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Abstract

This paper considers conducting inference about the effect of a treatment (or exposure) on an 

outcome of interest. In the ideal setting where treatment is assigned randomly, under certain 

assumptions the treatment effect is identifiable from the observable data and inference is 

straightforward. However, in other settings such as observational studies or randomized trials with 

noncompliance, the treatment effect is no longer identifiable without relying on untestable 

assumptions. Nonetheless, the observable data often do provide some information about the effect 

of treatment, that is, the parameter of interest is partially identifiable. Two approaches are often 

employed in this setting: (i) bounds are derived for the treatment effect under minimal 

assumptions, or (ii) additional untestable assumptions are invoked that render the treatment effect 

identifiable and then sensitivity analysis is conducted to assess how inference about the treatment 

effect changes as the untestable assumptions are varied. Approaches (i) and (ii) are considered in 

various settings, including assessing principal strata effects, direct and indirect effects and effects 

of time-varying exposures. Methods for drawing formal inference about partially identified 

parameters are also discussed.
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1. INTRODUCTION

In many areas of science, interest often lies in assessing the causal effect of a treatment (or 

exposure) on some particular outcome of interest. For example, researchers may be 

interested in estimating the difference between the average outcomes when all individuals 

are treated (exposed) versus when all individuals are not treated (unexposed). When 

treatment is assigned randomly and there is perfect compliance to treatment assignment, 

such treatment effects are identifiable and inference about the effect of treatment proceeds in 

a straightforward fashion. On the other hand, if the treatment assignment mechanism is not 

known to the analyst or compliance is not perfect, then these treatment effects are not 

identifiable from the observable data.

A statistical parameter is considered identifiable if different values of the parameter give rise 

to different probability distributions of the observable random variables. A parameter is 

partially identifiable if more than one value of the parameter gives rise to the same observed 

data law, but the set of such values is smaller than the parameter space. Traditionally, 

statistical inference has been restricted to the situation when parameters are identifiable. 

More recent research has considered methods for conducting inference about partially 

identifiable parameters. This research has been motivated to some extent by methods to 

evaluate causal effects of treatment, which are frequently partially identifiable. For instance, 

causal estimands are typically only partially identifiable in observational studies where the 

treatment selection mechanism is not known to the analyst. Noncompliance in randomized 

trials may also render treatment effects partially identifiable and a large amount of research 

has been devoted to drawing inference about treatment effects in the presence of 

noncompliance. Partial identifiability also arises when drawing inference about treatment 

effects within principal strata or effects describing relationships between an outcome and a 

treatment that are mediated by some intermediate variable.

In order to conduct inference about treatment effects that are partially identifiable, two 

approaches are often employed: (i) bounds are derived for the treatment effect under 

minimal assumptions, or (ii) additional untestable assumptions are invoked under which the 

treatment effect is identifiable and then sensitivity analysis is conducted to assess how 

inference about the treatment effect changes as the untestable assumptions are varied. Below 

(i) and (ii) are illustrated in five settings. In Section 2, we consider treatment effect bounds 

and sensitivity analysis when the treatment assignment mechanism is unknown. In Section 

3, partial identifiability of principal strata causal effects are discussed. In Section 4, the 

setting of noncompliance is considered where there is interest in assessing the effect of 

treatment if there was perfect compliance. In Section 5, bounds and sensitivity analysis for 

direct and indirect effects in mediation analysis are presented, and in Section 6 longitudinal 

treatment effects are considered. Much of the literature on bounds and sensitivity analysis 

focuses on ignorance due to partial identifiability and tends to ignore uncertainty due to 

sampling error. Section 7 presents some methods that appropriately quantify this uncertainty 

when drawing inference about partially identifiable treatment effects. Section 8 concludes 

with a discussion.
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2. TREATMENT SELECTION

2.1 Minimal Assumptions Bounds

Suppose we have a random sample of individuals where each potentially receives treatment 

or control. Unless otherwise indicated, let Z indicate treatment received where Z = 1 denotes 

treatment and Z = 0 denotes control. Denote the observed outcome of interest by Y. In order 

to define a treatment effect on the outcome Y, we first define potential outcomes for an 

individual when receiving treatment, denoted Y(1), and when receiving control, denoted 

Y(0). Throughout this paper, we invoke the stable unit treatment value assumption (SUTVA; 

Rubin, 1980), that is, there is no interference between units and there are no hidden 

(unrepresented) forms of treatment such that each individual has two potential outcomes 

{Y(0), Y(1)}. The no hidden forms of treatment guarantees that the observed outcome is 

equal to the potential outcome corresponding to the observed treatment, namely that Y = Y(z) 

for Z = z. Here, this will be referred to as causal consistency; for further discussion of causal 

consistency see Pearl (2010) and references therein. Once an individual receives treatment 

Z, the potential outcome Y(Z) is observed and the other potential outcome (or counterfactual) 

Y(1 − Z) becomes missing. Assume that n i.i.d. copies of (Z, Y) are observed and denoted by 

(Zi, Yi) for i = 1, …, n.

In this section, we consider treatment effect bounds when the treatment assignment 

mechanism is unknown. Here, Z can be thought of as treatment selection by the individual or 

by nature, rather than random treatment assignment as in an experiment. Define the average 

treatment effect ATE to be E[Y(1) − Y(0)] = E[Y(1)] − E[Y(0)] where E denotes the expected 

value. The ATE can be decomposed as

(1)

Note E[Y(z)|Z = z] = E[Y|Z = z] by causal consistency. Thus, from the observed data E[Y(z)|Z 

= z] and Pr[Z = z] are identifiable and can be consistently estimated by their empirical 

counterparts. On the other hand, the observed data provide no information about E[Y(z)|Z = 

1 − z], such that (1) is only partially identifiable without additional assumptions.

Bounds on E[Y(1) − Y(0)] can be obtained by entertaining the smallest and largest possible 

values for E[Y(z)|Z = 1 − z]. If Y(1) and Y(0) are not bounded then bounds on E[Y(1) − Y(0)] 

will be completely uninformative, ranging from −∞ to ∞. Thus, informative bounds are 

only possible if Y(0) and Y(1) are bounded. Because any bounded variable can be rescaled to 

take values in the unit interval, without loss of generality assume Y(z) ∈ [0, 1] for z = 0, 1. 

Then 0 ≤ E[Y(z)|Z = 1 − z] ≤ 1 and from (1) it follows that E[Y(1) − Y(0)] is bounded below 

by setting E[Y(1)|Z = 0] = 0 and E[Y(0)|Z = 1] = 1, which yields the lower bound

(2)

Similarly, E[Y(1) − Y(0)] is bounded above by setting E[Y(1)|Z = 0] = 1 and E[Y(0)|Z = 1] = 

0, which yields the upper bound
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(3)

These bounds were derived independently by Robins (1989) and Manski (1990). The lower 

and upper bounds (2) and (3) are sharp in the sense that it is not possible to derive narrower 

bounds without additional assumptions. Note the interval formed by (2) and (3) is contained 

in [−1, 1] and is of width 1. Thus, the bounds are informative in that the treatment effect is 

now restricted to half of the otherwise possible range [−1, 1]. On the other hand, the bounds 

will always contain the null value 0 corresponding to no average treatment effect. That is, 

without additional assumptions the sign of the treatment effect cannot be determined from 

the observable data.

2.2 Additional Assumptions

The bounds (2)–(3) are sometimes called the “no assumptions” or “worst case” bounds 

because no assumptions are made about the effect of treatment in the population (Lee, 2005; 

Morgan and Winship, 2007). The only assumptions made in deriving (2) and (3) are 

SUTVA and that the observed data constitute a random sample. If additional assumptions 

are invoked, the treatment effect bounds may become tighter (i.e., narrower) or even 

collapse to a point (i.e., the treatment effect may become identifiable). Sometimes these 

additional assumptions will have implications that are testable based on the observed data. 

Should the observed data provide evidence against an assumption under consideration, then 

bounds should be computed without making this assumption.

An example of an additional assumption is mean independence, that is,

(4)

Under (4) ATE is identifiable. Specifically the upper and lower bounds for ATE both equal 

E[Y(1)|Z = 1] − E[Y(0)|Z = 0], which is identifiable from the observable data and can be 

consistently estimated by the “naive” estimator given by the difference in sample means 

between the groups of individuals receiving treatment and control. Assumption (4) will hold 

in experiments where treatment is randomly assigned as in a randomized clinical trial. 

Moreover, in randomized experiments the stronger assumption

(5)

will hold, where ∐ denotes independence. Independent treatment assignment (5) implies 

mean independence (4).

In some settings it may be reasonable to consider additional assumptions that are not as 

strong as (4) or (5) but nonetheless lead to tighter bounds than (2) and (3). For example, 

monotonicity type assumptions might be considered, such as monotone treatment selection 

(MTS)
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(6)

MTS assumes individuals who select treatment will on average have outcomes greater than 

or equal to that of individuals who do not select treatment under the counterfactual scenario 

all individuals selected the same z. Manski and Pepper (2000) consider MTS when 

examining the effect of returning to school on wages later in life. For this example, MTS 

implies individuals who choose to return to school will have higher wages on average 

compared to individuals who choose to not return to school under the counterfactual 

scenario no individuals return to school. Alternatively, one might assume monotone 

treatment response (MTR)

(Manski, 1997). MTR assumes that under treatment each individual will have a response 

greater than or equal to that under control. For instance, suppose Z = 1 if an individual elects 

to get the annual influenza vaccine and Z = 0 otherwise, and let Y(z) = 1 if an individual 

subsequently does not develop flu-like symptoms when Z = z, and Y(z) = 0 otherwise. MTR 

asserts that each individual is more or as likely to not develop flu-like symptoms if they are 

vaccinated versus if they are unvaccinated. Given to date there is no evidence that the annual 

flu vaccine enhances the probability of acquiring influenza, MTR might be plausible for this 

example.

Assuming MTS or MTR can lead to narrower bounds than (2) and (3) because they imply 

additional constraints on unobserved counterfactual expectations. For example, assuming 

MTS, E[Y(0)|Z = 1] is bounded below by E[Y(0)|Z = 0] and E[Y(1)|Z = 0] is bounded above 

by E[Y(1)|Z = 1], implying the upper bound on E[Y(1) − Y(0)] is

(7)

for which the naive estimator is consistent. Under MTS, the lower bound remains (2). In 

contrast to the no assumptions bounds, assuming MTS the bounds may exclude 0, 

specifically when (7) is negative. MTR implies E[Y(1)] ≥ E[Y(0)] which in turn implies that 

the ATE lower bound is 0. Under MTR, the upper bound remains (3).

2.3 AZT Example

To illustrate the bounds above, consider a hypothetical study of 2000 HIV patients (from 

Figure 2 of Robins, 1989) where 1400 individuals elected to take the drug AZT and 600 

elected not to take AZT (this is a simplified version of the problem Robins considers). The 

outcome of interest is death or survival at a given time point. Of the 2000 patients, 1000 died 

with exactly 500 from each group. Let Z = 1 if the patient elected to take AZT and Z = 0 

otherwise; let Y = 1 if the individual died and 0 otherwise. The naive estimator, that is, the 

difference in sample means between Z = 1 and Z = 0, equals 500/1400 − 500/600 ≈ −0.48. 

The empirical estimates of the no assumptions bounds (2) and (3) equal −0.7 and 0.3. In this 
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setting, the MTS assumption (6) supposes that individuals who elected to take AZT would 

have been more or as likely to die as individuals who did not take AZT in the counterfactual 

scenarios where everyone receives treatment or everyone does not receive treatment. This 

might be reasonable if it is thought that those who took AZT were on average less healthy 

than those who did not. Assuming MTS, the upper bound (7) is estimated to be −0.48. Thus, 

in this example the MTS bounds are substantially tighter than the no assumption bounds. 

The estimated MTS bounds lead to the conclusion (ignoring sampling variability, a point 

which we return to later) that AZT reduces the probability of death by at least 0.48 whereas 

without the MTS assumption we cannot even conclude whether the effect of treatment is 

nonzero.

2.4 Sensitivity Analysis

Assumptions such as (4) or (5) which identify the ATE, or assumptions such as MTS which 

sharpen the bounds, cannot be tested empirically because such assumptions pertain to the 

counterfactual distribution of Y(z) given Z = 1 − z. Robins and others (e.g., see Robins, 

Rotnitzky and Scharfstein, 2000; Scharfstein, Rotnitzky and Robins, 1999) have argued that 

a data analyst should conduct sensitivity analysis to explore how inference varies as a 

function of departures from any untestable assumptions.

For instance, a departure from assumption (5) might be due to the existence of an 

unmeasured variable U associated with both treatment selection Z and the potential 

outcomes Y(z) for z = 0, 1; a variable such as U is often referred to as an unmeasured 

confounder. Under this scenario, one might postulate that Y(z) ∐ Z|U for z = 0, 1 rather than 

(5). Sensitivity analysis proceeds by examining how inference drawn about ATE varies as a 

function of the magnitude of the association of U with Z, Y(0), and Y(1). This idea has roots 

as early as Cornfield et al. (1959), who demonstrated the plausibility of a causal effect of 

cigarette smoking (Z) on lung cancer (Y) by arguing that the absence of such a relationship 

was only possible if there existed an unmeasured factor U associated with cigarette use that 

was at least as strongly associated with lung cancer as cigarette use. This idea was further 

developed by Schlesselman (1978), Rosenbaum and Rubin (1983), Lin, Psaty and Kronmal 

(1998), Hernán and Robins (1999) and VanderWeele and Arah (2011) among others.

To illustrate this approach, suppose in the AZT example above that the analyst first assumes 

(5) holds, and thus estimates the effect of AZT to be −0.48. To proceed with sensitivity 

analysis, the analyst posits the existence of an unmeasured binary variable U and assumes 

that Y(z) ∐ Z|U for z = 0, 1. Similar to VanderWeele and Arah (2011), let

Then under the assumption that Y(z) ∐ Z|U for z = 0, 1, the naive estimator converges in 

probability to E[Y(1)] − E[Y(0)] + c(1) − c(0). Thus the naive estimator is asymptotically 

unbiased if and only if c(1) = c(0). For an alternative decomposition of the asymptotic bias 

of the naive estimator, see Morgan and Winship (2007, Section 2.6.3).
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Sensitivity analysis proceeds by making varying assumptions about the unidentifiable 

associations of U with Y(0), Y(1) and Z. Under the most extreme of these assumptions, the 

bounds (2) and (3) are recovered. In particular, the upper bound in (3) is achieved when 

Pr[U = 1|Z = 1] = 0, Pr[U = 1|Z = 0] = 1, E[Y(1)|U = 1] = 1 and E[Y(0)|U = 0] = 0, meaning 

that the confounder U is perfectly negatively correlated with treatment Z and that if the 

confounder is present (U = 1), then a treated individual will die, whereas if the confounder is 

absent (U = 0), then an untreated individual will survive. The lower bound (2) is achieved 

under the opposite conditions.

In practice the extreme associations of U with Y(0), Y(1), and Z leading to the bounds might 

be considered unrealistic. Instead the analyst might consider associations only in a range 

deemed plausible by subject matter experts. In order to arrive at an accurate range, care 

should be taken in communicating the meaning of these associations and eliciting this range 

should be done in a manner that avoids data driven choices. Alternatively, the degree of 

associations required to change the sign of the effect of interest might be determined. For 

instance, suppose the analyst further assumes that E[Y(z)|U = 1] − E[Y(z)|U = 0] does not 

depend on z. This assumption will hold if the effect of Z on Y is the same if U = 0 or U = 1. 

Letting γ0 = E[Y(z)|U = 1] − E[Y(z)|U = 0] and γ1 = Pr[U = 1|Z = 1] − Pr[U = 1|Z = 0], the 

asymptotic bias of the naive estimator is then given by γ0γ1 and a bias adjusted estimator is 

found by subtracting γ0γ1 from the naive estimator. Sensitivity analysis may proceed by 

determining the values of γ0 and γ1 for which the bias adjusted estimator of the ATE will 

have the opposite sign of the naive estimator. For the AZT example, the bias adjusted 

estimator will have the opposite sign of the naive estimator if γ0γ1 < −0.48. This indicates 

that the product of (i) the difference in the mean potential outcomes between levels of the 

confounder for both treatment and control, and (ii) the difference in the prevalence of the 

unmeasured confounder between the treatment and control groups must be less than −0.48. 

Such magnitudes might be considered unlikely in the opinion of subject matter experts, in 

which case the sensitivity analysis would support the existence of a beneficial effect of AZT 

on survival among HIV+ men (ignoring sampling variability). Note the observed data 

distribution places some restrictions on the possible values of (γ0, γ1), that is, (γ0, γ1) is 

partially identifiable. For instance, if γ1 = 1 then Pr[U = 1|Z = 1] = 1 and Pr[U = 1|Z = 0] = 0 

which implies E[Y(z)|U = u] = E[Y(z)|Z = u] and, therefore, max{E[Y(1)|Z = 1] − 1, −E[Y(0)|

Z = 0]} ≤ γ0 ≤ min{E[Y(1)|Z = 1], 1 − E[Y(0)|Z = 0]}. Such considerations should be taken 

into account when determining the range of values of (γ0, γ1) in sensitivity analysis.

Because the data provide no evidence about U, VanderWeele (2008) and VanderWeele and 

Arah (2011) recommend choosing U and any simplifying assumptions based on what is 

considered plausible by relevant subject-matter experts. Such sensitivity analyses are most 

applicable when the existence of unmeasured confounders is known, but these factors could 

not be measured for logistical or other reasons. General bias formulas to be used for 

sensitivity analyses of unmeasured confounding for categorical or continuous outcomes, 

confounders and treatments can be found in VanderWeele and Arah (2011).

In other settings, there might not be any known unmeasured confounders, or it may be 

thought that there are numerous unmeasured confounders, in which cases the sensitivity 

analysis strategy described above would not be applicable or feasible. One general 
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alternative approach entails making additional untestable assumptions regarding the 

unobserved potential outcome distributions. Typically, these assumptions (or models) are 

indexed by one or more sensitivity analysis parameters conditional upon which the causal 

estimand of interest is identifiable (e.g., Scharfstein, Rotnitzky and Robins, 1999; Brumback 

et al., 2004). Sensitivity analysis then proceeds by examining how inference changes as 

assumed values of the parameters are varied over plausible ranges. Examples of such 

sensitivity analyses are given below in Sections 3.4 and 6.3.

2.5 Covariate Adjustment

Typically in observational studies baseline (pretreatment) covariates X will be collected in 

addition to Z and Y. Incorporating information from observed covariates can help sharpen 

inferences about partially identified treatment effects. For example, incorporating covariates 

will generally lead to narrower bounds (Scharfstein, Rotnitzky and Robins, 1999). This 

follows because any treatment effect compatible with the distribution of observed variables 

(X, Y, Z) must also be compatible with the distribution of (Y, Z), that is, the observable 

variables if we do not observe or choose to ignore X (Lee, 2009). Covariate adjusted bounds 

are discussed further in Section 3.3 below.

Additionally, incorporating covariates may lend plausibility to some of the bounding 

assumptions discussed in Section 2.2. For example, in the absence of randomized treatment 

assignment (4) or (5) may be dubious. Instead of (4), it might be more plausible to assume

(8)

Similarly, assumption (5) might be replaced by

(9)

that is, each potential outcome is independent of treatment selection conditional on some set 

of covariates. Assumption (9) is commonly referred to as no unmeasured confounders. 

Assumptions such as (8) or weaker inequalities similar to (6) such as

may be deemed plausible for certain levels of X, but not for others. Availability of covariates 

also allows for the consideration of new types of assumptions (e.g., see Chiburis, 2010).

To conduct covariate adjusted sensitivity analysis, departures from identifying assumptions 

such as (9) can be explored. Similar to the previous section, a departure from (9) might 

entail positing the existence of an unmeasured variable U associated with both treatment 

selection Z and the potential outcomes Y(z) for z = 0, 1. Under this scenario, one might 

postulate that Y(z) ∐ Z|{X, U} for z = 0, 1 rather than (9) and sensitivity analysis proceeds 

by examining how inference varies as a function of the magnitude of the association of U 

with Z, Y(0), and Y(1) given X. Similar to covariate adjusted bounds, smaller associations or 
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tighter regions of the values of the sensitivity parameters may be deemed plausible within 

certain levels of X, potentially yielding sharper inferences from the sensitivity analyses. 

However, as cautioned by Robins (2002), care should be taken in clearly communicating the 

meaning of such sensitivity parameters and their relationship to covariates when eliciting 

plausible ranges from subject matter experts. In some scenarios, plausible regions for 

sensitivity parameters may in fact be wider when conditioning on X than when not 

conditioning on X.

3. PRINCIPAL STRATIFICATION

3.1 Background

Even if treatment is randomly assigned (e.g., as in a clinical trial), the causal estimand of 

interest may still be only partially identifiable. For example, in many studies it is often of 

interest to draw inference about treatment effects on outcomes that only exist or are 

meaningful after the occurrence of some observable intermediate variable. For instance, in 

studies where some individuals die, investigators might be interested in treatment effects 

only among individuals alive at the end of the study. Unfortunately, estimands defined by 

contrasting mean outcomes under treatment and control that simply condition on this 

observable intermediate variable do not measure a causal effect of treatment without 

additional assumptions. One approach that may be employed in this scenario entails 

principal stratification (Frangakis and Rubin, 2002). Principal stratification uses the 

potential outcomes of the intermediate post-randomization variable to define strata of 

individuals. Because these “principal strata” are not affected by treatment assignment, 

treatment effect estimands defined within principal strata have a causal interpretation and do 

not suffer from the complications of standard post-randomization adjusted estimands. The 

simple framework of principal stratification has a wide range of applications. For a recent 

discussion of the utility (and lack thereof) of principal stratification, see Pearl (2011) and 

corresponding reader reactions.

As a motivating example for this section, we consider evaluating vaccine effects on post-

infection outcomes. In vaccine studies, uninfected subjects are enrolled and followed for 

infection endpoints, and infected subjects are subsequently followed for postinfection 

outcomes such as disease severity or death due to infection with the pathogen targeted by the 

vaccine; often interest is in assessing the effect of vaccination on these post-infection 

endpoints (Hudgens and Halloran, 2006). For example, Préziosi and Halloran (2003) present 

data from a pertussis vaccine field study in Niakhar, Senegal. In this study, 3845 vaccinated 

children and 1020 unvaccinated children were followed for one year for pertussis. In the 

vaccine group, 548 children contracted pertussis, of whom 176 had severe infections; in the 

unvaccinated group 206 children contracted pertussis, of whom 129 had severe infections. In 

this setting, investigators are interested in assessing whether or not the vaccine had an effect 

on the severity of infection.

When assessing such post-infection effects, a data analyst might consider contrasts between 

study arms including all individuals under study, or, alternatively, only those who become 

infected. Though including all individuals in the study has the advantage of providing valid 

inference about the overall effect of vaccination (assuming independent treatment 
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assignment), such an approach does not distinguish vaccine effects on susceptibility to 

infection from effects on the post-infection endpoint of interest. An analysis that conditions 

on infection attempts to distinguish these effects and may be more sensitive in detecting 

post-infection vaccine effects. However, because the set of individuals who would become 

infected under control are not likely to be the same as those who would become infected if 

given the vaccine, conditioning on infection might result in selection bias. For example, 

those who would become infected under vaccine may tend to have weaker immune systems 

than those who would become infected under control, and thus may be more susceptible to 

severe infection. Because of this potential selection bias, comparisons between infected 

vaccinees and infected controls do not necessarily have causal interpretations.

3.2 Principal Effects

In this section, treatment is vaccination, with Z = 1 corresponding to vaccination and Z = 0 

corresponding to not being vaccinated. Assume that assignment to vaccine is equivalent to 

receipt of vaccine, that is, there is no noncompliance. Denote the potential infection outcome 

by S(z), where S(z) = 0 if uninfected and S(z) = 1 if infected. Here, the focus is on evaluating 

the causal effect of vaccine on Y, a post-infection outcome. For simplicity, we consider the 

case where Y is binary, indicating the presence of severe disease. If S(z) = 1, define the 

potential post-infection outcome Y(z) = 1 if the individual would have the worse (or more 

severe) post-infection outcome of interest given z, and Y(z) = 0 otherwise. If an individual’s 

potential infection outcome for treatment z is uninfected [i.e., S(z) = 0], then we adopt the 

convention that Y(z) is undefined. In other words, it does not make sense to define the 

severity of an infection in an individual who is not infected. This convention is similar to 

that employed in other settings. For instance, in the analysis of quality of life studies it might 

be assumed that quality of life metrics are not well defined in those who are not alive 

(Rubin, 2000).

Define a basic principal stratification P0 according to the joint potential infection outcomes 

SP0 = (S(0), S(1)). The four basic principal strata or response types are defined by the joint 

potential infection outcomes, (S(0), S(1)), and are composed of immune (not infected under 

both vaccine and placebo), harmed (infected under vaccine but not placebo), protected 

(infected under placebo but not vaccine), and doomed individuals (infected under both 

vaccine and placebo). Note the only stratum where both potential post-infection endpoints 

are well defined is in the doomed basic principal stratum, SP0 = (1, 1). Thus, defining a post-

infection causal vaccine effect is only possible in the doomed principal stratum SP0 = (1, 1). 

Such a causal estimand will describe the effect of vaccination on disease severity in 

individuals who would become infected whether vaccinated or not. For instance, the vaccine 

effect on disease severity may be defined by

(10)

Frangakis and Rubin call treatment effect estimands such as (10) “principal effects.”
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3.3 Bounds

Assume we observe n i.i.d. copies of (Z, S, Y) denoted by (Zi, Si, Yi) for i = 1, …, n. Also 

assume that the doomed principal strata is nonempty, Pr[SP0 = (1, 1)] > 0, so that the 

principal effect in (10) is well defined. Bounds for (10) are presented below under two 

additional assumptions: independent treatment assignment, that is,

(11)

and monotone treatment response with respect to S, that is,

(12)

Assumption (11) will hold in randomized vaccine trials. Monotonicity (12) assumes that the 

vaccine does no harm at the individual level, that is, there are no individuals who would be 

infected if vaccinated but uninfected if not vaccinated. Monotonicity is equivalent to 

assuming the harmed principal stratum is empty. Note no such monotonicity assumption is 

being made regarding Y. Under (11), assumption (12) implies P(S = 1|Z = 1) ≤ P(S = 1|Z = 

0), which is testable using the observed data. For the pertussis example, the proportion 

infected in the vaccine group was less than in the unvaccinated group; thus, assuming (11), 

the data do not provide evidence against (12).

Assuming independent treatment assignment and monotonicity, (10) is partially identifiable 

from the observable data. The left term of (10) can be written

(13)

where the first equality holds under (12), the second equality under (11), and the third by 

causal consistency. On the other hand, the right term of (10) is only partially identifiable. To 

see this, note

(14)

In (14), only E[Y(0)|S(0) = 1] and Pr[S(1) = s|S(0) = 1] for s = 0, 1 are identifiable. In 

particular, E[Y(0)|S(0) = 1] = E[Y|S = 1, Z = 0] by similar reasoning to (13), and

where the first equality holds under (12) and the second under independent treatment 

assignment (and causal consistency). The other two terms in (14), namely E[Y(0)|SP0 = (1, 

1)] and E[Y(0)|SP0 = (1, 0)], are only partially identifiable. In words, infected controls are a 
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mixture of individuals in the protected and doomed principal stratum and without further 

assumptions the observed data do not identify exactly which infected controls are doomed. 

Therefore, the probability of severe disease when not vaccinated in the doomed principal 

stratum is not identified. Under (12), the data do however indicate what proportion of 

infected controls are doomed and this information provides partial identification of E[Y(0)|

SP0 = (1, 1)], and hence (10).

For fixed values of E[Y(0)|S(0) = 1] and Pr[S(1) = 1|S(0) = 1], any pair of expectations 

(E[Y(0)|SP0 = (1, 1)], E[Y(0)|SP0 = (1, 0)]) ∈ [0, 1]2 satisfying (14) will give rise to the same 

observed data distribution. Equation (14) describes a line segment with nonpositive slope 

intersecting the unit square as illustrated in Figure 1. An upper bound of E[Y(0)|SP0 = (1, 1)] 

and thus a lower bound for (10) is achieved when the line intersects the right or lower side 

of the square, that is, when either

(15)

Together (14) and (15) imply E[Y(0)|SP0 = (1, 1)] is bounded above by

(16)

Similarly, E[Y(0)|SP0 = (1, 1)] is bounded below by

(17)

Combining (17) with (13) yields the upper bound on the principal effect of interest (10) and 

combining (16) with (13) yields the lower bound. These bounds were derived by Rotnitzky 

and Jemiai (2003), Zhang and Rubin (2003) and Hudgens, Hoering and Self (2003). 

Consistent estimates of (16) and (17) can be computed by replacing E[Y(0)|S(0) = 1] with 

ΣiYiI(Si = 1, Zi = 0)/ΣiI(Si = 1, Zi = 0) and Pr[S(1) = 1|S(0) = 1] with

Returning to the pertussis vaccine study, the estimated lower and upper bounds of (10) are 

−0.57 and −0.15. These estimated bounds exclude zero, leading to the conclusion (ignoring 

sampling variability) that vaccination lowers the risk of severe pertussis in individuals who 

will become infected regardless of whether they are vaccinated.

Note if Pr[S(1) = 1|S(0) = 1] = 1, that is, the vaccine has no protective effect against 

infection, then the protected principal stratum SP0 = (1, 0) is empty and both (16) and (17) 

equal E[Y(0)|S(0) = 1] meaning that (10) is identifiable and equals E[Y|Z = 1, S = 1] − E[Y|Z 
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= 0, S = 1]. Intuitively, the lack of vaccine effect against infection eliminates the potential 

for selection bias.

As discussed in Section 2.5, incorporation of covariates can tighten bounds. For covariates X 

with finite support, one simple approach of adjusting for covariates entails determining 

bounds within strata defined by the levels of X and then taking a weighted average of the 

within strata bounds over the distribution of X. For the bounds in (16) and (17), adjustment 

for covariates will always lead to bounds that are at least as tight as bounds unadjusted for 

covariates (Lee, 2009; Long and Hudgens, 2013).

If the observed data provide evidence contrary to monotonicity (12), then bounds may be 

obtained under only (11). Without monotonicity (12), the proportion of infected controls that 

are in the doomed principal stratum is no longer identified but may be bounded in order to 

arrive at bounds for E[Y(0)|SP0 = (1, 1)]. In addition, the harmed principal stratum defined 

by SP0 = (0, 1) is no longer empty and thus E[Y(1)|SP0 = (1, 1)] is no longer identifiable 

from the observed data and may also be bounded in a similar fashion to E[Y(0)|SP0 = (1, 1)]. 

Details regarding these bounds without the monotonicity assumption may be found in Zhang 

and Rubin (2003) and Grilli and Mealli (2008).

3.4 Sensitivity Analysis

The bounds (16) and (17) are useful in bounding the vaccine effect on Y in the doomed 

stratum. However, these bounds may be rather extreme. An alternative approach is to make 

an untestable assumption that identifies the post-infection vaccine effect on Y and then 

consider how sensitive the resulting inference is to departures from this assumption. For 

instance, assuming

(18)

identifies (10). Hudgens and Halloran (2006) refer to this as the no selection model. To 

examine how inference varies according to departures from (18), following Scharfstein, 

Rotnitzky and Robins (1999), and Robins, Rotnitzky and Scharfstein (2000), consider the 

following sensitivity parameter:

(19)

In words, exp(γ) compares the odds of severe disease when not vaccinated in the doomed 

versus the protected principal stratum. Assuming (18) corresponds to γ = 0. A sensitivity 

analysis entails examining how inference about (10) varies as γ becomes farther from 0. For 

any fixed value of γ, (10) is identified (see Figure 1) and can be consistently estimated by 

maximum likelihood estimation without any additional assumptions (Gilbert, Bosch and 

Hudgens, 2003). The lower and upper bounds (17) and (16) are obtained by letting γ → ∞ 

and γ → −∞. To see this, note that as γ → ∞ (19) implies in the limit that either
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which is equivalent to (15). Sensitivity analysis can be conducted by letting γ range over a 

set of values Γ.

Tighter bounds can be achieved by placing restrictions on Γ, perhaps based on prior beliefs 

about γ elicited from subject matter experts. For example, Shepherd, Gilbert and Mehrotra 

(2007) surveyed 10 recognized HIV experts in order to elicit a plausible range for a 

sensitivity parameter representing a departure from the assumption of no selection bias 

between vaccinated and unvaccinated individuals who acquired HIV during an HIV vaccine 

trial. Included in this survey was the analysis approach, a brief explanation of the potential 

for selection bias, the definition of the sensitivity parameter being employed, examples of 

the implications of certain sensitivity parameter values on selection bias and possible 

justification for believing certain values of the sensitivity parameter. The expert responses to 

the survey were fairly consistent and several written justifications for the respondents’ 

chosen ranges indicated a high level of understanding of both the counterfactual nature of 

the sensitivity parameter and the need to account for selection bias.

4. RANDOMIZED STUDIES WITH PARTIAL COMPLIANCE

4.1 Global Average Treatment Effect

In a placebo controlled randomized trial where (5) holds but there is non-compliance (i.e., 

individuals are randomly assigned to treatment or control but they do not necessarily adhere 

or comply with their assigned treatment), the naive estimator is a consistent estimator of the 

average effect of treatment assignment. However, in this case parameters other than the 

effect of treatment assignment may be of interest. As in the last section, a principal effect 

may be defined using compliance as the intermediate post-randomization variable over 

which to define principal strata; namely the principal strata would consist of individuals who 

would comply with their randomization assignment if assigned treatment or control or 

“compliers,” individuals who would always take treatment regardless of randomization or 

“always takers,” individuals who never take treatment “never takers” and individuals who 

take treatment only if assigned control or “defiers.” A principal effect of interest might be 

the effect of treatment in the complier principal stratum (Imbens and Angrist, 1994; Angrist, 

Imbens and Rubin, 1996), in which case bounds and sensitivity analyses similar to those in 

Section 3 are applicable. However, as several authors including Robins (1989) and Robins 

and Greenland (1996) have pointed out, such principal effects may not be of ultimate public 

health interest because they only apply to the subpopulation of compliers in clinical trials, 

which may differ from the population that elect to take treatment once licensed. For 

example, once efficacy is proved, a larger subpopulation of people may be willing to take 

the treatment. Effects defined on the subpopulation of compliers are also of limited decision-

making utility because individual principal stratum membership is generally unknown prior 

to treatment assignment (Joffe, 2011).
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Robins and Greenland (1996) suggested that in settings where the trial population could be 

persuaded to take the treatment once licensed, a more relevant public health estimand is the 

global average treatment effect, defined as the average effect of actually taking treatment 

versus not taking treatment given treatment assignment z. This causal estimand is similar to 

the average treatment effect defined in Section 2, but requires generalizing the potential 

outcome definitions used previously to include separate potential outcomes for each of the 

four combinations of treatment assignment and actual treatment received. For further 

discussion regarding causal models in presence of noncompliance, see Chickering and Pearl 

(1996) and Dawid (2003) among others.

Suppose we observe data from a clinical trial where each individual is randomly assigned to 

treatment or control. Let Z indicate treatment assignment where Z = 1 denotes treatment and 

Z = 0 denotes control. Suppose individuals do not necessarily comply with their 

randomization assignment and let S be a variable indicating whether or not treatment was 

actually taken, where S = 1 denotes treatment was taken and S = 0 otherwise. Thus, an 

individual is compliant with their randomization assignment if S = Z. Let Y be a binary 

outcome of interest. Denote the potential treatment taken by S(z) for z = 0, 1, where S(z) = 1 

indicates taking treatment when assigned z and S(z) = 0 denotes not taking treatment when 

assigned z. Let Y(z, s) denote the potential outcome if an individual is assigned treatment z 

but actually takes treatment s. Conceiving of these potential outcomes depends on a 

supposition that trial participants who did not comply in the trial could be persuaded to take 

the treatment under other circumstances. Given this supposition, the global average 

treatment effect for each treatment assignment z = 1 and z = 0 is defined as GATEz = E[Y(z, 

1) − Y(z, 0)]. For instance, GATE1 is the difference in the average outcomes under the 

counterfactual scenario everyone was assigned vaccine and did comply versus the 

counterfactual scenario everyone was assigned vaccine but did not comply.

Bounds for GATEz are given below under three assumptions: independent treatment 

assignment

(20)

monotonicity with respect to S

(21)

and the exclusion restriction

(22)

Assumption (22) indicates treatment assignment has no effect when the actual treatment 

taken is held fixed. Under (22), GATE0 = GATE1 which we denote by GATE. In this case 

each individual has two potential outcomes according to s = 0 and s = 1 [which could be 

denoted by Y(s) = Y(0, s) = Y(1, s) for s = 0, 1] and GATE is equivalent to the ATE 

discussed in Section 2 with z replaced by s. Robins (1989) derived bounds for GATE under 
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several different combinations of (20)–(22) as well as some additional assumptions such as 

monotonicity with respect to S, that is, Y(z, 1) ≥ Y(z, 0) for z = 0, 1. Manski (1990) 

independently derived related results. Under (20)–(22), the sharp lower and upper bounds on 

GATE are

(23)

and

(24)

Balke and Pearl (1997) derived sharp bounds for GATE under a variety of assumptions, 

including (20)–(22), by recognizing that the derivation of the bounds is equivalent to a linear 

programming optimization problem. To see that bounds can be formulated as a linear 

programming optimization problem, first note that GATE can be expressed as a linear 

combination of probabilities of the joint distribution of L = (Y(0, 0), Y(0, 1), Y(1, 0), Y(1, 1), 

S(0), S(1))

(25)

where  is the set of possible realizations of L where Y(0, s) = Y(1, s) = 1 for s = 0, 1. Under 

independent treatment assignment, there exists a linear transformation between the 

probabilities in the joint distribution of L and the probabilities in the conditional distribution 

of the observable random variables Y and S given Z, namely

(26)

where  is the set of possible realizations of L where S(z) = s and Y(z, s) = y for z, y, s = 0, 

1. To find the sharp bounds, the objective function (25) is minimized (or maximized) subject 

to the constraints (26), Pr[L = l] ≥ 0 for every l ∈ , and  Pr[L = l] = 1 where  is the set 

of all possible realizations of L assuming (21) and (22). Optimization may be accomplished 

using the simplex algorithm and the dimension of this problem permits obtaining a closed 

form solution involving probabilities of the observed data distribution (Balke and Pearl, 

1993), namely (23) and (24).

If in addition to assumptions (20) and (22), it is assumed that

(27)

for s, z = 0, 1 then GATE is identified and equals
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(28)

(Hernán and Robins, 2006). For s = 0 assumption (27) is known as a no current treatment 

interaction assumption (Robins, 1994), and expression (28) is known as the instrumental 

variables estimand (Imbens and Angrist, 1994; Angrist, Imbens and Rubin, 1996). 

Sensitivity analyses may be conducted by defining sensitivity parameters representing 

departures from (20), (22) or (27) and then examining how inference about GATE varies as 

values of these parameters change. For instance, Robins, Rotnitzky and Scharfstein (2000) 

define current treatment interaction functions which represent a departure from (27) for s = 

0.

4.2 Cholestyramine Example

To illustrate the GATE, we consider data presented in Pearl (2009, Section 8.2.6) on 337 

subjects who participated in a randomized trial to assess the effect of cholestyramine on 

cholesterol reduction. Let Z = 1 denote assignment to cholestyramine and Z = 0 assignment 

to placebo. Let S = 1 if cholestyramine was actually taken by the participant and S = 0 

otherwise. Let Y = 1 if the participant had a response and Y = 0 otherwise, where response is 

defined as reduction in the level of cholesterol by 28 units or more. Pearl reported the 

following observed proportions:

No participants assigned placebo actually took cholestyramine, suggesting the monotonicity 

assumption (21) is reasonable. On the other hand, 38.8% of individuals assigned treatment 

did not actually take cholestyramine.

From (23) and (24), the bounds on GATE assuming (21), (20) and (22) are estimated to be 

−1 + max{0.000, 0.473} + max{0.919, 0.315} = 0.392 and 1 − max{0, 0.139} − max{0.081, 

0.073} = 0.780. The positive sign of the estimated bounds indicates the treatment is 

beneficial. Pearl interprets the estimated bounds as follows: “although 38.8% of the subjects 

deviated from their treatment protocol, the experimenter can categorically state that, when 

applied uniformly to the population, the treatment is guaranteed to increase by at least 

39.2% the probability of reducing the level of cholesterol by 28 points or more.” Such an 

interpretation does not account for sampling variability, the topic of Section 7.
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5. MEDIATION ANALYSIS

5.1 Natural Direct and Indirect Effects

As demonstrated in Sections 3 and 4, independent treatment assignment does not guarantee 

that the causal estimand of interest will be identifiable. Another setting where this occurs is 

in mediation analysis, where researchers are interested in whether or not the effect of a 

treatment is mediated by some intermediate variable. Even in studies where treatment is 

assigned randomly and there is perfect compliance, confounding may exist between the 

intermediate variable and the outcome of interest such that effects describing the mediated 

relationships will not in general be identifiable. Thus, bounds and sensitivity analysis may 

be helpful in drawing inference.

To illustrate, let Y be an observed binary outcome of interest, and S a binary intermediate 

variable observed some time between treatment assignment Z and the observation of Y. The 

goal is to assess whether and to what extent the effect of Z on Y is mediated by or through S. 

Denote the potential outcome of the intermediate variable under treatment z by S(z) for z = 0, 

1 such that S = S(Z), and the potential outcomes under treatment z and intermediate s as Y(z, 

s) such that Y = Y(Z, S(Z)). Here, as in the previous section, it is assumed that both Z and S 

can be set to particular fixed values, such that there are four potential outcomes for Y per 

individual. Unless otherwise specified, independent treatment assignment (20) will be 

assumed throughout this section.

Define the total effect of treatment to be E[Y(1, S(1)) − Y(0, S(0))], which is equivalent to 

the ATE defined in Section 2.1. The total effect of treatment can be decomposed in the 

following way:

(29)

for z = 0,1 and z′ = 1 − z. The right-hand side of (29) decomposes the total effect into the 

sum of two separate effects. The first expectation on the right-hand side of (29) is the natural 

direct effect for treatment z, NDEz = E[Y(1, S(z)) − Y(0, S(z))] (Robins and Greenland, 1992; 

Pearl, 2001; Robins, 2003; Kaufman, Kaufman and MacLehose, 2009; Robins and 

Richardson, 2010). The natural direct effect is the average effect of the treatment on the 

outcome when the intermediate variable is set to the potential value that would occur under 

treatment assignment z. The second expectation on the right-hand side of (29) is the natural 

indirect effect, NIEz = E[Y(z, S(1)) − Y(z, S(0))] (Pearl, 2001; Robins, 2003; Imai, Keele and 

Yamamoto, 2010). The natural indirect effect is the difference in the average outcomes 

when treatment is set to z and the intermediate variable is set to the value that would have 

occurred under treatment compared to if the intermediate variable were set to the value that 

would have occurred under control.

Though the total effect is identifiable assuming (20), the natural direct and indirect effects 

are not identifiable since they entail E[Y(z, S(1 − z))] which depends on unobserved 

counterfactual distributions. Sjölander (2009) derived bounds for the natural direct effects 

assuming only independent treatment assignment (20) using the linear programming 
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technique of Balke and Pearl (1997). This results in the following sharp lower and upper 

bounds for NDE0 and NDE1:

(30)

(31)

where pys·z = Pr(Y = y, S = s|Z = z). These bounds may exclude 0, indicating a natural direct 

effect of treatment z when the intermediate variable is set to S(z) (ignoring sampling 

variability). There are instances where the bounds in (30) and (31) may collapse to a single 

point, for example, if p10·0 = p10·1 = 1. Using (29), bounds for NIE0 and NIE1 can be 

obtained by subtracting the bounds for NDE1 and NDE0 from the total effect, which is 

identified under (20) and equal to (p11·1 + p10·1) − (p10·0 − p11·0).

Just as in Sections 2–4, monotonicity assumptions can be made to tighten the above bounds. 

For instance, if

are assumed, then Pr[L = l] = 0 for all l such that (i) S(0) = 1 and S(1) = 0, (ii) Y(0, s) = 1 and 

Y(1, s) = 0 for s = 0 or 1 or (iii) Y(z, 0) = 1 and Y(z, 1) = 0 for s = 0 or 1, which restricts the 

feasible region of the linear programming problem. The resulting sharp bounds for the 

natural direct effect are

(32)

(Sjölander, 2009). The bounds (32) are always at least as narrow as (30) and (31). 

Interestingly these narrower bounds do not depend on z. The bounds in (32) may also 

collapse to a single point, for example, if p10·0 = p10·1 and p01·0 − p01·1 = p11·1 − p11·0.

The natural direct effect provides insight into whether or not treatment yields additional 

benefit on the outcome of interest when the influence of treatment on the intermediate 

variable is eliminated. However, researchers might also be interested in what benefit is 

provided by treatment if the effect of the intermediate variable on the outcome is eliminated 

or held constant. This question suggests a different causal estimand known as the controlled 

direct effect. Bounds for the controlled direct effect can be found in Pearl (2001), Cai et al. 

(2008), Sjölander (2009) and VanderWeele (2011a).
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5.2 Sensitivity Analysis

As in other settings where the effect of interest is not identifiable, sensitivity analysis in the 

mediation setting may be conducted by making untestable assumptions that identify the 

direct or indirect effects. Then sensitivity of inference to departures from these assumptions 

can be examined. For example, if (20) holds, then the natural direct and indirect effects are 

identified under the following additional assumptions

(33)

(34)

(Pearl, 2001; VanderWeele, 2010). Assumption (33) would be valid if subjects were 

randomly assigned S within different levels of treatment assignment Z. In settings where S is 

not randomly assigned, (33) might be considered plausible if it is believed that conditional 

on Z there are no variables which confound the mediator–outcome relationship. Both 

assumptions (33) and (34) will not hold in general if Z has an effect on some other 

intermediate variable, say R, which in turn has an effect on both S and Y. Thus, (33) and (34) 

may fail unless the mediator S occurs shortly after treatment Z. Under assumptions (20), (33) 

and (34),

and

Because assumptions (33) and (34) cannot be empirically tested, sensitivity analysis should 

be conducted. Similar to Section 2.4, sensitivity analysis might proceed by positing the 

existence of an unmeasured confounding variable U associated with the potential mediator 

values S(z) and the potential outcomes Y(z, s) for z, s = 0, 1. Assumption (33) would then 

replaced by Y(z, s) ∐ S|{Z, U} and (34) by Y(z, s) ∐ S(z′)|U for s, z, z′ = 0, 1. Sensitivity 

analysis would then proceed by exploring how inference about the natural direct and indirect 

effects changes as the magnitude of the associations of U with S(z) and Y(s, z′) for z, z′, s = 

0, 1 vary. For further details regarding bounds and sensitivity analysis in mediation analysis, 

see Imai, Keele and Yamamoto (2010), VanderWeele (2010) and Hafeman (2011).

6. LONGITUDINAL TREATMENT

6.1 Background

In Sections 2–5, treatment is assumed to remain fixed across follow up time and outcomes 

are one-dimensional. However, frequently researchers are interested in assessing causal 
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effects comparing longitudinal outcomes for patients on different treatment regimens where 

treatment may vary in time. As the number of times at which an individual may receive 

treatment increases, the number of possible treatment regimens increases exponentially. 

Because each treatment regimen corresponds to a separate potential (longitudinal) outcome 

and only one potential outcome is ever observed, the fraction of potential outcomes that are 

unobserved quickly grows close to one as the number of possible treatment times increases. 

As in other settings, unless treatment regimens are randomly assigned, regimen effects will 

not be identifiable without additional assumptions. In the longitudinal setting, bounds will 

typically be largely uninformative because of the high proportion of unobserved potential 

outcomes. Therefore, analyses usually proceed by invoking modeling assumptions that 

render treatment effects identifiable and then conducting sensitivity analysis corresponding 

to key untestable modeling assumptions.

Models for potential outcomes as functions of covariates (such as treatment) and possibly 

other potential outcomes are often referred to as structural models. For longitudinal potential 

outcomes and treatments, popular models include structural nested models and marginal 

structural models (Robins, Rotnitzky and Scharfstein, 2000; Robins, 1999; van der Laan and 

Robins, 2003; Brumback et al., 2004). In Section 6.2 below, we consider a marginal 

structural model where the treatment effect is identified assuming conditionally independent 

treatment assignment. Sensitivity analyses exploring departures from this assumption are 

then considered in Section 6.3.

6.2 Marginal Structural Model

Consider a study where individuals possibly receive treatment at τ fixed time points (i.e., 

study visits). In general let Ā(t) = (A(0), …, A(t)) represent the history of variable A up to 

time t and Ā be the entire history of variable A such that Ā = Ā(τ). Let z(t) = 1 indicate 

treatment at visit t, and z(t) = 0 otherwise such that z̄ represents a treatment regimen for 

visits 0, …, τ. Denote the observed treatment regimen up to time t as Z̄(t). Let Y be some 

outcome of interest that may be categorical or continuous, and denote the potential outcome 

of Y at visit t for regimen z̄ by Y(z̄, t) and the observed outcome by Y(t). Let X̄(t) denote the 

history of some set of time varying covariates up to time t, where X(0) denotes the baseline 

covariates. Assume for simplicity there is no loss to follow-up or noncompliance such that 

we observe n i.i.d. copies of (Z̄, Ȳ, X̄).

Consider the following marginal structural model of the mean potential outcome were the 

entire population to follow regimen z̄ up to time t:

(35)

for t ∈ {1, …, τ}, where  and g(·) is an appropriate link function. 

The causal estimand of interest is β1, the regression coefficient for cum[z̄(t − 1)], which is 

the effect of having received treatment at one additional visit prior to time t conditional on 

baseline covariates X(0). Because (35) involves counterfactual outcome distributions, β1 is 

not identifiable without additional assumptions. One additional assumption is conditionally 

independent treatment assignment
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(36)

(Robins, Rotnitzky and Scharfstein, 2000; Robins, 1999; Brumback et al., 2004). This 

assumption is true if the potential outcome at visit t under treatment regimen z̄ is 

independent of the observed treatment at visit k given the history of treatment up to visit k − 

1 and the covariate history up to visit k. Assuming both a correctly specified model (35) and 

conditionally independent treatment assignment (36), fitting the following model to the 

observed data:

using generalized estimating equations with an independent working correlation matrix and 

time varying inverse probability of treatment weights (IPTW) yields an estimator η̂
1 that is 

consistent for β1 (Tchetgen Tchetgen et al., 2012a, 2012b).

6.3 Sensitivity Analysis

If assumption (36) does not hold, then the IPTW estimator η̂
1 is not necessarily consistent. 

Because (36) is not testable from the observed data, sensitivity analysis might be considered 

to assess robustness of inference to departures from (36). Following Robins (1999) and 

Brumback et al. (2004), let

for t > k and z̄ such that Pr[Z(k) = z(k)|Z̄(k − 1) = z̄(k − 1)] is bounded away from 0 and 1. 

The function c quantifies departures from the conditional independent treatment assignment 

assumption (36) at each visit t > k, where c(t, k, z̄(t − 1), x̄(k)) = 0 for all z̄ and t > k if (36) 

holds. For the identity link, a bias adjusted estimator of the causal effect β1 may be obtained 

by recalculating the IPTW estimator with the observed outcome Y(t) replaced by Yγ(t) = Y(t) 

− b(Z̄(t − 1), X̄(t − 1)) where

and f[z(k)|z̄(k − 1), x̄(k)] = P̂r[Z(k) = z(k)|Z̄(k − 1) = z̄(k − 1), X̄(k) = x̄(k)] is an estimate of the 

conditional probability of the observed treatment based on some fitted parametric model 

(Brumback et al., 2004). Provided this parametric model and c are both correctly specified, 

this bias adjusted estimator, say η̃
1, is consistent for β1. Sensitivity analysis proceeds by 

examining how η̃
1 changes when varying sensitivity parameters in c(t, k, z̄(t − 1), x̄(k)).

Because c(t, k, z̄(t − 1), x̄(k)) is not identifiable from the observable data, Robins (1999) 

recommends choosing a particular c that is easily explainable to subject matter experts to 

facilitate eliciting plausible ranges of the sensitivity parameters. As an example of a 
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particular c, Brumback et al. (2004) suggest c(t, k, z̄(t − 1), x̄(k)) = γ{2z(k) − 1} where γ is an 

unidentifiable sensitivity analysis parameter. Note that c(t, k, z̄(t − 1), x̄(k)) = γ for z(k) = 1 

and c(t, k, z̄(t − 1), x̄(k)) = −γ for z(k) = 0. Thus, γ > 0 (γ < 0) corresponds to subjects 

receiving treatment at time k having greater (smaller) mean potential outcomes at future visit 

t than those who did not receive treatment at visit k. When γ = 0, Y(t) = Yγ(t) and therefore 

η̃
1 = η̂

1. The function c might depend on the baseline covariates X(0) or the time-varying 

covariates X̄(k). In this case, as in Section 2.5, care should be taken in clearly 

communicating the sensitivity parameters’ relationship to these covariates when eliciting 

plausible ranges from subject matter experts. Another consideration when choosing a 

function c is whether it will allow for the sharp null of no treatment effect, that is, for all 

individuals Y(z̄, t) = Y(z̄′, t) for all z̄, z̄′, t. The example function c presented above allows for 

the sharp null. See Brumback et al. (2004) for other example c functions and further 

discussion of sensitivity analysis for marginal structural models.

7. IGNORANCE AND UNCERTAINTY REGIONS

Treatment effect bounds describe ignorance due to partial identifiability but do not account 

for uncertainty due to sampling error. This section discusses some methods to appropriately 

quantify uncertainty due to sampling variability when drawing inference about partially 

identifiable treatment effects. Over the past decade, a growing body of research, especially 

in econometrics, has considered inference of partially identifiable parameters. The approach 

presented below draws largely upon Vansteelandt et al. (2006), who considered methods for 

quantifying uncertainty in the general setting where missing data causes partial 

identifiability. As questions about treatment (or causal) effects can be viewed as missing 

data problems, the approach of Vansteelandt et al. generally applies (under certain 

assumptions) to the type of problems considered throughout this paper. This approach builds 

on earlier work by Robins (1997) and others.

7.1 Ignorance Regions

Let L be a vector containing the potential outcomes for an individual, let O denote the 

observed data vector, and let R be a vector containing indicator variables denoting whether 

the corresponding component of L is observed. For example, L = (Y(1), Y(0)), O = (Z, Y), 

and R = (Z, (1 − Z)) for the scenario described in Section 2 and L = (Y(1), Y(0), S(1), S(0)), O 

= (Z, Y, S) and R = (Z, (1 − Z), Z, (1 − Z)) for the scenario described in Section 3. Denote the 

distribution of (L, R) by f(L, R) and let f(L) = ∫ f(L, R)dR. The goal is to draw inference 

about a parameter vector β which is a functional of the distribution of potential outcomes L; 

this is sometimes made explicit by writing β = β{f(L)}. Denote the true distribution of (L, R) 

by f0(L, R) and the true value of β by β0 = β{f0(L)}. For example, β0 = E[Y(1) − Y(0)] for the 

scenario described in Section 2 and β0 = E[Y(1) − Y(0)|SP0 = (1, 1)] for the scenario 

described in Section 3. Denote the true observed data distribution by f0(O) = ∫ f0(L, R) 

dL(1 − R) where L(1 − r) denotes the missing part of L when R = r (i.e., the unobserved 

potential outcomes). The challenge in drawing inference about β0 is that there may be 

multiple full data distributions f(L, R) that marginalize to the true observed data distribution, 

that is, f0(O) = ∫ f(L, R)dL(1 − R) for some f ≠ f0. When this occurs, β may be only partially 

Richardson et al. Page 23

Stat Sci. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



identifiable from O, in which case bounds can be derived for β0 as illustrated in the sections 

above.

The set of values of β{f(L)} such that f(L, R) marginalizes to the true observed data 

distribution is sometimes called the ignorance region or the identified set. These ignorance 

regions or intervals are distinct from traditional confidence intervals in that as the sample 

size tends to infinity these intervals will not shrink to a single point when β is partially 

identifiable. The ignorance region for β can be defined formally as follows. Following 

Robins (1997), define a class (γ) of full data laws indexed by some sensitivity parameter 

vector γ to be nonparametrically identified if for each observed data law f(O) there exists a 

unique law f(L, R; γ) ∈ (γ) such that f(O) = ∫ f(L, R; γ)dL(1 − R). In other words, the class 

(γ) contains a unique distribution that marginalizes to each possible observed data 

distribution. For example, for the sensitivity analysis approach in Section 3.4, Hudgens and 

Halloran (2006, §4.3.3) defined a class of full data laws indexed by γ given in (19) that is 

nonparametrically identified. The ignorance region for β is formally defined to be

(37)

where Γ is the set of all possible values of γ under whatever set of assumptions is being 

invoked and (Γ) = ⋃γ ∈ Γ (γ). Assume (Γ) contains the true full data distribution, that 

is, f0(L, R) = f(L, R, γ0) for some γ0 ∈ Γ. [For considerations when (Γ) does not contain 

the true full data distribution, see Todem, Fine and Peng (2010).] Because (γ) is 

nonparametrically identified, for each γ ∈ Γ there is a single β(γ) = β{∫ f(L, R; γ)dR)} in the 

ignorance region (37). If (Γ) includes all possible full data distributions that marginalize 

to any possible observed data distribution, then the ignorance region will contain the bounds.

In practice, the ignorance region will be unknown because it depends on the unknown true 

observed data distribution f0(O). For γ fixed, β(γ) is identifiable from the observed data and 

the ignorance region can be estimated by estimating β(γ) for each value of γ ∈ Γ, denoted by 

β̂(γ). The resulting estimator of irf0(β, Γ) is then {β̂(γ) : γ ∈ Γ}. For scalar β(γ), let β̂
l = 

infγ ∈ Γ{β̂(γ)} and β̂
u = supγ ∈ Γ{β̂(γ)} such that the estimated ignorance region is contained 

in the interval [β̂
l, β̂

u].

7.2 Uncertainty Regions

Estimated ignorance regions convey ignorance due to partial identifiability and do not 

reflect sampling variability in the estimates. Indeed much of the literature on bounds and 

sensitivity analysis of treatment effects tends to report estimated ignorance regions and 

either ignores sampling variability or employs ad-hoc inferential approaches such as 

pointwise confidence intervals conditional on each value of the unidentifiable sensitivity 

parameter. More recent developments have provided a formal framework for conducting 

inference in partial identifiability settings (Imbens and Manski, 2004; Vansteelandt et al., 

2006; Romano and Shaikh, 2008; Bugni, 2010; Todem, Fine and Peng, 2010). The main 

focus in this research has been the construction of confidence regions for either the 

parameter β0 or the ignorance region irf0(β0, Γ).
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Following Vansteelandt et al. (2006), a (1 − α) pointwise uncertainty region for β0 is defined 

to be a region URp(β, Γ) such that

where Prf0 {·} denotes probability under f0(O). That is, URp(β, Γ) contains β(γ) with at least 

probability 1 − α for all γ ∈ Γ. In particular, assuming γ0 ∈ Γ, then URp(β, Γ) will contain β0 

= β(γ0) with at least probability 1 − α.

An appealing aspect of pointwise uncertainty regions is that they retain the usual duality 

between confidence intervals and hypothesis testing. Namely, one can test the null 

hypothesis H0 : β0 = βc versus Ha : β0 ≠ βc for some specific βc at the α significance level by 

rejecting H0 when the (1 − α) pointwise uncertainty region URp(β, Γ) excludes βc. This is 

easily shown by noting for βc = β(γ0)

where the last inequality follows because URp(β, Γ) is a (1 − α) pointwise uncertainty 

region.

Various methods under different assumptions have been proposed for constructing pointwise 

uncertainty regions. Imbens and Manski (2004) and Vansteelandt et al. (2006) proposed a 

simple method for constructing pointwise uncertainty regions for a scalar β with ignorance 

region [βl, βu]. Let γl, γu ∈ Γ be the values of the sensitivity parameter such that βl = β(γl) 

and βu = β(γu). Assume

(38)

(39)

Under assumptions (38) and (39), an asymptotic (1 − α) pointwise uncertainty interval for β0 

is

(40)

where cα satisfies

Richardson et al. Page 25

Stat Sci. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(41)

Φ(·) denotes the cumulative distribution function of a standard normal variate, and σ̂l and σ̂u 

are consistent estimators of σl and σu, respectively (Imbens and Manski, 2004; Vansteelandt 

et al., 2006). Note if βû − β̂
l > 0 and n is large such that the left-hand side of (41) is 

approximately equal to 1 − Φ(−cα), then cα ≈ z1 − α, the (1 − α) quantile of a standard 

normal distribution. In contrast, if βû = β̂
l, then cα = z1 − α/2.

In addition to the pointwise uncertainty region, Horowitz and Manski (2000) and 

Vansteelandt et al. (2006) define a (1 − α) strong uncertainty region for β0 to be a region 

URs(β, Γ) such that

that is, URs(β, Γ) contains the entire ignorance region with probability at least 1 − α. 

Whereas the pointwise uncertainty region can be viewed as a confidence region for the 

partially identifiable target parameter β0, the strong uncertainty region is a confidence region 

for the ignorance region irf0(β, Γ). Clearly, any strong uncertainty region will also be a 

(conservative) pointwise uncertainty region as β0 ∈ irf0(β, Γ). Under assumptions (38) and 

(39), an asymptotic (1 − α) strong uncertainty interval for scalar β0 is simply

(42)

Note that (42) is equivalent to the union of all pointwise (1 − α) confidence intervals for β(γ) 

under (γ) over all γ ∈ Γ, which is a simple approach often employed when reporting 

sensitivity analysis. Because strong uncertainty intervals are necessarily pointwise intervals, 

this simple approach is also a valid method for computing pointwise intervals, although 

intervals based on (40) will always be as or more narrow.

The two key assumptions (38) and (39) may not hold in general. For example, (38) may not 

hold for all possible observed data distributions, particularly for extreme values of γl or γu. 

Assumption (39) may not hold if different observed data distributions place different 

constraints on the possible range of γ or if Γ is chosen by the data analyst on the basis of the 

observed data. If (38) or (39) does not hold, alternative inferential methods are needed (e.g., 

see Vansteelandt and Goetghebeur, 2001; Horowitz and Manski, 2006; Chernozhukov, 

Hong and Tamer, 2007; Romano and Shaikh, 2008; Stoye, 2009; Todem, Fine and Peng, 

2010; Bugni, 2010).

A third approach to quantifying uncertainty due to sampling variability is to consider β(·) as 

function of γ and construct a (1 − α) simultaneous confidence band for the function β(·). 

That is, a random function CB(·) is found such that
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It follows immediately that ⋃γ ∈ Γ CB(γ) is a strong uncertainty region (and thus a pointwise 

uncertainty region as well). Todem, Fine and Peng (2010) suggest a bootstrap approach to 

constructing confidence bands.

Whether pointwise uncertainty regions, strong uncertainty regions, or confidence bands are 

preferred will be context specific. Typically, it is of interest to draw inference about a single 

target parameter and not the entire ignorance region. Thus, in general pointwise uncertainty 

regions may have greater utility than strong uncertainty regions. Because strong uncertainty 

regions are necessarily conservative pointwise uncertainty regions, the strong regions can be 

useful in settings where determining a pointwise region is more difficult. Additionally, in 

some settings it may be of interest to assess whether β is nonzero, for example, if β denotes 

the effect of treatment. In these settings, computing a confidence band CB(·) has the 

advantage of providing the subset of Γ where the null hypothesis β(γ) = 0 can be rejected. 

This is especially appealing if γ is scalar, in which case a confidence band (as in Figure 3 of 

Todem, Fine and Peng, 2010) provides a simple approach to reporting sensitivity analysis 

results. On the other hand, if γ is multidimensional, visualizing confidence bands can be 

difficult and instead reporting the (pointwise or strong) uncertainty region may be more 

practical.

7.3 Data Example

Returning to the pertussis vaccine study described in Section 3, an analysis that ignores the 

potential for selection bias might entail computing a naive estimator (the difference in 

empirical means of Y between the vaccinated and unvaccinated amongst those infected) 

along with a 95% Wald confidence interval, which would be −0.31 (95% CI −0.38, −0.23). 

If the sensitivity analysis approach in Section 3.4 is applied, the parameter of interest β(γ) = 

E[Y(1) − Y(0)|SP0 = (1, 1)] is identified for fixed values of the sensitivity analysis parameter 

γ given in (19). For fixed γ, E[Y(0)|SP0 = (1, 1)] is determined by the intersection of the 

negative sloped line (14) and the curve (19), which is illustrated in Figure 1 for the pertussis 

data. Because E[Y(0)|SP0 = (1, 1)] increases with γ, β(γ) is a monotonically decreasing 

function of γ. Therefore γl and γu equal the maximum and minimum values of Γ regardless 

of the observed data law, indicating (39) holds provided that Γ is chosen by the analyst 

independent of the observed data. For γ fixed and finite, β(γ) can be estimated via 

nonparametric maximum likelihood (i.e., without any additional assumptions). This 

estimator will be consistent and asymptotically normal under standard regularity conditions 

if Pr[S(0) > S(1)] > 0 (i.e., the vaccine has a protective effect against infection). For γ = ±∞ 

and Pr[S(0) > S(1)] > 0, Lee (2009) proved that the estimators of the bounds similar to those 

given in Section 3.3 are consistent and asymptotically normal for a continuous outcome Y. 

The limiting distribution of the estimator of the upper bound (γ = −∞) for a binary outcome 

will be normal if in addition
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(43)

and similarly the estimator of the lower bound (γ = ∞) will be asymptotically normal if in 

addition

(44)

Likelihood ratio tests for the null hypotheses that (43) and (44) do not hold yield p-values p 

< 10−4 and p = 0.18, respectively, indicating strong evidence that (43) holds and equivocal 

evidence regarding (44). Assuming (43) and (44) both hold implies (38), such that (40) and 

(42) can be used to construct (1 − α) pointwise and strong uncertainty intervals for β0. 

Estimated ignorance and uncertainty intervals of β0 for different choices of Γ are given in 

Table 1 and Figure 2, with standard error estimates obtained using the observed information. 

Even for Γ = (−∞, ∞) both the pointwise and strong uncertainty intervals exclude zero, 

indicating a significant effect of vaccination. In particular, with 95% confidence we can 

conclude the vaccine decreased the risk of severe disease among individuals who would 

have become infected regardless of vaccination.

8. DISCUSSION

This paper considers conducting inference about the effect of a treatment (or exposure) on 

an outcome of interest. Unless treatment is randomly assigned and there is perfect 

compliance, the effect of treatment may be only partially identifiable from the observable 

data. Through the five settings in Sections 2–6, we discussed two approaches often 

employed to address partial identifiability: (i) bounding the treatment effect under minimal 

assumptions, or (ii) invoking additional untestable assumptions that render the treatment 

effect identifiable and then conducting sensitivity analysis to assess how inference about the 

treatment effect changes as the untestable assumptions are varied. Incorporating uncertainty 

due to sampling variability was discussed in Section 7, and throughout large-sample 

frequentist methods were considered. Analogous Bayesian approaches to partial 

identification (Gustafson, 2010; Moon and Schorfheide, 2012; Richardson, Evans and 

Robins, 2011) and sensitivity analysis (McCandless, Gustafson and Levy, 2007; Gustafson 

et al., 2010) have also been developed.

Determining treatment effect bounds is essentially a constrained optimization problem, 

where the constraints are determined by the relationship between the distributions of the 

observable random variables and of the potential outcomes under whichever assumptions are 

being made. In simple cases, such as in Section 2.1, bounds can easily be derived from first 

principles and may have simple closed forms; in more complicated settings, such as in 

Section 4, bounds may be determined using linear programming or other optimization 

methods. In many cases, calculating bounds under minimal assumptions may seem to be a 

meaningless exercise because the bounds are often quite wide and may not exclude the null 

of no treatment effect as seen with the “no assumptions” bounds in Section 2. On the 
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contrary, in settings like this Robins and Greenland (1996) write: “Some argue against 

reporting bounds for non-identifiable parameters, because bounds are often so wide as to be 

useless for making public health decisions. But we view the latter problem as a reason for 

reporting bounds in conjunction with other analyses: Wide bounds make clear that the 

degree to which public health decisions are dependent on merging the data with strong prior 

beliefs.”

Bounds may be narrowed by reducing the feasible region of the optimization problem. This 

may be accomplished by considering further assumptions that place restrictions on either the 

distributions of the potential outcomes, the distributions of the observable random variables, 

or both. Assumptions that place restrictions on the observable random variables may have 

implications which are testable. If the observed data provide evidence against any 

assumptions being considered, bounds should be computed without making these 

assumptions. Those assumptions without testable implications can only be determined to be 

plausible or not by subject matter experts.

A potentially less conservative approach to computing bounds is to make untestable 

assumptions which identify the causal estimand and then assess the robustness of inference 

drawn to departures from these assumptions in a sensitivity analysis. A general guideline for 

specifying the sensitivity analysis parameters representing these departures is to choose 

parameters that are easily interpretable to subject matter experts. Parameter specification 

will depend on whether or not sensitivity analysis is conducted by directly modeling the 

association of an unmeasured confounder U with treatment selection and the potential 

outcomes. Sensitivity analyses based on this approach are applicable when the existence of 

U is known and there is some historical knowledge of the magnitude association of U with Z 

and the potential outcomes (Robins, 1999; Brumback et al., 2004). Otherwise, alternative 

approaches based on directly modeling the unobserved potential outcome distributions may 

be preferred. A second guiding principle should be to avoid specifications of sensitivity 

parameters that place restrictions on the distributions of observable random variables that 

are not empirically supported. A third consideration when conducting sensitivity analysis 

concerns determining a plausible region of the sensitivity parameters. That the region be 

chosen prior to data analysis is in general necessary for inference, such as described in 

Section 7, to be valid. Choice of the region of the sensitivity parameters may be dictated by 

whether one wants to consider only mild or also severe departures from the identifying 

assumptions. If the identifying assumption in question is considered plausible, then it may 

be that only mild departures from the assumption are deemed necessary for the sensitivity 

analysis. In this case, subject matter experts can be consulted to determine, prior to data 

analysis, a plausible region for the sensitivity parameters. If, on the other hand, severe 

departures from untestable identifying assumptions are to be entertained, sensitivity analyses 

should be conducted over all possible values of the sensitivity parameters. Sensitivity 

analyses which consider all possible full data distributions that marginalize to the observed 

data distribution will yield ignorance regions containing the bounds.

Though the examples presented here demonstrate the broad scope of scenarios where 

bounds and sensitivity analysis methods have been derived and employed to draw inference 

about treatment effects, they certainly are not exhaustive of all settings where these methods 
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have been developed. For instance, VanderWeele, Mukherjee and Chen (2012) consider 

sensitivity analysis to unmeasured confounding for causal interaction effects. Bounds and 

sensitivity analysis methods have also recently been considered in the presence of 

interference, that is, in settings where treatment of one individual may affect the outcome of 

another individual, such as in social networks (Ver Steeg and Galstyan, 2010; VanderWeele, 

2011b; Manski, 2013). For studies where sensitivity analyses are planned or anticipated, 

Rosenbaum and colleagues have examined how aspects of study design and the choice of 

statistical tests or estimators may affect the power or precision of the sensitivity analyses to 

be conducted (Heller, Rosenbaum and Small, 2009; Rosenbaum, 2010a; 2010b; 2011).

Bounds and sensitivity analyses of treatment effects have been utilized in various 

substantive settings, such as biomedical research (e.g., Cole et al., 2005; Rerks-Ngarm et al., 

2009; VanderWeele and Hernández-Diaz, 2011; Hu et al., 2012) and economics (e.g., 

Heckman, 2001; Sianesi, 2004; Armstrong, Guay and Weber, 2010). Nonetheless, despite 

the wide range of settings in which these methods are applicable, their use in substantive 

settings remains somewhat limited in frequency. Given the large amount of literature 

detailing their broad scope of applicability and that formal inferential methods for partially 

identifiable parameters are now available, hopefully these approaches will be employed with 

greater frequency in substantive settings in the future.

The sensitivity analyses described throughout this paper focus on departures from untestable 

assumptions which identify treatment effects. Other types of sensitivity analyses might be 

considered as well, for example, to assess how robust inferences are to various analytical 

decisions that are invariably made in data analysis. Rosenbaum (2002, Section 11.9) refers 

to such assessment as “stability analysis,” in contrast to the types of sensitivity analyses 

discussed above. See Rosenbaum (1999, 2002) and Morgan and Winship (2007, Section 6.2) 

for further discussion regarding various types of sensitivity analyses beyond the type 

considered here.
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Fig. 1. 
Graphical depiction of the bounds and sensitivity analysis model described in Sections 3.3 

and 3.4. The solid thin line with negative slope represents a set of joint distribution functions 

of (Z, S(1), S(0), Y(1), Y(0)) that all give rise to the same distribution of the observable 

random variables (Z, S, Y). The four dotted curves depict the log odds ratio selection model 

for γ = 0, 1, 2, 4. The γ = 0 model is equivalent to the no selection model. Each selection 

model identifies exactly one pair of expectations from this set, rendering the principal effect 

(10) identifiable. The thick black lines on the edge of the unit square correspond to the lower 

bound of the principal effect.
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Fig. 2. 
Estimated ignorance regions irf0(β, Γ) and 95% pointwise uncertainty regions URp(β, Γ) for 

the pertussis vaccine example in Section 7.3. The principal effect (10) is denoted β and Γ = 

[−γu, γu] for γu along the horizontal axis. The curve given by the lower boundary of the area 

with black slanted lines corresponds to βl̂, the minimum of the estimated ignorance regions, 

and the upper bound of the area with black slanted lines corresponds to β̂
u, the maximum of 

the estimated ignorance region. The curve given by the lower (upper) boundary of the gray 

shaded area corresponds to the minimum (maximum) of the 95% pointwise uncertainty 

region.
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Table 1

Pertussis vaccine study data: Estimated ignorance regions and 95% pointwise and strong uncertainty regions 

of β = E[Y(1) − Y(0)|SP0 = (1, 1)] for different Γ

Γ irf0(β, Γ) URp(β, Γ) URs(β, Γ)

[−3, 3] [−0.49, −0.17] [−0.58, −0.07] [−0.59, −0.06]

[−5, 5] [−0.55, −0.15] [−0.66, −0.05] [−0.69, −0.03]

[−10, 10] [−0.57, −0.15] [−0.70, −0.04] [−0.73, −0.02]

(−∞, ∞) [−0.57, −0.15] [−0.70, −0.04] [−0.73, −0.02]
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