1999), would be expected to further increase the uncertainty of 

model predictions. In our model, for example, we could have instead allowed infected 

individuals to be infectious for a period of time before being treated. Under this alternate 

scenario, the outcome Re would have to be calculated by a different equation, potentially 

leading to a different uncertainty in outcome. Our sensitivity analysis might also have 

identified a different parameter as most influential of our outcome Re. As with many other 

studies, however, our ultimate choice of model structure was dictated in part by the data 

available for parameter values. While this more complex model would be a more realistic 

portrayal of the natural history of influenza, we could not find any dataset to create an 

Gilbert et al. Page 10

Epidemics. Author manuscript; available in PMC 2015 February 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



appropriate distribution for the amount of time an individual was infected before treatment 

and therefore we did not incorporate the additional complexity to predict proportions of 

vaccination and treatment required to prevent or forestall an epidemic. Our study is not 

intended to directly influence policy but rather to demonstrate the importance of uncertainty 

analysis. Furthermore, because we focus on a single strain of influenza, we have structured 

our analysis to address uncertainty associated with the statistical measurement of parameters 

in research studies. Additional uncertainty exists in the biological variation between strains 

of influenza, which is important when considering more than one season of influenza 

transmission. For diseases other than influenza, variation in parameter estimates between 

studies conducted at different times or in different populations may also need to be 

addressed. Ideally, a single study that is viewed as the best dataset can be selected for 

parameterization of a model. When it is not clear which data source is most appropriate to 

use, study variation can be addressed with meta-analysis, sampling from multiple 

distributions for a parameter, or imposing a uniform distribution on the minimum and 

maximum values found in literature.

In summary, sensitivity analysis of our influenza model identified the secondary attack rate 

as the parameter that most influenced our outcome Re. Accordingly, to model influenza 

transmission more precisely, additional research studies should focus on estimating precise 

values of the secondary attack rate. Moreover, because policy makers are interested in the 

predicted impact of different types and levels of interventions on an epidemic, estimated 

effects of an intervention should be presented to policy makers along with the degree of 

credibility that these effects will occur in light of uncertainty in the model parameters. 

Thereby, policy makers can make a well-informed decision with an understanding of the 

probability of success or failure based on the decision taken. Our study demonstrates that 

this uncertainty can be incorporated into analyses seamlessly by re-sampling from 

distributions of likely parameter values, calculating the outcome of interest, and determining 

the probability that the outcome is achieved, as we illustrated here for a model of influenza 

vaccination and treatment.
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Appendix A

Uncertainty Distributions

Vaccine efficacy εV

Belshe et al.(1998) performed a clinical study on the efficacy of a live attenuated vaccine 

against influenza. They found that 7 out of 1070 vaccinated participants became infected 

with influenza, whereas 64 out of 532 unvaccinated participants became infected. This 

yielded a vaccine efficacy of about 95%. We then calculated 10,000 values to describe the 

uncertainty distribution for vaccine efficacy by randomly drawing from beta distributions for 
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each proportion infected and evaluating the equation 

, where A ∼ Beta (7, 170−7) and B ∼ Beta (64, 

532−64). Beta distributions were chosen for the probabilities of infection not only because 

they are constrained by [0,1], but also because they are appropriate to describe the 

probability of an event (i.e. infection) given a certain number of trials (i.e. population of 

individuals).

Treatment efficacy εT

Halloran et al.(2007) analyzed clinical data on the efficacy of antiviral treatment for 

preventing the development of influenza disease in exposed individuals. They found that 4 

out of 180 treated participants became infected with influenza, whereas 22 out of 190 

untreated participants became infected. We then calculated 10,000 values to describe the 

uncertainty distribution for treatment efficacy by randomly drawing from beta distributions 

for proportion infected and evaluating the equation 

, where C ∼ Beta (4, 180−4) and D ∼ Beta (22, 

190−22). Beta distributions were chosen for the probabilities of infection not only because 

they are constrained by [0,1], but also because they are appropriate to describe the 

probability of an event (i.e. infection) given a certain number of trials (i.e. population of 

individuals).

Proportion hospitalized pH

Because data on the proportion of infected individuals hospitalized for influenza were not 

directly available from literature, we obtained the proportion of infected individuals 

hospitalized by taking the ratio of the proportion of individuals in a population hospitalized 

for influenza-like illnessby the proportion of individuals in a population infected with 

influenza. Thomson et al.(2003, 2004) estimated annual influenza-associated 

hospitalizations in the United States. They found that 167,812 / 226,545,805 or 

approximately 73.1 per 100,000 persons were hospitalized during a single influenza season. 

Additionally they reported that 1441 of 16,128 isolates of those with suspected influenza 

infection tested positive for influenza. Sullivan et al.(1993) conducted a clinical study in the 

United States to determine the number of individuals infected annually with influenza. They 

found that 120 of 814 all individuals were infected with influenza during a single influenza 

season. The uncertainty distribution for the proportion of individuals hospitalized for 

influenza can be described by sampling from beta distributions for probability of influenza-

associated hospitalization and probability of influenza infection in a population, and 

evaluating the following equation:
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where E ∼ Beta (1441, 16128−1441) and F ∼ Beta (120, 814−120). The proportion of 

influenza-associated hospitalizations is multiplied by the proportion of influenza suspects 

with confirmed influenza infection, and then divided by the proportion of people who come 

down with true influenza, in a season. The components of this calculation subject to 

significant uncertainty were the proportion of individuals with flu-like symptoms who 

actually were infected with influenza, and the proportion of individuals who came down 

with flu during a season. Both of these proportionswere estimated from binomial sampling 

studies. Thus, both were resampled from beta distributions in serial calculations of pH, 

holding as fixed the proportion of influenza-associated hospitalizations.

Contact rate c

Mossong et al.(2008) collected survey data from 7,290 participants on the number of 

contacts each individual had during one day. They found that individuals had on average 

13.4 contacts per day. We used bootstrapping to obtain an uncertainty distribution. First we 

randomly sampled from the dataset with replacement to generate a new dataset of equal size. 

We then calculated the mean number of contacts per day from the new dataset. We repeated 

this process 10,000 times to generate 10,000 values to constitute the uncertainty distribution 

of the mean contact rate.

Duration of infectiousness 

Cauchemez et al.(2004) used a Bayesian MCMC approach to estimate the posterior 

probability distribution for the mean duration of infectious period for influenza from 

household data. They found that a normal distribution with a mean of 3.8 days and standard 

deviation of 0.4 days best fit the data. We used Monte Carlo sampling to draw 10,000 

random samples from a normal probability distribution with mean 3.8 and standard 

deviation 0.4. By calculating the inverse of each sampled value, we generated 10,000 values 

to constitute the uncertainty distribution for θ.

Secondary attack rate θ

Longini et al.(1982) used maximum likelihood estimation to estimate the secondary attack 

rate from household data. They found that a normal distribution with mean 0.147 and 

standard deviation 0.037 best fit the data. We used Monte Carlo sampling to draw 10,000 

random samples from a normal distribution with mean 0.147 and standard deviation 0.037. 

Because SAR cannot be negative, we truncated the normal distribution at 0. We generated 

10,000 values to constitute the uncertainty distribution for θ.

References

Amaku M, Coutinho FAB, Azevedo RS, Burattini MN, Lopez LF, Massad E. Vaccination against 
rubella: analysis of the temporal evolution of the age-dependent force of infection and the effects of 
different contact patterns. Phys Rev E. 2003; 67:051907.

Amaku M, Azevedo RS, de Castro RM, Massad E, Coutinho FAB. Relationship among 
epidemiological parameters of six childhood infections in a non-immunized Brazilian community. 
Mem Inst Oswaldo Cruz. 2009; 104:897–900. [PubMed: 19876563] 

Gilbert et al. Page 13

Epidemics. Author manuscript; available in PMC 2015 February 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



An der Heiden M, Bucholz U, Krause G, Kirchner G, Claus H, Haas WH. Breaking the waves: 
modeling the potential impact of public health measures to defer the epidemic peak of novel 
influenza A/H1N1. PLoS One. 2009; 4:e8356. [PubMed: 20027293] 

Anderson, RM.; May, RM. Infectious Diseases of Humans: Dynamics and Control. Oxford University 
Press; Oxford: 1991. 

Belshe RB, Mendelman PM, Treanor J, King J, Gruber WC, Piedra P, et al. The efficacy of live 
attenuated cold-adapted, trivalent, intranasal influenza virus vaccine in children. N Engl J Med. 
1998; 338:1405–1421. [PubMed: 9580647] 

Blower SM, Dowlatabadi H. Sensitivity and uncertainty analysis of complex models of disease 
transmission: an HIV model, as an example. Int Stat Rev. 1994; 62:229–243.

Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher MJ, Paltiel AD. Model parameter 
estimation and uncertainty analysis: a report of the ISPOR-SMDM Modeling Good Research 
Practices Task Force Working Group – 6. Med Decis Making. 2012; 32:722–732. [PubMed: 
22990087] 

Cauchemez S, Carrat F, Viboud C, Valleron AJ, Boëlle PY. A Bayesian MCMC approach to study 
transmission of influenza: application to household longitudinal data. Stat Med. 2004; 23:469–3487.

Centers for Disease Control and Prevention. [accessed 16.10.2012] Adult Vaccination Coverage, 
National Health Interview Survey. 2009. http://www.cdc.gov/vaccines/stats-surv/nhis/2009-
nhis.htm

Chen SC, Liao CM. Modelling control measures to reduce the impact of pandemic influenza among 
schoolchildren. Epidemiol Infect. 2008; 136:1035–1045. [PubMed: 17850689] 

Chowell G, Castillo-Chavez C, Fenimore PW, Kribs-Zaleta CM, Arriola I, Hyman JM. Model 
parameters and outbreak control for SARS. Emerg Infect Dis. 2004; 10:1258–1263. [PubMed: 
15324546] 

Coelho FC, Codeco CT, Struchiner CT. Complete Treatment of Uncertainties in a Model for Dengue 
R0 Estimation. Cad Saude Publica, Rio de Janeiro. 2008; 24:853–961.

Crowe S, Utley M, Walker G, Grove P, Pagel C. A model to evaluate mass vaccination against 
pneumococcus as a counter measure against pandemic influenza. Vaccine. 2011; 29:5065–5077. 
[PubMed: 21539879] 

Elderd BD, Dukic VM, Dwyer G. Uncertainty in predictions of disease spread and public health 
responses to bioterrorism and emerging diseases. Proc Natl Acad Sci USA. 2006; 103:15693–
15697. [PubMed: 17030819] 

Flahault A, Vergu E, Coudeville L, Grais RF. Strategies for containing a global influenza pandemic. 
Vaccine. 2006; 24:6751–6755. [PubMed: 16843574] 

Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, et al. 
Pandemic potential of a strain of influenza A (H1N1): early findings. Science. 2009; 324:1557–
1561. [PubMed: 19433588] 

Galvani AP. Epidemiology meets evolutionary ecology. Trends Ecol Evol. 2003; 18:132–139.

Halloran ME, Hayden FG, Yang Y, Longini IM, Monto AS. Antiviral effects influenza viral 
transmission and pathogenicity: observations from household-based trials. Am J Epidemiol. 2007; 
165:212–221. [PubMed: 17088311] 

Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 
1970; 57:97–109.

Helton JC, Davis FJ. Illustration of sampling-based methods for uncertainty and sensitivity analysis. 
Risk Anal. 2002; 22:591–622. [PubMed: 12088236] 

Helton JC, Davis FJ. Latin hypercube sampling and the propagation of uncertainty in analyses of 
complex systems. Reliab Eng Syst Saf. 2003; 81:23–69.

Hoeting JA, Madigan D, Raftery AE, Volinsky CT. Bayesian model averaging: atutorial. Stat Sci. 
1999; 14:382–417.

Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995; 90:773–795.

Keeling, MJ.; Rohani, P. Modeling Infectious Diseases in Humans and Animals. Princeton University 
Press; Princeton, NJ: 2008. 

Gilbert et al. Page 14

Epidemics. Author manuscript; available in PMC 2015 February 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.cdc.gov/vaccines/stats-surv/nhis/2009-nhis.htm
http://www.cdc.gov/vaccines/stats-surv/nhis/2009-nhis.htm


Krumkamp R, Kretzschmar M, Rudge JW, Ahmad A, Hanvoravongchai P, Westenhoefer J, et al. 
Health service resource needs for pandemic influenza in developing countries: a linked 
transmission dynamics, interventions and resource demand model. Epidemiol Infect. 2010; 
139(59):67.

Lloyd, AL. Sensitivity of model-based epidemiological parameter estimation to model assumptions. 
In: Chowell, G.; Hyman, JM.; Bettencourt, LMA.; Castillo-Chavez, C., editors. Mathematical and 
Statistical Estimation Approaches in Epidemiology. Springer; New York: 2009. p. 123-142.

Longini IM, Koopman JS, Monto AS, Fox JP. Estimating household and community transmission 
parameters for influenza. Am J Epidemiol. 1982; 115:736–751. [PubMed: 7081204] 

Marino S, Hogue IB, Ray CJ, Kirschner DE. A methodology for performing global uncertainty and 
sensitivity analysis in systems biology. J Theor Biol. 2008; 254:178–196. [PubMed: 18572196] 

Massad E, Behrens RH, Burattini MN, Coutinho FAB. Modeling the risk of malaria for travelers to 
areas with stable malaria transmission. Malar J. 2009; 8:296. [PubMed: 20015392] 

Matser A, Hartemink N, Heesterbeek H, Galvani A, Davis S. Elasticity analysis in epidemiology: an 
application to tick-borne infections. Ecol Lett. 2009; 12:1298–1305. [PubMed: 19740112] 

Medlock J, Galvani AP. Optimizing influenza vaccine distribution. Science. 2009; 325:1705–1708. 
[PubMed: 19696313] 

Mercer GN, Barry SI, Kelly H. Modelling the effect of seasonal influenza vaccination on the risk of 
pandemic influenza infection. BMC Public Health. 2011; 11:S11. [PubMed: 21356130] 

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equations of state calculations 
by fast computing machines. J Chem Phys. 1953; 21:1087–1092.

Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts and mixing 
patterns relevant to the spread of infectious diseases. PLoS Med. 2008; 5:e74. [PubMed: 
18366252] 

Mylius SD, Hagenaars TJ, Lugner AK, Wallinga J. Optimal allocation of pandemic influenza vaccine 
depends on age, risk and timing. Vaccine. 2008; 26:3742–3749. [PubMed: 18524428] 

Nuño M, Chowell G, Gumel AB. Assessing the role of basic control measures, antivirals and vaccine 
in curtailing pandemic influenza: scenarios for the US, UK and the Netherlands. J R Soc Interface. 
2007; 4:505–521. [PubMed: 17251132] 

Pitman R, Fisman D, Zaric GS, Postma M, Kretzschmar M, Edmunds J, Brisson M. Dynamic 
transmission modeling: a report of the ISPOR-SMDM Modeling Good Research Practices Task 
Force Working Group – 5. Med Decis Making. 2012; 32:712–721. [PubMed: 22990086] 

Roberts MG, Baker M, Jennings LC, Sertsou G, Wilson N. A model for the spread and control of 
pandemic influenza in an isolated geographic region. J R Soc Interface. 2007; 4:325–330. 
[PubMed: 17251145] 

Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D., et al. Global Sensitivity 
Analysis: The Primer. Wiley; West Sussex, England: 2008. 

Saltelli, A.; Tarantola, S.; Campolongo, F.; Ratto, M. Sensitivity Analysis in Practice: A Guide to 
Assessing Scientific Models. Wiley; Hoboken, NJ: 2004. 

Samsuzzoha M, Singh M, Lucy D. Uncertainty and sensitivity analysis of the basic reproduction 
number of a vaccinated epidemic model of influenza. Appl Math Model. 2013; 37:908–915.

Sanchez MA, Blower SM. Uncertainty and sensitivity analysis of the basic reproductive rate, 
tuberculosis as an example. Am J Epidemiol. 1997; 145:1127–1137. [PubMed: 9199543] 

Sullivan KM, Monto AS, Longini IM. Estimates of the US health impact of influenza. Am J Public 
Health. 1993; 83:1712–1716. [PubMed: 8259800] 

Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, et al. Mortality associated 
with influenza and respiratory syncytial virus in the United States. J Am Med Assoc. 2003; 
289:179–186.

Thompson WW, Shay DK, Weintraub E, Brammer L, Bridges CB, Cox N, et al. Influenza-associated 
hospitalizations in the United States. J Am Med Assoc. 2004; 292:1333–1340.

Tracht SM, Del Valle SY, Hyman JM. Mathematical modeling of the effectiveness of facemasks in 
reducing the spread of novel influenza A (H1N1). PLoS One. 2011; 5:e9018. [PubMed: 20161764] 

Gilbert et al. Page 15

Epidemics. Author manuscript; available in PMC 2015 February 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Tuite AR, Fisman DN, Kwong JC, Greer AL. Optimal pandemic influenza vaccine allocation 
strategies for the Canadian population. PLoS One. 2010; 5:e10520. [PubMed: 20463898] 

Vanden Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for 
compartmental models of disease transmission. Math Biosci. 2002; 180:29–48. [PubMed: 
12387915] 

Vynnycky, E.; White, RG. An Introduction to Infectious Disease Modeling. Oxford University Press; 
New York: 2010. 

Wu J, Radhika D, Gambhir M, Remais JV. Sensitivity analysis of infectious disease models: methods, 
advances and their application. J R Soc Interface. 2013; 10:20121018. [PubMed: 23864497] 

Gilbert et al. Page 16

Epidemics. Author manuscript; available in PMC 2015 February 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig 1. 
Diagram of compartmental model of influenza transmission. Compartments correspond to 

susceptible [S], latently infected [E], infectious [I], recovered [R], vaccinated [V], treated 

[T] and hospitalized [H] individuals. λ corresponds to force of infection, 1/σ to duration of 

incubation period, η to rate of hospitalization, κ to rate of recovery following 

hospitalization, and μ to flu mortality rate. The remaining rates are described in Table 1.
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Fig. 2. 
Probability (%) that Re is below one for different levels of vaccination and treatment (A) 

without and (B) with the incorporation of parameter uncertainty.
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Fig. 3. 
Probability that Re is below one (A) for varying levels of treatment when proportion 

vaccinated is 0.3 and (B) for varying levels of vaccination when proportion treated is 0.3.
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Fig 4. 
One-way, local sensitivity analysis of parameter contributions to model outcome uncertainty 

at different combinations of vaccination and treatment levels. (A) 30% treatment and 30% 

vaccination coverage, (B) 30% treatment and 35% vaccination coverage, (C) 30% treatment 

and 51% vaccination coverage, (D) 30% treatment and 60% vaccination coverage, (E) 37% 

treatment and 30% vaccination coverage, (F) 37% treatment and 35% vaccination coverage, 

(G) 37% treatment and 51% vaccination coverage, (H) 37% treatment and 60% vaccination 

coverage, (I) 50% treatment and 30% vaccination coverage, (J) 50% treatment and 35% 

vaccination coverage, (K) 50% treatment and 51% vaccination coverage, and (L) 50% 

treatment and 60% vaccination coverage.
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Table 1

Parameter descriptions, values, distributions, and sources.

Parameter Point estimate Distribution Reference

Infectious perioda 1/δ 3.8 days Normalb Cauchemez et al. (2004)

Secondary attack rate θ 0.147 Truncated normalc,d Longini et al. (1982)

Contact rate c 13.4 contacts/day Empirical Mossong et al. (2008)

Vaccine efficacy εV 0.95 Betae Belshe et al. (1998)

Antiviral treatment efficacy εT 0.808 Betaf Halloran et al. (2007)

Proportion of infected individuals 
hospitalized

pH 0.005 Betag Sullivan et al. (1993), Thompson et al. (2003, 
2004)

SD, standard deviation.

a
1/recovery rate.

b
Standard deviation = 0.4.

c
All values greater than 0.

d
Standard deviation = 0.037.

e
From 

f
From 

g
From 
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