Skip to main content
. Author manuscript; available in PMC: 2015 May 1.
Published in final edited form as: Nat Biotechnol. 2014 Oct 5;32(11):1146–1150. doi: 10.1038/nbt.3043

Figure 2.

Figure 2

Targeting antibiotic resistance genes and plasmids in an MRSA strain. (a) Treatment of a mixed population of RNΦ and USA300Φ results in killing of the targeted USA300 MRSA strain and delivery of an immunizing phagemid to the rest of the population. (b) pDB121::mecA specifically kills USA300Φ in a mixed population. Exponentially growing USA300Φ and RNΦ cells were mixed 1:1 and treated with pDB121 at an MOI of ~5. Cells were plated either on a non-selective medium, on chloramphenicol-containing medium to measure the proportion of cells receiving the phagemid treatment, or on oxacillin-containing medium to measure the proportion of USA300Φ cells in the population (mean ± s.d.). (c) The CRISPR array sequence is programmed to target the pUSA01 and pUSA02 plasmids simultaneously. (d) USA300Φ was treated with pDB121 lysates targeting each plasmid individually or in combination. Cells were plated either on a non-selective medium, on chloramphenicol-containing medium to measure the proportion of cells receiving the phagemid treatment, or on tetracycline-containing medium to measure the proportion of cells cured of pUSA02 (mean ± s.d.). (e) Plasmid curing was confirmed by the lack of PCR amplification with plasmid specific oligonucleotides in 8 independent CFUs after treatment with the double targeting construct. (f) A population of RNΦ cells was immunized against plasmid horizontal transfer by treatment with the pUSA02-targeting pDB121 phagemid. 30 min after treatment, the population is transduced with a ΦNM1 stock grown on USA300. Cells are plated either without selection or on tetracycline to measure transduction efficiency of the pUSA02 plasmid (mean ± s.d.).