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Abstract

Reconstitution of ion channels into planar lipid bilayers (also called black lipid membranes or 

BLM) is the most widely used method to conduct physiological studies of intracellular ion 

channels, including endoplasmic reticulum (ER) calcium (Ca2+) channels. The two main types of 

Ca2+ release channels in the ER membrane are ryanodine receptors (RyanRs) and inositol(1,4,5)-

trisphosphate receptors (InsP3Rs). Use of the BLM reconstitution technique enabled the initial 

description of the functional properties of InsP3R and RyanR at the single-channel level more than 

20 years ago. Since then, BLM reconstitution methods have been used to study physiological 

modulation and to perform structure–function analysis of these channels, and to study pathological 

changes in the function of InsP3R and RyanR in various disease states. The BLM technique has 

also been useful for studies of other intracellular Ca2+ channels, such as ER Ca2+ leak presenilin 

channels and NAADP-gated lysosomal Ca2+ channels encoded by TPC2. In this article, basic 

protocols used for BLM studies of ER Ca2+ channels are introduced.

Introduction

Studies of plasma membrane ion channels have been greatly facilitated by the development 

of the patch-clamp technique (Sakmann and Neher 1983). However, membranes of the 

endoplasmic reticulum (ER) and other intracellular compartments are not accessible for 

traditional patch clamp experiments. Application of the patch-clamp technique to nuclear 

patches provided an opportunity to conduct some studies of intracellular ion channels (Mak 

and Foskett 1997), but this technique (see Patch-Clamp Electrophysiology of Intracellular 

Ca2+ Channels [Mak et al. 2013]) is only applicable to certain types of cells and preparations 

and has a number of additional technical limitations. For these reasons, reconstitution of ion 

channels into planar lipid bilayers (also called black lipid membranes or BLM) is the most 

widely used method to conduct physiological studies of intracellular ion channels, including 

ER Ca2+ channels. General methods for making bilayers and for ion channel reconstitution 

into BLM have been extensively described in an excellent manual (Miller 1986). In this 

article, the focus will primarily be on the technical issues specific for BLM studies of ER 

Ca2+ channels.
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There are two types of Ca2+ release channels in the ER membrane—ryanodine receptors 

(RyanRs) and inositol(1,4,5)-trisphosphate receptors (InsP3Rs). There are single isoforms of 

InsP3R and RyanR in Drosophila melanogaster and Caenorhabditis elegans and three 

mammalian isoforms for both the InsP3R and RyanR families (Bezprozvanny 2005; Foskett 

et al. 2007; Mikoshiba 2007; Lanner et al. 2010; Capes et al. 2011). These tetrameric 

channels are very large, with subunits of InsP3R having a mass of about 260 kDa and 

subunits of RyanR having a mass of 560 kDa (Bezprozvanny 2005; Foskett et al. 2007; 

Mikoshiba 2007; Lanner et al. 2010; Capes et al. 2011). The large size of these channels 

enabled direct structural studies using particle electron microscopy and image analysis 

(Hamilton and Serysheva 2009; Serysheva and Ludtke 2010).

InsP3Rs are gated by the second messenger inositol (1,4,5)-trisphosphate (InsP3), which is 

generated following phospholipase C-mediated cleavage of the lipid precursor 

phosphatidylinositol 4,5-bisphosphate (PIP2). All InsP3R isoforms have a conserved amino-

terminal domain that forms a high affinity InsP3-binding site (Bezprozvanny 2005; Foskett 

et al. 2007; Mikoshiba 2007). The crystal structure of the InsP3-binding domain from 

InsP3R1 was solved in both InsP3-bound and apo (InsP3-free) forms (Bosanac et al. 2002; 

Bosanac et al. 2005; Lin et al. 2011). Skeletal muscle RyanR1s are gated mechanically by 

direct movement of voltage-sensors in plasma membrane CaV1.1 channels (DHPR) (Lanner 

et al. 2010; Capes et al. 2011). The mechanical coupling between DHPR and RyanR1 is 

facilitated by a specialized triad structure in skeletal muscle, which brings the sarcoplasmic 

reticulum and plasma membrane in close proximity to each other. RyanR2 is a predominant 

isoform in the heart and brain. RyanR2 is gated by an increase in Ca2+ levels and supports 

Ca2+-induced Ca2+ release (CICR). RyanR3 is expressed in brain, smooth muscle, and 

several other tissues and also functions as a Ca2+-gated Ca2+ channel. Activation of RyanRs 

by a novel messenger, cyclic-ADP ribose (cADPR), has been proposed, but cADPR does 

not bind directly to RyanR, and the issue of RyanR activation by cADPR remains 

controversial (Venturi et al. 2012).

BLM EXPERIMENTS TO STUDY InsP3R AND RyanR

Both InsP3Rs and RyanRs play a key role in control of cytosolic Ca2+ concentrations in 

cells. Due to the central role played by these channels in Ca2+ signaling, both proteins are 

subject to multiple levels of regulation. BLM recordings of native and recombinant InsP3R 

and RyanR played a key role in understanding the physiological modulation of these 

channels. Initial bilayer recordings of native skeletal muscle RyanR1 was achieved in 1985 

(Smith et al. 1985, 1986), native smooth muscle InsP3R1 in 1988 (Ehrlich and Watras 

1988), and native cerebellar InsP3R1 and RyanR in 1991 (Bezprozvanny et al. 1991). The 

main procedures used in these initial publications have been used with only minor changes 

for more than 20 years now to describe physiological properties and modulation of InsP3R 

and RyanR in bilayers. Using bilayer techniques, it was shown that both InsP3R and RyanR 

are modulated by cytosolic Ca2+ levels (Smith et al. 1986; Bezprozvanny et al. 1991). 

However, in the physiological Ca2+ range, skeletal muscle RyanR1 and cardiac RyanR2 

function as Ca2+-gated Ca2+ channels (Smith et al. 1986), whereas cerebellar InsP3R1 

displays very narrow bell-shaped Ca2+ dependence (Bezprozvanny et al. 1991). The activity 

of both skeletal muscle RyanR1 and cerebellar InsP3R1 are potentiated by cytosolic levels of 
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ATP (Smith et al. 1986; Bezprozvanny and Ehrlich 1993). Additionally, RyanR and InsP3R 

form high conductance nonselective cation-permeable channels (Tinker and Williams 1992; 

Bezprozvanny and Ehrlich 1994). Direct modulation of RyanR and InsP3R by 

phosphorylation was investigated in bilayers (Hain et al. 1994; Tang et al. 2003b). 

Modulation of InsP3R1 gating by intraluminal Ca2+ levels (Bezprozvanny and Ehrlich 1994) 

and modulation of RyanR1 by cytosolic and luminal pH (Laver et al. 2000) was studied in 

BLM. The phenomenon of “adaptation” of RyanR to rapid changes in cytosolic Ca2+ levels 

was discovered in BLM experiments (Gyorke and Fill 1993; Valdivia et al. 1995). The 

laboratories involved in these studies used a number of variations on the procedures used to 

obtain BLM recordings of native InsP3Rs and RyanRs, but the general outline of these 

procedures has remained the same since pioneering work by Smith et al. (1988). In the 

associated protocols, I provide an outline of these basic protocols as used in our studies of 

cerebellar InsP3R function together with Dr. Barbara Ehrlich at the University of 

Connecticut Medical Center (Bezprozvanny et al. 1991; Bezprozvanny and Ehrlich 1993, 

1994) and later in my own laboratory in UT Southwestern Medical Center (Lupu et al. 1998; 

Tang et al. 2003b). See Preparation of Microsomes to Study Ca2+ Channels (Bezprozvanny 

2013a) and Reconstitution of Endoplasmic Reticulum InsP3 Receptors into Black Lipid 

Membranes (Bezprozvanny 2013b).

Cloning of the InsP3R and RyanR genes created an opportunity for structure–function 

analysis of these channels. Once again, the BLM reconstitution technique was very useful 

for these studies. Wild-type and mutant RyanRs were expressed in mammalian cell lines, 

purified, and reconstituted in BLM (Chen et al. 1993, 1997). A similar approach was also 

initially taken with InsP3R structure–function studies (Kaznacheyeva et al. 1998; Ramos-

Franco et al. 1998), but expression of wild-type and mutant InsP3R in Sf9 cells by 

baculoviral infection provided a more abundant source of recombinant InsP3R for BLM 

studies. Using this approach, my laboratory compared the functional properties of three 

mammalian InsP3R isoforms (Tu et al. 2005b), described channel properties of Drosophila 

InsP3R (Srikanth et al. 2004), and mapped structural determinants responsible for InsP3R 

modulation by Ca2+ (Tu et al. 2003; Tu et al. 2005a). The procedures used by our laboratory 

at UT Southwestern Medical Center in these studies are described in the accompanying 

protocols. See Preparation of Microsomes to Study Ca2+ Channels (Bezprozvanny 2013a) 

and Reconstitution of Endoplasmic Reticulum InsP3 Receptors into Black Lipid Membranes 

(Bezprozvanny 2013b).

In addition to studies of the basic functional properties of RyanR and InsP3R, the BLM 

reconstitution technique was also useful for studies of the pathophysiology of these 

channels. This application of the BLM technique has become particularly useful in recent 

years, as more disease-relevant molecular data have become available for both InsP3R and 

RyanR. Functional effects of a number of malignant hyperthermia (MH) mutations in 

RyanR1 and effects of the volatile anesthetic halothane on the mutant RyanR1 have been 

characterized in BLM (Jiang et al. 2008). BLM recordings were used to characterize the 

phenotype of point mutations in RyanR1 linked with muscle weakness and central core 

disease (CCD) (Ghassemi et al. 2009; Loy et al. 2011) and point mutations in RyanR2 

linked to ventricular arrhythmia and sudden death (Jiang et al. 2007; Jones et al. 2008). 
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These results led to the hypothesis that dysfunction of the store-overload-induced Ca2+ 

release (SOICR) mechanism plays a key role in cardiac arrhythmia (Priori and Chen 2011). 

BLM recordings have been used to investigate changes in RyanR2 functional states in the 

model of exercise-induced sudden cardiac death and during heart failure (Marx et al. 2000; 

Wehrens et al. 2003). In addition, the BLM technique was used extensively to study 

pathogenic interactions of neuronal InsP3R1 with mutant Huntingtin, ataxin-2, and ataxin-3 

proteins (Tang et al. 2003a; Chen et al. 2008; Liu et al. 2009), and the results obtained form 

the basis for the hypothesis that abnormal Ca2+ signaling plays a role in polyglutamine 

expansion neurodegenerative disorders (Bezprozvanny 2009, 2011). Thus, BLM studies of 

RyanR and InsP3R have provided key mechanistic insights about mechanisms of disorders 

affecting skeletal muscle, the heart, and the brain.

OTHER USES FOR BLM METHODS

The BLM techniques developed for studies of RyanR and InsP3R can be easily adapted to 

studies of other Ca2+-permeable channels. For example, BLM methods have been used to 

show that Aβ42 oligomers forms Ca2+-permeable channels in membranes (Arispe et al. 

1993). These findings form the basis for the hypothesis that the ion channel forming activity 

of Aβ42 oligomers may be responsible for amyloid toxicity in Alzheimer’s disease (AD) 

(Pollard et al. 1995). BLM recordings with recombinant presenilins were used to show their 

ability to support ER Ca2+ leak and to show that most familial AD mutations in presenilins 

disrupt their leak function (Tu et al. 2006; Nelson et al. 2007). Obtained results provided 

strong support to the hypothesis that aberrant Ca2+ signaling plays a role in AD 

(Bezprozvanny and Mattson 2008; Bezprozvanny 2009; Supnet and Bezprozvanny 2011). 

BLM recordings were used to confirm the recent discovery that the TPC2 ion channel 

functions as a NAADP-gated lysosomal Ca2+ channel and to study regulation of this channel 

by lysosomal Ca2+ and pH (Pitt et al. 2010).

In summary, BLM reconstitution of Ca2+ channels continues to provide an opportunity to 

gather unique mechanistic information highly relevant for the basic biology of these 

channels and for better understanding of the pathogenesis of diseases implicating these 

channels.
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