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Abstract

The Gene Ontology and annotations derived from the S. cerivisiae Genome Database were 

analyzed to calculate functional similarity of gene products. Three methods for measuring 

similarity (including a distance-based approach) were implemented. Significant, quantitative 

relationships between similarity and expression correlation of pairs of genes were detected. Using 

a known gene expression dataset in yeast, this study compared more than three million pairs of 

gene products on the basis of these functional properties. Highly correlated genes exhibit strong 

similarity based on information originating from the gene ontology taxonomies. Such a similarity 

is significantly stronger than that observed between weakly correlated genes. This study supports 

the feasibility of applying gene ontology-driven similarity methods to functional prediction tasks, 

such as the validation of gene expression analyses and the identification of false positives in 

protein interaction studies.
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I. Introduction

AN important goal in functional genomics is the automated incorporation of prior 

knowledge to support the generation and validation of hypotheses. Moreover, this process 
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should facilitate integrative prediction strategies based on the analysis of diverse sources of 

genomic information, which provide incomplete and sometimes inconsistent views of a 

biological phenomenon. The Gene Ontology™ (GO) represents an important knowledge 

resource to describe the function of genes [1]. The GO was designed to offer controlled 

vocabularies and shared hierarchies for aiding in the annotation of molecular attributes 

across model organisms. Initially, it facilitated the development of several organism-specific 

databases and the implementation of cross-database queries [1]. More recently, it has been 

used as a gold standard for functional prediction applications. It has supported functional 

assessment of gene products, including gene expression cluster interpretation [2].

The GO has been proposed as a tool for measuring similarity between genes. This approach 

is referred to as semantic similarity, which may be based on statistical and topological 

information about GO terms and/or their interrelationships in the ontology. Previous 

research has shown significant relationships between semantic similarity of pairs of genes 

and their structural, sequence-based similarity [3]. Also initial studies have evaluated 

relevant associations between GO-driven similarity and other functional properties, such 

gene expression correlation and protein complex membership [4].

This study focuses on the incorporation of ontology-based similarity for functional 

classification problems. It aims to expand our understanding of the relationships between 

GO-driven gene similarity and expression correlation. Such an assessment may allow one to 

justify the design of annotation-based predictive models and their integration with 

expression data models. It may provide the basis for novel methods to assess the predictive 

quality and reliability of functional genomics analyses involving gene expression or other 

types of related data. Moreover, this research may be seen as an analysis of the reliability 

and consistency of the information represented in the GO and resulting databases.

The results are based on the GO annotations from the Saccharomyces Genome Database 

(SGD) [5]. Section 2 introduces the GO and relevant applications. GO-based similarity 

assessment methods are introduced in Section 3. Section 4 describes the datasets and 

methods. Section 5 summarizes results. Section 6 discusses the relevance of the results and 

ongoing research.

II. The Gene Ontology and its Applications in Functional Genomics

A. Introduction to the Gene Ontology

The GO defines a shared and structured vocabulary to annotate molecular attributes across 

models organisms [1]. It allows scientists to access annotation information resulting from 

different model organisms. The terms defined by the GO have been used to develop several 

genomic databases, such as the SGD [5] and FlyBase [6]. The GO and resulting databases 

also provide information about the quality of the associations between GO terms and gene 

products. This information is represented by evidence codes, which are assigned to each 

gene annotation using the GO. The GO supports different types of evidence codes. For 

instance, the evidence codes TAS (Traceable Author Statement) and IEA (Inferred from 

Electronic Annotation). The TAS code refers to annotations supported by articles or books. 
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In contrast, IEA annotations are based on results automatically derived from sequence 

similarity searches, which have not been reviewed by curators. Detailed information on 

databases and evidence codes supported is available at www.geneontology.org.

The GO comprises three ontologies, sometimes referred to as taxonomies or hierarchies: 

Molecular function (MF), biological process (BP), and cellular component (CC). MF 

represents information on the role played by a gene product. BP refers to a biological 

objective to which a gene product contributes. CC represents the cellular localization of the 

gene product, including cellular structures and complexes. Fig. 1 summarizes the 

organization of the GO and a partial view of the first level of terms included under BP. The 

design and implementation of the GO is reviewed in [1]. These vocabularies (one for each 

ontology) and their relationships are represented by directed acyclic graphs (DAGs). A 

hierarchy in the GO may be seen as a network in which each term may represent a “child 

node” of one or more “parent nodes”. There are two types of child-to-parent relationships in 

the GO: “is a” and “part of” types. The first type is defined when a child class is a subclass 

of a parent class. For example, from the BP ontology, “viral infectious cycle” is a child of 

“viral life cycle”. The second type is used when a parent has the child as its part. For 

instance, from the same ontology, “regulation of viral life cycle” is part of “viral life cycle”. 

Fig. 1.a illustrates these examples and a partial view of a DAG in the GO.

B. Gene Ontology Applications to Functional Genomics

Ontologies have been traditionally used to improve database search applications. However, 

the significance of the GO goes beyond information search applications. The GO may 

facilitate large-scale applications for functional genomics. GO annotations have been 

recently integrated with relevant genomic resources, including gene expression data. One 

such application is the FatiGO tool, which is a Web-based interface for analyzing groups of 

genes and their associations with GO terms [2]. FatiGO allows users to analyze differential 

distributions of GO terms for two sets of genes.

King et al. [7] have predicted gene-phenotype associations in yeast. Their model processed 

phenotypic annotations extracted from the MIPS (Munich Information Center for Protein 

Sequences) database and GO annotations. Decision trees were implemented to infer these 

associations. Hvidsten et al. [8] have combined gene expression data with annotations 

originating from the GO biological process taxonomy. They applied rough set theory to 

assign biological process terms to genes represented by expression patterns. King et al. [9] 

implemented decision trees and Bayesian networks to predict new GO terms-gene 

associations based on existing annotations from the SGD and FlyBase. Lægreid et al. [10] 

also applied supervised learning methods to predict GO biological process annotation terms. 

Although these methods consist of the analysis of GO annotations, they are not based on 

semantic similarity approaches. Moreover, they do not apply information content models, 

which may significantly represent relevant patterns associated with the structure and 

relationships in the GO. By ignoring the semantic similarity between closely related GO 

terms (e.g., between a parent and a child), these methods may fail to identify the similarity 

between genes annotated with these closely related yet distinct terms. One of the 
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contributions of this paper is to exploit term-term similarity in GO hierarchies for computing 

gene-gene similarity.

III. Similarity Assessment with the Gene Ontology

Before explaining the calculation of ontology-based similarity between gene products, it is 

first necessary to understand how to measure similarity between annotation terms in the 

ontology.

Given a pair of terms, c1 and c2, a traditional method for measuring their similarity consists 

of calculating the distance –measured by the number of edges – between the nodes 

associated with these terms in the ontology. The shorter this distance, the higher the 

similarity. The shortest or the average distance may be used when there are multiple paths. 

This type of approaches is commonly known as edge counting methods. Variations may 

define weights for the links according to their position in the taxonomy [11]. One of the 

main limitations shown by these methods is that they assume that nodes and links are 

uniformly distributed in an ontology. This is not an accurate assumption in taxonomies 

exhibiting variable link densities. Information-theoretic models [12] offer alternative 

approaches to measuring similarity in an ontology. Previous research has shown that this 

type of approaches may be significantly less sensitive to link density variability [13], [14]. 

These methods traditionally consider only the “is a” links in a taxonomy. However, it has 

been shown that other types of links may also be processed to perform similarity assessment 

[13]. The majority of the GO links are “is a” links [3]. Such a bias towards link type usage 

also justifies the application of this type of similarity assessment approaches. This research 

implemented and evaluated information-theoretic techniques to measure similarity of GO 

terms. It considers the two types of GO links as equally important for estimating similarity.

Let C be the set of terms in the GO. An information-theoretic approach to measuring 

similarity between terms, c ∈ C, consists of determining the amount of information they 

share in common. In the GO this information may be represented by the set of parent nodes, 

which subsume the pairs of terms under analysis. For example, in Fig. 1.a the terms 

“regulation of viral life cycle” and “viral infectious cycle” are subsumed by the terms “viral 

life cycle” and “biological_process”. This indicates that the terms “regulation of viral life 

cycle” and “viral infectious cycle” shared those attributes (parents) in common. For each 

term, c ∈ C, p(c) is the probability of finding a child of c in the annotation database being 

analyzed, in this case the SGD. Thus, as one moves up to the root node of the GO (i.e. terms 

“molecular function”, “biological process” and “cellular component”), p(c) monotonically 

approaches a value equal to 1. The principle of information theory defines the information 

content of a term as equal to −log(p(c)).

This type of methods exploits the assumption that the more information two terms share in 

common, the more similar they are. Thus, the information shared by two terms may be 

calculated using the information content of the terms subsuming them in the ontology. One 

such technique is known as the Resnik’s model, and calculates similarity between terms ci 

and cj as [13], [14]:

Wang et al. Page 4

Proc IEEE Symp Comput Intell Bioinforma Comput Biol. Author manuscript; available in PMC 2015 February 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(1)

where S(ci, cj) represents the set of parent terms shared by both ci and cj, and ‘max’ 

represents the maximum operator. The value of this metric can vary between 0 and infinity. 

In Fig. 1.a, for example, if “regulation of viral life cycle” and “viral infectious cycle” 

represent c1 and c2 respectively, S(c1, c2) will then include “viral life cycle” and 

“biological_process”. Nevertheless, “viral life cycle”, which provides the minimum p(c) and 

the maximum −log(p(c)), represents the most informative term. Thus, (1) provides the 

information content of the lowest common ancestor of two terms.

An alternative information-theoretic technique was proposed by Lin [15]. This technique 

also estimates similarity on the basis of the parent commonality of two query terms. 

However, it also incorporates the information content of the query terms. Thus, given terms, 

ci and cj, their similarity may be calculated as:

(2)

where p(ci) and p(cj) are defined as above. The values generated by (2) vary between 0 and 

1. Lin’s values also increase in relation to the degree of similarity shown by two terms, and 

decreases with their difference. This technique may be seen as a normalized version of (1).

Similarity between terms may also be assessed using distance functions. In this case the 

resulting values will decrease with regard to their level of similarity. The more similar two 

terms are, the closer they would be in the distance space. One such method is the Jiang’s 

distance [16], which is defined as:

(3)

where the variables are defined as above. The values generated by (3) can vary between 0 

and infinity and they reflect the semantic dissimilarity between a pairs of terms, ci and cj For 

additional information on these and related techniques the reader is referred to [14], [15].

Similarity and distance values for a pair of gene products described by GO terms may be 

calculated based on (1) to (3). Given a pair of gene products, gi and gj, which are annotated 

by a set of terms Ai and Aj respectively, where Ai and Aj comprise m and n terms 

respectively, the semantic similarity, SIM(gi, gj), may be defined as the average inter-set 

similarity between terms from Ai and Aj:

(4)

where sim(ck, cp) may calculated using either (1) or (2). Using (3) the semantic distance, 

D(gi, gj), may be defined as:
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(5)

These methods aggregate similarity and distance information originating from all of the 

terms used to describe gi and gj

Cao et al. [17] applied (1) to implement a genomic data warehouse search system. Given a 

query gene and its GO terms, this system allows users to search for similar genes. Cao et al. 

do not actually implement (4). In their system a reference term associated with the query 

gene is specified to search for genes containing similar terms.

The relationship between semantic and sequence similarities has been investigated by Lord 

et al. [3]. They found significant correlations between (4), based on (1) and (2), and gene 

sequence similarity. Their results were based on the analysis of the Swiss-Prot-Human 

database and the application of the BLAST tool. More recently, Azuaje and Bodenreider [4] 

studied significant, quantitative associations between GO-driven similarity and gene 

expression correlation, and between similarity and protein complex membership. Based on a 

relatively small sample of genes involved in the yeast cell cycle, their study suggested that a 

high degree of semantic similarity may be associated with significant levels of expression 

correlation. They evaluated methods based on (1), (2) and (4). The study reported in this 

paper builds on the research initiated by [4]. GO-driven similarity of pairs of genes is 

analyzed using the techniques introduced above. Significant relationships between such 

properties and gene expression correlation are established for a larger dataset.

IV. Data and Methods

This investigation processed associations between GO terms and gene products included in 

the SGD. Results are based on the analysis of the February 2004 GO release. Experiments 

ignored IEA annotations due to their lack of reliability. Quantitative relationships between 

the semantic similarity of pairs of gene products and their expression correlation were 

studied. This research incorporates a known dataset taken from Eisen et al. study [18], 

which contains expression responses to several perturbations in S. cerevisiae. Our analyses 

included 2460 ORFs with available GO annotations. The importance of this dataset, which 

reflects fundamental cellular states of this organism, has been widely reported elsewhere. 

Each gene is described by 79 expression values, which are associated with 79 separate time 

courses during the following processes: the diauxic shift, the mitotic cell division cycle, 

sporulation, and temperature and reducing shocks. A detailed description of the dataset is 

given in [18]. More than 3 million gene pairs were derived from this dataset. For each pair 

of genes, the similarity and the distance in each ontology was compared to the absolute 

expression correlation value. Expression correlation was calculated using the well-known 

Pearson correlation coefficient. We split the gene pairs into five groups with respect to 

absolute correlation values and computed information content-based similarity and distance 

values in each group. Our hypothesis is that pairs of genes exhibiting similar expression 

levels (as measures by the absolute correlation values) also tend to have high similarity or 
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short distance (as measured by the information content-based methods). Additionally, this 

study was done separately on the three hierarchies of the GO in order to evaluate whether 

this hypothesis holds for CC and BP annotations as well as for MF annotations.

V. Results

Figs. 2, 3, and 4 summarize Renisk’s similarity, Lin’s similarity and Jiang’s distance against 

absolute expression correlation values between pairs of gene products respectively. 

Similarity and distance information was derived from the MF hierarchy. For these and all of 

the subsequent figures the axis of abscissas is divided into a number of absolute correlation 

intervals, and the axis of ordinates shows the mean similarity (or distance) values detected in 

these intervals and their 95% confidence intervals. Similar trends, but with different levels 

of resolution, were obtained for other numbers of intervals. High similarity and short 

distance values are significantly associated with strong expression correlation values. Weak 

similarity and long distance are significantly related to low expression correlation values. 

This trend is significantly stronger in the case of the highest expression correlation values. 

For instance, among more than 3 million gene pairs, there are 1798 pairs from the BP 

hierarchy whose correlation values are greater than 0.9, in which more than 97.5% has 

Jiang’s distances smaller than 5.

Similar patterns were obtained from the analyses based on the BP and CC ontologies. These 

results are illustrated in Figs. 5, 6, 7, 8, 9, and 10, depicting significant associations between 

similarity, distance and correlation. Similar results were obtained for different number of 

intervals.

VI. Conclusions

This study confirms that the GO-driven similarity and expression correlation of pairs of gene 

products are significantly interrelated. This property is consistently valid for similarity 

information originating from all of the GO hierarchies. Significant associations between a 

distance-based approach and expression correlation were also investigated in connection to 

all three ontologies. Such a distance model is also based on an information content 

approach.

This investigation expands and confirms the ideas reported in [4]. Our results indicate 

stronger connections between expression correlation and functional similarity knowledge 

extracted from the GO. We determined significant associations between high GO-driven 

similarity and high absolute expression correlation using a much larger sample of genes. 

Significant relationships between low correlation and similarity levels were also identified. 

Analyses on Jiang’s results suggest that such an approach may generate relevant indicators 

of dissimilarity, which are in general consistent with the outcomes derived from Resnik’s 

and Lin’s methods.

The results support the idea of applying GO-driven similarity assessment techniques for 

validating gene expression correlation. Similarity values may provide indicators to detect 

irrelevant expression correlations between pairs of genes. Moreover, these tools may be used 
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to support expression cluster analysis and evaluation. The authors and collaborators are 

currently investigating the application of these methods for defining semantic cluster 

validity indices. Such indices together with data-driven cluster validity indices [19], [20], 

may be useful to aid in the prediction of the correct number of clusters. We are also 

designing hierarchical clustering strategies that combine expression correlation and semantic 

similarity information.

The authors will analyze other gene expression data sets in S. cerevisiae and C. elegans. 

Alternative ontology-driven similarity assessment methods will be implemented. 

Differences between the three GO hierarchies in terms of semantic similarity will be further 

assessed. One important next step is to implement methods to integrate similarity 

information from all of the GO hierarchies. One basic approach is to calculate the average of 

the similarity values obtained from each hierarchy. Initial results have been consistent with 

the relationships summarized in this paper.

Ontology-driven similarity assessment techniques may be useful to support annotation tasks. 

In one possible application, groups of gene products could be annotated using their lowest 

common ancestor rather than multiple annotations. These models may also be applied to 

analyze differences in annotations across genes across multiple organisms.

GO-driven similarity assessment methods may also be incorporated into models for 

predicting new annotations for partially characterized genes. Machine learning models have 

been previously reported to address this problem. However, they measure similarity between 

sets of annotations based solely on the presence or absence of GO terms [9]. Thus, the 

information-theoretic tools evaluated in this paper may be useful to support the development 

of more meaningful and reliable prediction models.

GO-driven similarity assessment techniques may become reliable tools for helping scientists 

to validate hypothesis in functional genomics. For example, they may significantly 

contribute to the detection of false-positives interactions. These tools may indicate when two 

potentially-interacting proteins are not functionally associated. Such a functional 

dissimilarity is an important sign of false-positive interactions [21].

This study contributes to the automated integration of prior, background knowledge into 

large-scale, integrative biological data mining.
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Fig. 1. 
Different views of the GO. (a) Example of a DAG. (b) GO taxonomies. (c) Partial view of 

the first level of BP. […] indicates the presence of several terms not included here.
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Fig. 2. 
Expression correlation and GO-based similarity based on (1) for MF ontology. The axis of 

ordinates shows the mean Resnik’s similarity values for each correlation interval and their 

95% confidence intervals.
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Fig. 3. 
Expression correlation and GO-based similarity based on (2) for MF ontology. The axis of 

ordinates shows the mean Lin’s similarity values for each correlation interval and their 95% 

confidence intervals.
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Fig. 4. 
Expression correlation and GO-based distance based on (3) for MF ontology. The axis of 

ordinates shows the mean Jiang’s distance values for each correlation interval and their 95% 

confidence intervals.
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Fig. 5. 
Expression correlation and GO-based similarity based on (1) for BP ontology. The axis of 

ordinates shows the mean Resnik’s similarity values for each correlation interval and their 

95% confidence intervals.
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Fig. 6. 
Expression correlation and GO-based similarity based on (2) for BP ontology. The axis of 

ordinates shows the mean Lin’s similarity values for each correlation interval and their 95% 

confidence intervals.
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Fig. 7. 
Expression correlation and GO-based distance based on (3) for BP ontology. The axis of 

ordinates shows the mean Jiang’s distance values for each correlation interval and their 95% 

confidence intervals.
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Fig. 8. 
Expression correlation and GO-based similarity based on (1) for CC ontology. The axis of 

ordinates shows the mean Resnik’s similarity values for each correlation interval and their 

95% confidence intervals.
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Fig. 9. 
Expression correlation and GO-based similarity based on (2) for CC ontology. The axis of 

ordinates shows the mean Lin’s similarity values for each correlation interval and their 95% 

confidence intervals.
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Fig. 10. 
Expression correlation and GO-based distance based on (3) for CC ontology. The axis of 

ordinates shows the mean Jiang’s distance values for each correlation interval and their 95% 

confidence intervals.
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