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SUMMARY

The semiparametric accelerated failure time (AFT) model is one of the most popular models for 

analyzing time-to-event outcomes. One appealing feature of the AFT model is that the observed 

failure time data can be transformed to identically independent distributed random variables 

without covariate effects. We describe a class of estimating equations based on the score functions 

for the transformed data, which are derived from the full likelihood function under commonly 

used semiparametric models such as the proportional hazards or proportional odds model. The 

methods of estimating regression parameters under the AFT model can be applied to traditional 

right-censored survival data as well as more complex time-to-event data subject to length-biased 

sampling. We establish the asymptotic properties and evaluate the small sample performance of 

the proposed estimators. We illustrate the proposed methods through applications in two 

examples.
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1 Introduction

The accelerated failure time model (AFT), which relates covariates linearly to the logarithm 

of the survival time, has been one of the most commonly used regression models for 

analyzing right-censored survival data (Kalbfleisch and Prentice, 2002). The linear 

regression structure after the log-transformation of failure time and the straightforward 

interpretation of the regression coefficients are especially appealing to biomedical 
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investigators. Since the parametric AFT is sensitive to misspecification of the distribution of 

survival time and to outliers, the literature has focused on conducting estimation and 

inference procedures under semiparametric AFT models, which does not assume any 

parametric model for the distribution of residuals (Buckley and James, 1979; Miller and 

Halpern, 1982; Ritov, 1990; Tsiatis, 1990; Lai and Ying, 1991a; Ying, 1993; Jones, 1997; 

Lin and Ying, 1995; Jin et al., 2003). The estimation approaches for traditional survival data 

under the AFT model include rank-based estimating equations, least squares estimators and 

the kernel-smoothed profile likelihood method (Zeng and Lin, 2007).

In this paper, we describe a unified estimation approach based on score equations derived 

from the likelihood functions under embedded models for transformed failure time data. Not 

surprisingly, the derived score estimating equation for traditional right-censored survival 

data under the proportional hazards embedded model coincides with the rank-based 

estimating equation originally proposed by Tsiatis (1990).

The unified estimating approach can be applied to estimate regression coefficients in the 

AFT model for both traditional right-censored and length-biased data. Length-biased 

survival data arise when the probability of observing the failure time in the target population 

is proportional to the length of the failure time. Such data are often observed when studying 

the natural history of a disease from prevalent cohorts. Statistical inference for length-biased 

right-censored data is generally different from that for traditional survival data, since the 

length-biased right-censored failure times are not random samples from the target 

population, and the right censoring times are informative due to the biased sampling scheme. 

Although several articles (Shen et al., 2009; Chen, 2010; Mandel and Ritov, 2010; Ning et 

al., 2011) are concerned with the AFT model for length-biased data using different 

estimating equations, or the least squares method, the estimation efficiency for the existing 

methods is less than ideal.

The outline of this article is as follows. Section 2 describes a class of score estimating 

equations derived from the full likelihood functions under embedded models of proportional 

hazards and proportional odds models. We address the computational issues and establish 

large sample properties of the estimators from the proposed estimating equations. Section 3 

presents the finite sample performance through simulation studies, and is followed by the 

application of the methods to two real examples in Section 4. We provide a brief discussion 

in Section 5, and details of the proofs in the Appendix.

2 Full Likelihood-based Estimation Procedures

Let T̃ be the time measured from the onset of the initial event in the target population to 

failure, and X be a p-vector of the covariates. We consider the semiparametric AFT model 

(Kalbfleisch and Prentice, 2002), which relates the logarithms of the survival time to the 

covariate of interest through a linear form,

(1)
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where β0 is a p × 1 parameter vector and ε is independent of X with an unspecified 

distribution function. It is not necessary for the mean of ε to be zero, thus the regression 

parameter β0 does not include an intercept. Let q, Q and Q̄ respectively denote the density, 

cumulative distribution, and survival function of exp(ε). One appealing feature of the AFT 

model is that the observed failure time data can be transformed to a residual time scale, so 

that the transformed samples are i.i.d. without the covariate effect. Specifically, under the 

AFT model assumption for T̃ in equation (1), the transformed time T̃ε−XTβ0 is independent 

of the covariates X, thus its embedded likelihood function can be embedded under any 

commonly used semiparametric model, as we will describe in the following sections.

2.1 Full likelihood approach via Cox model

Consider a study cohort with n subjects. Let the observed data {(yi, δi, xi), i = 1, … , n} be 

independent and identically distributed copies of (Y, δ, X), where Y = min(T̃, C), C is the 

censoring time measured from the onset of the initial event, and δ = I(T̃ < C). We assume 

that the censoring time C is independent of T̃ conditional on X. Denote the transformed data 

as  for a given β. We first consider traditional 

survival data to illustrate the embedded score equation for estimating the regression 

parameters β. The transformed time T0 = T̃
e
−xTβ

0, which has null effect for the covariates 

under the AFT model, can be assumed to follow the Cox proportional hazards model,

(2)

where λ0(t) is an unspecified baseline hazard function and λ(t|X) is the hazard function given 

covariate X. Note that any practical semiparametric model can be used in this framework as 

an embedded model. Under assumption (2), the full likelihood on the observed data is 

proportional to

which leads to the log-likelihood function of

(3)

Taking the first derivative of the log-likelihood with respect to α, we have the score function 

of α,
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The transformed residual times are independent and identically distributed under the true β0. 

Its corresponding score function evaluated at the truth of the null covariate effect SPH (Λ0, 

α)|α=0 is approximately centered around 0. Hence, the embedded score function can be 

treated as an estimating function of β:

(4)

This estimating equation involves an unknown quantity, Λ0(.), which can be replaced by the 

Nelson-Aalen estimator using the transformed data as

Indeed, the estimating equation with the inserted Nelson-Aalen estimator for Λ0(t) is 

equivalent to the unweighted linear rank test statistic of Tsiastis (1990) and Jones (1997),

Next we describe how a parallel score estimating equation can be proposed from the full 

likelihood function for length-biased data. Let T̃ and T respectively denote the unbiased 

failure time in the target population and the observed length-biased failure time, all 

measured from the initial event, and let Ã and A respectively represent the truncation time in 

the target population and the observed truncation time measured from the initial event to the 

sampling time. Due to the potential residual censoring from the sampling time (C̃) on the 

residual failure time (V = T − A), we can only observe Y = min(T, C) and δ = I(T < C), where 

C = C̃ + A. We follow the standard assumption that the residual censoring time (C̃) is 

independent of (A, V) conditional on covariate X. Data (T, A) can only be observed 

conditional on T̃ > Ã under the sampling schema. This sampling mechanism thus induces 

dependent censoring because cov(T, C) = cov(A + V, A + C̃) = var(A) + cov(A, V) > 0, 

except for in trivial cases.

It is worth noting that the model structure for T (length-biased) is generally different from 

that for T̃ (unbiased) in the target population when the time is subject to right-censoring. 

However, there is a unique feature for length-biased data under the AFT model: after the 

same transformation e−XT β0 is applied to the unbiased failure time T̃ and the biased failure 

time T, the transformed outcomes T̃e−XTβ0 and Te−XTβ0 are both independent of the covariate 

X. Let f (.|x) and F (.|x) represent the probability density function (PDF) and the cumulated 

distribution function (CDF) for the unbiased time, T̃, given X = x. The PDF of the length-

biased time, T, is related to the unbiased density of T̃ as follows,
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(5)

where . Due to the induced dependent censoring, the probability of 

observing an uncensored and censored time conditional on covariate are, respectively

and

where  are PDF and survival function 

of the residual censoring time, given X = x. Hence, the full likelihood function of the 

observed right-censored observation (yi, ai, δi) conditional on the covariates is proportional 

to

(6)

Under model (1), the survival function, density function and mean of the unbiased failure 

time, T̃, can be expressed by the survival and density functions of exp(ε) as

(7)

(8)

and

(9)

where .

By equations (7), (8) and (9), the likelihood function (6) can be rewritten as
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It implies that, by the Jacobian rule, the full likelihood for the transformed, observed data, 

 can be expressed as follows

(10)

Under the proportional hazards embedded model assumption with a null covariate effect,

thus the log-likelihood of the transformed data is

(11)

The corresponding score function of α evaluated at the null covariate effects (α = 0) has a 

mean of zero (Ning et al., 2010) and can be used as an unbiased estimating equation for 

solving β,

(12)

Note that the full likelihood function (10) for the transformed data is proportional to the 

Vardid’s likelihood by a constant of proportionality. Hence the unknown baseline hazard 

function Λ0(t) = − log(Q̃(t)) can be estimated through

(13)

where Q̃
LB is the nonparametric maximum likelihood estimator of the distribution function 

(Vardi, 1989), using the observed transformed data solved from the following likelihood,
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2.2 Full likelihood approach via the proportional odds model

Because the transformed data under the AFT model are i.i.d., any commonly used 

semiparametric model may be chosen as an embedded model to derive the score function to 

estimate the regression coefficients β. To illustrate this general framework, we fit the 

transformed failure time data using the semiparametric proportional odds model, as an 

alternative embedded model. Under the proportional odds model, the CDF of T̃ given 

covariate X is related to the CDF of T̃
0 given X = 0 by

(14)

where FX (t) is the CDF of T̃
0 given covariate X and F0(.) is the unspecified continuous 

baseline CDF of T̃ at X = 0. It is equivalent to having

For traditional survival data, the full likelihood of the transformed data under the 

proportional odds model is

The resulting log-likelihood function is

(15)

and its corresponding score function is

Accordingly, the score function evaluated at the null covariate effects, SPO (F0, γ)|γ=0 yields 

the estimating equations for β,
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(16)

The unknown CDF, F0, will be replaced by the nonparametric MLE, Kaplan-Meier 

estimator for the transformed data in the constructed embedded estimating equation to solve 

for β.

We can derive the log-likelihood of the observed length-biased survival data from equation 

(10) under the proportional odds embedded model,

(17)

The corresponding estimating function for β, which is constructed based on the score 

function under the proportional odds model at γ = 0, follows as

(18)

Similar to the construction of the score estimating equation under the proportional hazards 

model, the unknown baseline CDF, F0, will be estimated by Q̃ from Vardi’s nonparametric 

MLE of equation (13) using the transformed data.

2.3 Computation procedure

In contrast to the score estimating equations for traditional survival data, note that the score 

estimating equations for length-biased survival data contain the constant terms from their 

mean μ0 under two embedded models. Therefore, the two estimating equations for length-

biased data can be further simplified by centering the covariates around their sample means 

to

(19)

and

(20)

An immediate consequence of this normalization is that the above estimating equations have 

the same expressions as the score estimating equations (4) and (16) for traditional survival 

data. However, the estimations of Λ0(t) and F0(t) are different for two types of data: Vardi’s 
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estimator will be used for length-biased survival data and the Kaplan-Meier estimator will 

be used for traditional survival data.

Because the proposed estimating equations are not continuous functions of β, exact solutions 

to the estimating equations may not always exist. Using the principle similar to that in Jones 

(1997), the solutions to the estimating equations could be defined as the minimizers of the 

Euclidean norm of EPH (Λ0, β), EPO(F0, β), ẼPH (Λ0, β) and ẼPO (F0, β), respectively. This 

type of minimization problem cannot be solved by using a standard optimization algorithm 

designed for continuous functions. One solution is to use a grid search method, which turns 

out to be impractical due to the intensive computation. We adopt the following iterative 

procedure to solve for β. Using the case of traditional survival data to illustrate, we fix an 

initial value  and transform the observed data . We then 

estimate Λ0(t) and 1 − F0(t) using the Nelson-Aalen estimator  and Kaplan-Meier 

estimator , respectively. Next, we search for  by minimizing the norm of 

the score estimating equations, as follows,

(21)

(22)

The iterative procedures continue until the pre-specified convergence criteria is met. We 

denote the final solutions of equations (4) and (16) by .

For length-biased survival data, the corresponding two sets of estimating equations in the 

mth step can be written as

(23)

(24)

where . Via the transformed times, we will use Vardi’s 

nonparametric maximum likelihood (Vardi, 1989) to estimate the baseline CDF, 

, or the baseline cumulative hazard function,
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under the assumption that the baseline CDF is continues function. Then the m − th step 

estimator,  can be obtained by minimizing the norm of the above score 

estimating equations. It is worth noting that the nonparametric maximum likelihood 

estimator for length-biased data based on Vardi’s estimator jumps at all unique failure and 

censoring time points, but does not have a closed-form expression and can be obtained via 

the EM algorithm.

When there are more than a few covariates, the aforementioned method to search the 

minimizers for the norm of the score estimating functions is computationally intensive. 

Alternatively, we can apply the L1– minimization computational technique to find the 

solutions of the estimating equations (Jin et al., 2003; Shuang et al., 2012). Note that 

estimating equations (23) and (24) are monotone equations in each component of β, and are 

respectively the gradients of the L1–type convex functions. For example, equation (23) 

equals the gradient of the following L1–type convex function (Shuang et al., 2012),

(25)

where {t1 < t2 < … < th} are the ordered unique failure and censoring times for 

 are the corresponding positive masses of  at the 

times {t1 < t2 < … < th}, and R* is a sufficiently large positive number (e.g., 106) which 

should be larger than  for all β’s in the compact parameter space. 

Then, the updated estimator  can be readily obtained by using the Barrodale-Roberts 

algorithm (Barroda and Roberts, 1974), which is implemented in standard statistical 

software, such as the rq() function in R.

2.4 Asymptotic properties

For traditional survival data, the weak convergence of  will be derived similarly to that 

of  as in Jones (1997) and Tsiatis (1990). In this section, we focus on establishing 

asymptotic properties of the proposed score equations (23) and (24) in the mth step and their 

corresponding estimators  for length-biased survival data. The key step of 

the proof is to establish the asymptotic linearity of the estimating equations, 

, for β close to the true value, denoted by β0. Since the 

estimating equations derived from the score functions are not continuous functions of β, 

Taylor’s expansion theorem is not applicable here. Following the arguments for asymptotic 

properties of linear rank-based estimators (Ying, 1993), and for large sample properties of 

nonparametric maximum likelihood estimators for length-biased and right-censored data 

NING et al. Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(Asgharian and Wolfson, 2005), we prove that, for any fixed m, both  are 

consistent and asymptotically normally distributed given a consistent and asymptotically 

normal initial estimator under the regularity conditions listed in the Appendix.

Theorem 1. Under regularity conditions (C1)-(C10) listed in the Appendix, both 

 are consistent estimators of β0 and 

 converge weakly to normal distributions with 

mean zero and variance-covariance matrix , respectively.

The variance-covariance matrices, , are defined in the Appendix. The 

detailed proofs of Theorem 1 are provided in the Appendix. The estimation of the variance-

covariance matrix is not straightforward because of the unknown density function involved 

in . Given the aforementioned weak convergence, we will use the 

bootstrap resampling method to approximate the variances of .

While both score estimating equations are valid under the assumed embedded models for 

large sample properties, an interesting question is which embedded model leads to a more 

efficient estimator of β. Indeed, there is not a uniformly better choice in general. We will 

conduct a series of simulation studies to compare the two estimating equation approaches for 

both traditional and length-biased survival data.

We next show the convergence of the proposed iterative algorithm for the estimation using 

estimating equation (23) as an illustration. From any initial point in the bounded closed n-

dimensional rectangle  (Davidov and Iliopoulos, 

2013; Vardi, 1989), it can be shown that Vardi’s algorithm using the transformed data, 

, converges to the nonparametric maximum likelihood estimator (Vardi’s 

estimator), denoted as . Given the updated estimator of the cumulative 

hazard function via Vardi’s estimator, we obtain the mth step estimator of the regression 

coefficients, , by minimizing the norm , denoted as 

. Here, function  a discontinuous step function. By using the 

fixed point theorem for discontinuous mappings (Cromme and Diener, 1991), there exists a 

point , such that

where B (ε) denotes the ε-neighborhood of b. After some simple algebra, we can show that
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where . Thus, by the uniform consistency of Vardi’s estimator 

(Asgharian and Wolfson, 2005) and the continuity of the underlying CDF, we have,

Summarizing the previous arguments, we can see that the sequence , 

converges to β0 from any consistent initial point .

3 Simulation

We evaluated the finite sample performance of the two types of estimators for both 

traditional and length-biased survival data. We generated failure times from the AFT model 

with two covariates:

(26)

where X1 ~ Binomial(0.5) and X2 ~ Uniform(0, 1). We considered two error distributions: a 

standard normal distribution with N(0,0.5) and a uniform distribution U(−0.5,0.5). 

Censoring times were generated independent of the covariates from uniform distributions, 

and the censoring percentages ranged from 15% to 50%. Each study comprised 1000 runs. A 

cohort size of 100 or 200 was used.

3.1 Traditional survival data

We first compare the finite sample performance of the estimators from two embedded score 

equations for traditional right-censored data. Simulation results for right-censored data are 

shown in Table 1. The true value β0 is chosen to be (0.50, 1.00). A bias is calculated as the 

average of the differences between the estimators and the true value. The biases of the 

estimators from the estimating equation EPO are slightly smaller than those from the 

estimating equation EPH, although the biases from both methods are mostly close to zero. 

Interestingly, there is no uniform better estimating equations from the two embedded models 

in terms of statistical efficiency: when the random error follows the uniform distribution, the 

estimating equation EPH is more efficient than the estimating equation EPO ; when the 

random error follows the normal distribution, the estimating equation EPO is more efficient 

than the estimating equation EPO. However, the difference in efficiency decreases with the 

degree of censoring no matter what distribution the random error has.

We also compare the performances of two proposed score estimating equations with those of 

the inverse weighting estimating equation approach (Zhou, 1992) and the Buckley-James 
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method (Buckley and James, 1979). Generally, the inverse weighting estimating equation 

approach is least efficient with heavy censoring (50%). Compared with the two score 

estimating equations, the Buckely-James method is more efficient with normally distributed 

random errors, but is less efficient with uniformly distributed random errors.

3.2 Length-biased survival data

We next evaluate the performance of the two proposed estimators for length-biased data and 

compared them with the estimators from the inverse weighting estimating equation approach 

(Shen et al., 2009) and the Buckley-James method (Ning et al., 2011). To generate length-

biased data with potential right-censoring, we first generate 2000 unbiased failure times 

from equation (26). We then sample the failure times from these unbiased times with 

weights proportional to their lengths. This procedure will be repeated until the desired 

sample size is reached. For each subject in the selected cohort, we generate its truncation 

time ai from the uniform distribution, with range from 0 to ti, where ti is the observed failure 

time. The residual censoring time of this subject is independently generated from uniform 

distributions, and the censoring indicator is obtained by δi = I(ti ≤ ci). The other aspects of 

the simulation settings are similar to those for traditional right-censored data.

Table 2 summarizes the empirical biases and empirical standard errors of four different 

methods for length-biased right-censored data: (I) the inverse weighting estimating equation 

method (Shen et al., 2009); (II) Buckley-James method (Ning et al., 2011); (III) the 

estimating equation Ẽ PH with proportional hazards embedded model and (IV) the 

estimating equation Ẽ PO with proportional odds embedded model. As expected, the two 

score estimating equation methods outperform the inverse weighting estimating equation 

and Buckley-James method. The proposed methods have negligible biases and smaller 

empirical standard errors compared with the other two existing methods, especially when 

there is heavy censoring (50%). For instance, the standard errors associated with the inverse 

estimating equation were 1.53 to 1.71 times greater, and the standard errors associated with 

the Buckley-James method were 1.39 to 1.63 times greater than those associated with the 

estimating equation Ẽ PH based on a sample size of 200 and uniformly distributed random 

errors. Similar to the performance for traditional survival data without length-biased 

sampling, there is no uniform better estimating equation from the two embedded models. 

Interestingly, the standard errors for the two proposed estimators seem to be more robust to 

the degree of right censoring for length-biased data than to those for traditional survival 

data. This phenomenon may be partly explained by the difference in Vardi’s estimator and 

the Kaplan-Meier estimator for the nonparametric MLE of the survival distribution with and 

without length-biased sampling, respectively. In contrast to the Kaplan-Meier estimator, the 

former is estimated on both failure and censoring times.

We compare the computation time for the two computational algorithms in Section 2.3. We 

consider the scenario in which the length-biased data are generated from equation (26) with 

uniformly distributed random errors, and apply the score estimating equation (23) under the 

Cox model. When the sample size is 100, the number of covariates is 2 and the censoring 

rate is 50%, we make the following observations: (i) For 500 runs, the computational time of 

the L1-minimization is 24 minutes using a 3.40GHz desktop CPU, while the time of directly 
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minimizing the norm of the score estimating equations (23) is around 60 minutes. (ii) When 

the number of covariates increases to four, two continuous covariates from Uniform(0,1) 

and two binary covariates from Binomial(0.5), the computational time of the L1-

minimization slightly increases to 30 minutes, and the time of directly minimizing the norm 

of the score estimating equations (23) increases to 77 minutes. (iii) The biases and empirical 

standard errors from the two computational algorithms are almost identical. For example, in 

the scenario of two covariates, the biases are (0.00, 0.00) versus (0.00, 0.01), and the 

empirical standard errors are (0.062, 0.113) vs (0.063, 0.112). Based on these simulation 

studies, both algorithms have acceptable performance, but the L1-minimization algorithm 

outperforms the algorithm for minimizing the norm of the estimating equations in terms of 

computational time. Further, such an advantage would be more pronounced with increasing 

numbers of covariates.

4 Data Application

4.1 Bladder Cancer Data Example

We applied the proposed estimating methods to a bladder cancer study with traditional right-

censored data (Sharma et al., 2007). Among 69 patients with bladder cancer, 33 had 

recurrence, and 15 died during the follow-up. The analysis goal is to investigate the 

association between the presence of CD8 tumor-infiltrating cytotoxic T lymphocytes (TILs), 

disease stage and the disease-free survival time. We used the AFT model to explore the 

association between the presence of CD8 TILs, pathologic disease stage and the time to 

disease progression or death. The presence of CD8 was defined as a binary variable: whether 

or not the number of CD8 TILs was greater than the median number (8) of CD8 TILs among 

all patients analyzed. The pathologic disease stage was also stratified as a binary variable, 

with early superficial disease (PT1 or PTa) compared with advanced, muscle-invasive 

disease (PT2, PT3, or PT4). We applied the proposed estimating equations derived from 

Cox proportional hazards and proportional odds ratio models, the inverse weighting method 

(Zhou, 1992), and the Buckley-James method (Buckley and James, 1979) to estimated 

regression coefficients. The estimated regression coefficients and their bootstrap standard 

errors are listed in Table 3.

The score estimating equation and Buckley-James methods all showed that the number of 

CD8 TILs and pathologic disease stage were significantly associated with disease-free 

survival time. The risk of disease progression or death is significantly higher for patients 

with lower numbers of CD 8 TILs and for patients with advanced muscle-invasive disease. 

Due to the high percentage of censoring (52%), the less efficient inverse weighting method 

did not show such an association.

4.2 Canadian Study of Health and Aging

We next illustrate the proposed likelihood-based methods for length-biased data by 

analyzing a prevalent cohort study, the Canadian Study of Health and Aging. The design of 

this prevalent cohort study and its main study results were fully described in Wolfson et al. 

(2001). In this cohort, subjects with dementia were identified and classified into three 

subcategories of dementia: Alzheimer’s disease, possible Alzheimer’s disease, or vascular 
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dementia. We aim to assess the relationship between the subtype of dementia and the 

survival time, from the dementia onset to death, by fitting an accelerated failure time model 

with two indicators of dementia subtypes. We considered a subset of the study data by 

excluding those with missing date of onset or classification of dementia subtype. A total of 

818 patients with dementia were included in our analysis. Among them, 393 had a diagnosis 

of probable Alzheimer’s disease, 252 had possible Alzheimer’s disease, and 173 had 

vascular dementia. The observed event times were subject to length-biased sampling 

because subjects who died quickly after dementia onset were more likely to be excluded 

from the study.

The stationarity assumption was examined and confirmed for this cohort study by Addona 

and Wolfson (2006). We applied the proposed methods, the inverse weighting method and 

the Buckely-James approach under the AFT model, log T̃ = α1X1 + α2X2 + ε, to evaluate the 

association between different diagnostic subcategories of dementia and survival, where X1 

and X2 indicate whether the subject had vascular dementia or probable Alzheimer’s disease, 

respectively. The estimated regression coefficients and their bootstrap standard errors are 

listed in Table 4. Using the proposed score estimating equations, we found that the long-

term survival distributions are significantly different between patients with vascular 

dementia and those with possible Alzheimer’s dementia. In contrast, the less efficient 

methods (inverse weighting method and Buckley-James method) could not detect the 

difference in survival distributions between the patients with vascular dementia and those 

with possible Alzheimer’s dementia.

5 Discussion

For traditional survival data under the AFT model, Tsiatis (1990) proposed an important 

rank-based weighted linear rank test using the transformed i.i.d failure times. Sharing the 

same spirit, we have constructed a unified class of estimation approaches by using the full 

likelihood function under two embedded semiparametric regression models based on the 

transformed times. The score function derived under the Cox embedded model with null 

covariate effects is reduced to the linear rank test statistic of Tsiatis (1990) for traditional 

survival data. One major advantage to viewing the estimation problem from this unified 

structure is that the estimating approach can be easily applied to both traditional and length-

biased survival data for different embedded models. Additionally, the general estimation 

principle discussed in this paper can be applied to other types of survival data, such as 

interval censoring data.

In addition to the kernel-smoothed profile likelihood proposed by Zeng and Lin (2007), 

there has been considerable work on the estimation of covariate effects and on variance 

under the AFT model for traditional survival data by improving the selection of the weight 

in the weighted linear rank type of estimating equations (Prentice, 1978; Wei et al., 1990; 

Lai and Ying, 1991b; Robins and Tsiatis, 1992; Lin and Ying, 1995). There has been little 

work based on alternative semiparametric embedded models, such as using a proportional 

odds model with null effect for the rescaled data. In fact, under the AFT model for the 

failure times, this score-based estimating equation can be derived from a full likelihood 

embedded in any alternative semiparametric model with a null covariate effect for 
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transformed data as long as it is computationally feasible. Although we have focused on the 

proportional hazards and proportional odds models to illustrate the principle behind the 

method, more general types of linear transformation models can be used as well for 

transformed data under the AFT model.

Interestingly, this class of score-based embedded estimating equations shares the same 

expressions for length-biased data as for traditional survival data under the AFT model after 

normalizing the covariates; although the estimation of baseline hazards function or survival 

function is different for the two types of data. In contrast to the Nelson-Aalen and Kaplan-

Meier estimators for traditional data, Vardi’s estimator for length-biased data jumps on both 

failure and censoring times, which may lead to robust estimators under heavy censoring, as 

noted in our simulations. From the empirical studies, it is interesting to note that the score 

equation embedded in the Cox embedded model may not be the most efficient approach, but 

depends on the underlying error distribution. Compared to existing methods in the literature 

that are based on estimating equations, the proposed score-based estimating equations lead 

to more efficiency gain, as shown in the simulation studies (Tables 1 and 2). An efficiency 

gain is achieved because the proposed estimating equations are directly derived from the 

embedded full likelihood function. Another advantage for the proposed method for 

analyzing length-biased data is that the censoring distribution is not required to be estimated 

as in the other existing methods, e.g., Shen et al. (2009).

In this paper we have studied score estimating equations derived from embedding the 

underlying density or hazard in a larger semiparametric model. The basic idea is similar to 

Neyman’s smooth goodness of fit test (Neyman, 1937), where an observed data set is tested 

against a specific density. A score test is obtained by embedding this density in a larger 

parameter family. A comprehensive discussion of this test can be found in the recent book 

by Rayner et al. (2011). In contrast to testing a specific density, we use the embedded 

likelihood method to deduce an unbiased estimating function for the regression parameter β 

in the AFT model. Based on our simulation studies, different enlarged models may yield 

different levels of estimation efficiency. It would be worthwhile to further investigate the 

choices for the enlarged models.
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6 Appendix

Regularity conditions

To establish the large-sample properties of the proposed estimator with the embedded 

models, we impose the following conditions:

(C1) X is uniformly bounded, and if there exists a constant vector b such that bTX = 0 with 

probability one, then b = 0.

(C2) The parameter space of β, B, is a compact set including the true value of parameter β0.

(C3) The density function, q(.), and its derivative q′(.) are bounded.

(C4) The residual censoring time has a uniformly bounded density , that is there exists a 

real number such that  for all t ∈ [0, τ ].

(C5) Q(.) is a continuous and differentiable distribution function over (0, τ), where τ = 

inf{t : Q(t) = 1} < ∞.

(C6) , where Sc0 is the survival function of C0 = 

C̃ exp {−XT β0}.

(C7) P (T̃ < C) > 0.

(C8) , where Sc̃ is the survival function of 

the residual censoring time.

(C9) 

, where  and Sv 

is the survival function of V.

(C10) The functions mPH (β, t) and mPO (β, t) have a unique solution at a compact region 

containing β0.

Assumptions (C5) to (C7) are to ensure uniform consistency and weak convergence of 

Vardi’s estimator F̃
0 for all 0 < t ≤ τ (Asgharian et al., 2002; Asgharian and Wolfson, 2005). 

Assumptions (C8)-(C9) are for the consistency and asymptotic normality of the initial 

estimator (Shen et al., 2009).

Sketched proof of Theorem 1

Given a consistent and asymptotically normally distributed initial estimator, we need to 

prove that, for any fixed m,  are consistent and asymptotically normally 
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distributed. Note that it suffices to show the asymptotic properties of  for m = 1. For 

notational simplicity, we assume covariate-independent censoring and use the estimator 

obtained from IWEE (Shen et al., 2009), which has a closed-form expression,

(27)

as the initial value to show the asymptotic behavior of , where  is the Kaplan-Meier 

estimator for the residual censoring survival function. Note that there is no required 

assumption that the censoring time C is independent of X. A consistent estimator for length-

biased data always exists, whether the censoring depends on the covariates or not (Lai and 

Ying, 1991b), though this initial estimator is not an efficient estimator of β without 

adequately using the left-truncation time. The arguments here can be readily extended to the 

case of covariate-dependent censoring and the initial estimator from the left-truncation 

method (Lai and Ying, 1991b).

We first study the asymptotic behavior of  at true value β0. Let  and ε represent 

the sample empirical mean and the limit of average expectation. Using these notations, 

estimating equation ẼPH at the first step can be expressed as

(28)

where . By the central limit theorem for variables and processes,

converges weakly to a normal variable, W1, with mean zero, and

converges to a Gaussian process, W2. The baseline cumulative hazard function is estimated 

through Vardi’s estimator and the transferred data, , 

where
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Define  and g*(x) and f*(x) are the conditional density 

functions of G*(x) and F *(x), respectively. Let . Define

and

Asgharian and Wolfson (2005) derived the expression of Q̃
LB(t; β) − QLB (t) as a linear 

functional of W1,β, W0,β and p̂ − p,

(29)

where

NING et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In addition, it follows from the asymptotic properties of the empirical processes 

 (Lemma 19.24 of van der Vaart (1998)), that

Therefore,  can be shown to be asymptotically linear in 

,

where

and φ is the distribution function of X.

Using Lemma 2 of Vardi and Zhang (1992) and Lemma 3 of Asgharian and Wolfson 

(2005), we have

where

and
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As shown by Shen et al. (2009), the initial estimator has an independent and identically 

distributed (i.i.d.) representation,

(30)

where

, and Λc(u) is the martingale and 

cumulative hazard function of the censoring times. Then we have the i.i.d. representation of 

. It follows the i.i.d. representation of , 

where

Then by the delta method, we have

By the above i.i.d. representation of  and Theorem 2 of Asgharian and Wolfson 

(2005),  converges weakly to Gaussian processes W3. Under the 

regularity conditions (C2) and (C3), applying lemma 3 of Gill et al. (1988) and the chain 
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rule, we can show that the mapping of ẼPH from the three processes is compactly 

differentiable with respect to the supremum norm. We therefore apply the functional delta 

method and establish the asymptotic i.i.d. representation of equation 

, where

Following this representation,  converges to a normal distribution with 

mean zero and variance .

Next, we show that estimating equation  is asymptotically linear in a 

neighborhood of the true value β0. Define the mean function for ẼPH (β)

where Pci = P (δi = 1|xi). By applying the Theorem 3 of Ying (1993), we have for any B > 0 

and ε > 0

where . 

This implies that the estimating equation  can be uniformly approximated by 

the nonrandom function mPH (β, τ) up to the order of n−1/2+ε. If the function mPH (β, τ) has a 

unique solution given a compact region Cβ containing β0 as an interior point, the estimator, 

which satisfies , is strongly consistent. As discussed in Ying 

(1993), this assumption can be evaluated for any given joint distribution of (T̃, C̃, X). Denote 

the slope of function mPH (β, τ) by ΓPH, where
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Furthermore, the slope ΓPH is nonsingular under the regularity assumption (C1), 

 converges weakly to a normal distribution with mean zero and variance-

covariance matrix .

By arguments similar to those, we can show the asymptotic behavior of . For notational 

simplicity, the IWEE estimator,

(31)

is used as the initial value. We obtain  by minimizing the norm of the non-continuous 

estimating equations via the transformed times ,

(32)

Given the asymptotic properties of the initial estimator and the nonparametric maximum 

likelihood estimator F̃
0, and analogous to the argument given for the asymptotic properties 

of , we can show that  converges to a normal distribution with mean 

zero and variance . Furthermore, following the arguments in Ying (1993), the estimating 

equation ẼPO(F̃
0, β) can be shown to be uniformly approximated by the nonrandom function 

mPO (β, τ) up to the order of n−1/2+ε, where

Then under the assumption that the mean function has a unique solution at a compact region 

containing β0 and its slope function ΓPO is nonsingular,  converges weakly 

to a normal distribution with mean zero and variance-covariance matrix 

. Then using such arguments iteratively, we can show that for any 

fixed  are consistent and asymptotically normally distributed.
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Table 1

Summary statistics of simulations for traditional right-censored data with mean bias and empirical standard 

errors (ESE)

Cohort Cen% Inverse weighting Method Buckley-James Method EPH Method EPO Method

size Bias ESE Bias ESE Bias ESE Bias ESE

(α1, α2) = (0.5,1),ε ~ U(−0.5, 0.5)

100 15% (−.01,−.01) (.060,.114) (−.01, .00) (.059,.113) (.00, −.02) (.054,.098) (.00,−.01) (.063,.111)

100 30% (−.01,−.02) (.070,.132) (−.00,−.00) (.066,.130) (.01,−.03) (.059,.113) (.01,−.01) (.064,.123)

100 50% (−.06,−.12) (.103,.165) (−.00, .01) (.085,.146) (.02, −.05) (.083,.154) (.01,−.02) (.083,.153)

200 15% (−.00,−.01) (.044,.079) (−.00,−.01) (.044,.078) (.00, .01) (.037,.060) (.00,−.01) (.046,.072)

200 30% (−.01,−.01) (.050,.087) (−.00, .00) (.049,.083) (.01,−.02) (.041,.077) (.00,−.01) (.049,.090)

200 50% (−.05,−.10) (.067,.118) ( .00, .00) (.055,.095) (.00,−.03) (.056, .097) (.00,−.02) (.058, .097)

ε ~ Normal(0, 1/12)

100 15% (−.01,−.00) (.063,.110) ( .01, .01) (.63,.107) (.01,−.03) (.068,.110) (.01,−.01) (.064,.108)

100 30% (−.00,−.01) (.066,.131) ( .01, .01) (.65,.124) (.01,−.04) (.072,.119) (.01,−.02) (.068,.117)

100 50% (−.05,−.11) (.092,.180) (−.00, .01) (.075,.146) (.02,−.05) (.085,.141) (.01,−.02) (.082,.138)

200 15% (−.00,−.00) (.048,.073) ( .00,−.00) (.046,.071) (.00,−.02) (.047,.082) (.00, .00) (.043,.081)

200 30% (−.01,−.01) (.051,.086) ( .00,−.00) (.048,.082) (.00,−.02) (.050,.087) (.00,−.01) (.042,.075)

200 50% (.05, .10) (.067,.112) ( .00, .00) (.055,.091) (.01,−.02) (.058,.103) (.00,−.01) (.054,.098)
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Table 2

Summary statistics of simulations for length-biased right-censored data with mean bias and ESE

Cohort Cen% Inverse weighting Method Buckley-James Method ẼPH Method ẼPO Method

size Bias ESE Bias ESE Bias ESE Bias ESE

(α1, α2) = (0.5,1),ε ~ U (−0.5,0.5)

100 15% ( .00,−.01) (.072,.127) ( .00, .00) (.065,.116) ( .00, .00) (.047,.082) (−.01, .00) (.067,.115)

30% (−.02,−.02) (.077,.135) ( .00, .00) (.068,.123) ( .00, .01) (.051,.093) ( .00, .00) (.071,.121)

50% (−.04,−.06) (.096,.166) (−.01,−.01) (.087,.166) ( .00, .01) (.063,.112) ( .01, .00) (.078,.133)

200 15% ( .00,−.01) (.047,.084) ( .00, .00) (.045,.080) ( .00, .00) (.030,.049) ( .00, .00) (.044,.078)

30% (−.01,−.02) (.052,.088) ( .00, .00) (.050,.086) ( .00, .01) (.034,.057) ( .00, .00) (.046,.082)

50% (−.03,−.05) (.068,.118) ( .00, .00) (.057,.103) (−.01, .00) (.041,.070) ( .00,−.01) (.053,.089)

ε ~ Normal(0, 1/12)

100 15% (−.01,−.01) (.072,.125) ( .00, .00) (.072,.118) ( .00, .01) (.065,.116) ( .00, .01) (.065,.111)

30% (−.01,−.03) (.078,.138) ( .00, .00) (.067,.123) ( .00, .00) (.070,.123) ( .00,−.01) (.069,.116)

50% (−.03,−.06) (.091,.166) (−.03, −.06) (.097,.186) ( .00, .01) (.075,.134) ( .00, .01) (.074,.125)

200 15% ( .00,−.01) (.052,.085) ( .00, .00) (.049,.081) ( .00, .00) (.048,.080) ( .00,−.01) (.045,.073)

30% (−.01,−.02) (.057,.093) ( .00, .00) (.050,.085) ( .00, .00) (.049,.084) ( .00, .00) (.047,.078)

50% (−.03,−.04) (.067,.116) (−.03,−.05) (.065,.121) ( .00, .00) (.053,.095) ( .00, .00) (.049,.086)
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Table 3

Estimates (Est) and Bootstrap standard errors (SE) of regression coefficients for bladder cancer data

Inverse weighting Method
Est(SE)

Buckley-James Method
Est(SE)

EPH Method
Est(SE)

EPO Method
Est(SE)

CD8 ≥ 8 0.08(.30) 0.87(.41) 1.03(.46) 1.27(.53)

P-stage −0.45(.32) −0.95(.34) −1.19(.42) −1.52(.48)
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Table 4

Estimates (Est) and Bootstrap standard errors (SE) of regression coefficients for dementia data

Diagnosis Inverse weighting Method
Est(SE)

Buckley-James Method
Est(SE)

ẼPH Method
Est(SE)

ẼPO Method
Est(SE)

Vascular

Dementia −0.21(.11) −0.19(.13) −0.17(.07) −0.21(.07)

Probable

Alzheimer −0.14(.15) −0.11(.15) −0.11(.06) −0.08(.08)
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