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Abstract

Cross-sectional prevalent cohort design has drawn considerable interests in the studies of 

association between risk factors and time-to-event outcome. The sampling scheme in such design 

gives rise to length-biased data that require specialized analysis strategy but can improve study 

efficiency. The power and sample size calculation methods are however lacking for studies with 

prevalent cohort design, and using the formula developed for traditional survival data may 

overestimate sample size. We derive the sample size formulas that are appropriate for the design of 

cross-sectional prevalent cohort studies, under the assumptions of exponentially distributed event 

time and uniform follow-up for cross-sectional prevalent cohort design. We perform numerical and 

simulation studies to compare the sample size requirements for achieving the same power between 

prevalent cohort and incident cohort designs. We also use a large prospective prevalent cohort 

study to demonstrate the procedure. Using rigorous designs and proper analysis tools, the 

prospective prevalent cohort design can be more efficient than the incident cohort design with the 

same total sample sizes and study durations.
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1 Introduction

Incident and prevalent cohort designs are two primary types of epidemiological study 

designs that have been widely used to investigate the natural history of a disease and to 

assess the association between a risk factor and the disease prognosis. 1–4 An incident cohort 

comprises individuals who are at risk for the initiating event (e.g., the onset or diagnosis of a 
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disease) and will be followed to observe a subsequent event of interest (e.g., death or 

recurrence). An incident cohort study typically requires the follow-up of thousands of 

individuals to observe the initiating and failure events. A prevalent cohort consists of 

individuals who have already experienced the initiating event but have not experienced the 

failure event at the time of ascertainment, and will be followed to observe the failure event. 

Incident cohort studies are usually preferred approach to estimating the incidence of a 

disease and studying the natural history of the disease. However, incident studies often 

require large cohorts with lengthy follow-up. In contrast, a prevalent cohort design is a cost-

effective alternative to study the natural history of the disease. While the prevalent cohort 

design has gained popularity in recent years with economic and efficiency advantages over 

the incident cohort design, data observed from a prevalent cohort study are typically subject 

to selection bias and not representative of the target population for the purpose of estimation 

and inference. Standard methods for survival analysis and study design developed for 

incident cohort studies are not appropriate for prevalent cohort studies in general. 5–9 As 

adeptly demonstrated in the study of ischemic heart disease by Buckley et al., 10 a 

considerable difference in distribution of disease prognosis existed between the prevalent 

and incident cohorts using the same naïve estimation method, even though both cohorts were 

derived from the same population.

As an example to illustrate the two sampling schemes, consider the Canadian Study of 

Health and Aging (CSHA), a multicenter observational study of dementia and other 

chronicle diseases for people aged 65 years and over in five regions of Canada. 11 Between 

1991 and 1992, 14,026 individuals were randomly selected from the community and 

institutions, and 10,263 agreed to participate in the study. Among them, 1132 were identified 

with dementia by cognitive impairment screening and clinical examination, and their dates 

of onset for dementia were ascertained via a review of their medical records. These dementia 

patients were recruited to the prevalent cohort and prospectively followed for subsequent 

death (or censoring). One primary outcome of interest is the duration from the onset of 

dementia to death. From the schema presented in Figure 1, time 0 is defined as the time of 

enrollment for dementia individuals to the CSHA study. The length of each line defines the 

duration from the onset of dementia to death or right censoring. For an incident cohort study 

to evaluate the same outcome, the randomly selected individuals (e.g., cases 5, 6, and 7 in 

Figure 1) would be followed prospectively for the onset of dementia and death. In contrast to 

the incident cohort, a sample of cases who experienced the initiating event but not the event 

of failure (e.g., cases 1, 2, and 3 in Figure 1) are recruited and prospectively followed for the 

failure event in a cross-sectional prevalent cohort. Cross-sectional sampling captures 

prevalent cases only. Such individuals often have a longer time gap between the initiation 

and failure events than individuals from the incident cohort. This bias in prevalent cohort 
studies is referred to as length-bias, when the incidence of the initiating event follows a 

stationary Poisson process. It is recognized that such bias is difficult to remove by study 

design and may confound the interpretation of analysis results.

While the prevalent cohort design has been popular with epidemiology research, it has been 

noted the consequences that using conventional analysis and inference methods for survival 

data obtained from a prospective prevalent cohort leads to severely biased estimates due to 

biased sampling. 12–15 In other words, a claim of finding an association between the risk 
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factors and failure event in a prevalent cohort study using standard analytic methods may be 

spurious. Recently, there has been increasing interest and advances made in developing 

statistical methodology to correct the estimation bias in association studies. 16–19 Practical 

statistical methods have been developed to obtain unbiased inference and estimation using 

observed biased data. However, corresponding developments in the design of prevalent 

cohort studies has been lacking. Researchers generally use the power and sample size 

calculation tools for incident cohort studies, which are not suited for prevalent cohort 

studies. Valid tools designed for prevalent cohort studies are needed for estimating the 

required sample size and/or the length of follow-up to detect an expected association 

between a risk factor and a failure event. The objective of this paper is to consider formal 

aspects of prevalent cohort study designs, in particular power and sample size calculations. 

We present basic methods and practical tools for power and sample size calculations of a 

prospective prevalent cohort study under the stationary assumption, and compare the 

empirical results with those from the incident cohort design under similar settings. We also 

demonstrate how to analyze the observed right-censored from a prevalent cohort study under 

the proportional hazards model using CSHA as an example.

2 Methods

2.1 Setup

Participants in a prevalent cohort are recruited according to the cross-sectional sampling 

method, in which one ascertains risk factors (e.g., smoking or a genetic variant) and disease 

status at the time of enrollment, and then prospectively follows the individuals with the 

disease to observe the events of interest (e.g. death). Subjects with the initiating event prior 

to time 0 (time of enrollment to the study) who are still at risk for the failure event (e.g. 

alive) at time 0 are sampled to the prevalent cohort, and are followed up to time τ.

The difference in sampling scheme between a prevalent cohort study and an incident cohort 

study is illustrated graphically in Figure 2. Let T̃ be the population duration time from an 

initiating event to a failure event. In the incident cohort, the event time T̃ can be observed 

unbiasedly. Let Ã be the duration time measured from the time of the initiating event to 

study enrollment. In the prevalent cohort, the observed time (T, A) are length biased 

sampled; they are (T̃, Ã) observed among those with T̃ > Ã (see for example, cases 1 to 3 

depicted in Figure 1). Cases with an initiating event prior to time 0 (time of enrollment to the 

study) who are still at risk for the failure event (e.g. alive) at time 0 are sampled to the 

prevalent cohort, and we record the truncation time A, and residual survival time V or 

residual right-censoring time C if it is less than the maximum follow-up time, τ. Here, T = A 
+ V is the failure time measured from the initiating event.

Suppose that the goal of a study is to test the association between unbiased failure time T ̃ 

and a risk (exposure) factor, X. Without loss of generality, we compare the hazard rates for 

the unbiased failure time T̃ between the exposed and unexposed groups. Let λ0 and λ0 be 

the constant hazard rates of the unexposed (X=0) and exposed (X=1) groups, respectively. 

Comparing hazards rates is equivalent to testing whether the log-hazard ratio between the 

two groups θ = log(λ1/λ0), where the null hypothesis of no association is
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2.2 Sample size calculations: Incident cohort

Various methods for estimating sample size have been proposed for time-to-event outcomes 

in standard incident cohort designs with different censoring distributions. 2, 20–21 Most of 

these calculations are based on the exponential distribution assumption for T̃. For 

illustration, we present the sample size calculation equation, assuming that T̃ follows an 

exponential distribution with parameter λ0 for the unexposed group, and λ1 for the exposed 

group. Using the maximum likelihood estimation method as approximated by Lachin, 22 the 

sample size estimation is derived from the score test statistic and Fisher’s information. 

Assume that all participants are followed for a fixed study duration τ. Let n0 and n1 be the 

respective sample sizes for the unexposed and exposed groups, and zα/2 and zβ be the upper 

α/2- and upper β-th quantile of the standard normal distribution. The total sample size n = n0 

+ n1 required to achieve (1 − β) power at the significance level α for a two-sided test can be 

obtained from the following equation:

(1)

where γ = n0/n. In practice, it is common that participants are recruited uniformly over (0, 

τ). Then a similar formula for sample size calculation can be found, but with different 

variance estimators,

(2)

2.3 Sample size calculations: Prevalent cohort

We derive the formulas for power and sample size calculations for a prevalent cohort study 

based on the maximum likelihood approach. The derivations can be found in the appendix. 

Under the exponential distribution assumption, the equation that derives the total sample size 

and power for testing the equality of hazards is based on the asymptotic score test statistic. If 

all participants can be potentially followed for a fixed time τ, then the total sample size has 

the following explicit form

(3)

If the losses to follow-up are uniformly distributed over (0, τ), then the above formula needs 

to be modified. The corresponding sample size formula can be found in Appendix I. We also 
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derive the sample size formula when the population duration time follows a Weilbull 

distribution assumption. The detail of the formula for testing the hazard rates at a fixed time 

t between two independent groups can be found in a supplementary material from the 

authors.

2.4 Comparison between prevelent cohort design and incidence cohort design

Comparing formula (1) and formula (3), it is evident that the sample size requirement for 

prevalent cohort design is smaller than the sample size requirement for incidence cohort 

design, i.e. nP < nI, under the same design consideration including the same type I/II errors, 

the same follow-up duration τ and the same null hazard rate λ0. In fact, the sample size 

difference is

Intuitively, prevalent cohort design can use the extra information on the backward time A, 

compared to the incident cohort design. When failure time T̃ follows an exponential 

distribution, the observed truncation time A and residual survival time V follow the same 

exponential distribution and independently contribute information to the likelihood. 

Moreover, the truncation time A is not subject to right censoring, but V may be. Hence, it is 

not surprising that the gain in power for the prevalent cohort study can be more than double 

that of its counterpart incident cohort study.

To further illustrate the difference, we compare the sample sizes and powers of the two types 

of design, as shown in Figure 3. We consider two sampling methods for the incident cohort 

study. The first method assumes that all participants are recruited at the beginning of the 

study -- this is parallel to the cross-sectional sampling of the prevalent cohort design 

presented in Figure 1. The second method assumes that participants are recruited on a 

staggered fashion during the interval (0, τ). We consider a range of values for the log hazard 

ratio θ, while assuming α = 0.05, total follow-up duration τ = 4 years, and γ = 0.5.

Using sample size estimation equations (1) and (2) for the incident designs and equation (3) 

for the prevalent design, we can estimate the total sample sizes required to achieve 80% 

power for the designs, keeping all other design parameters the same. For example, when 

θ=0.5, and λ0=0.6, the total sample size required to achieve 80% power at a significance 

level of 0.05 is 82 for the prevalent cohort design, and 240 for the incident cohort design, 

with 1 year follow up. The required sample size for the incident cohort study is almost 3 

times as high as the required sample size for the prevalent cohort study (when all 

participants are recruited at time 0). The difference in sample size requirements is especially 

large when the hazard ratio is small. The difference becomes small when the hazard ratio 

increases. With the same total sample size (n = 70) and follow-up duration, the power 

(Figure 3b) for the prevalent cohort design can be up to 2.4 times higher than the power for 

the corresponding incident design. The difference in power is even larger when the 

comparison is made between the prevalent cohort design and the incident design with 
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staggered entry. The advantage of the prevalent design is more evident when the hazard ratio 

is small to moderate.

3 Numerical studies

3.1 Simulations

The power and sample size considerations are based on the most efficient test statistics 

under parametric models, while assuming every patient can be followed for a fixed time. We 

conduct simulation studies to compare the powers of incidence cohort deign and prevalent 

cohort deign, when the data are analyzed instead by nonparametric test statistics, when the 

sample size is small, and when more general censoring mechanisms are considered. For 

incident cohort studies, the standard log-rank (LR) test is the asymptotically most efficient 

test under proportional hazards alternatives. For prevalent cohort studies, Ning et al. 

proposed an asymptotically most efficient permutation (PM) test under proportional hazards 

alternatives. 18 As shown in Ning et al., the naïve log-rank test is also a valid test statistic, 

but only when censoring distributions are the same across different groups for analyzing 

length-biased data. 18 We consider two underlying distributions of T̃: exponential and 

Weibull, and two types of censoring mechanisms, as shown in Table 1. The total sample size 

used is 80, with equal numbers in each risk group. For each scenario, we present the 

statistical power for testing the effect of exposure using the PM test, log-rank (LR) test, and 

the conditional test for general left- truncated data (denoted as LT) observed from a 

prevalent cohort. 23 We compare the power against that of the log-rank test for traditional 

survival data observed from an incident cohort with the same sample size and follow-up 

duration. Under the null hypothesis (θ = 0), all test statistics in both designs lead to a type I 

error rate of around 0.05 (not presented in Table 1).

With the specified alternatives, the power of the PM test (similar to the LR test) for the 

prevalent cohort is about 1.3 to 1.9 times higher than that of the LR test for the incident 

cohort when all participants are recruited at the beginning of a study. With staggered entry 

during (0, τ1) years for the incident design, it is not surprising that the power is even lower 

for each scenario. When participants in both cohorts are subject to right censoring, which 

follows a uniform distribution, the gain in power for the prevalent design compared to the 

incident design is more substantial than that with type I censoring. Under the Weibull 

distributions, we observe a similar trend of efficiency advantage for the prevalent design 

over the incident design. In summary, the asymptotically most efficient permutation test 

achieves the highest power (similar to the LR test) for the prevalent cohort; whereas the 

power of the conditional LT test from the prevalent cohort can be as low as (or lower than) 

that from the parallel incident cohort.

3.2 An example: CSHA prevelent cohort study

In the CSHA study as mentioned in Introduction, it is of interest to investigate how different 

types of dementia may impact long-term survival measured from the disease diagnosis, after 

adjusting for length-biased data obtained from the prevalent cohort. Specifically, one focus is 

to evaluate whether patients with possible Alzheimer’s disease have similar survival as those 

with vascular dementia or probable Alzheimer’s diseases. The conventional survival analysis 
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methods in the standard statistical software may result in false interpretation on the 

association between the type of dementia and time to death.

The observed data from CSHA consist of 818 individuals with a diagnosis of possible 

Alzheimer’s disease (252 subjects), probable Alzheimer’s disease (392 subjects), or vascular 

dementia (173 subjects). We first show how the prevalent cohort data can be analyzed by 

valid statistical methods under the most popular Cox model with length-bias assumption, 

and then illustrate the sample size calculations based on the estimated hazard ratios.

To compare the survival distribution of possible Alzheimer’s disease with that of vascular 

dementia or probable Alzheimer’s disease, we consider statistical methods that are valid for 

length-biased data including the conditional test, 8,23 which is an efficient inverse weighted 

estimating equation method with easily modified existing statistical software, 19 and 

asymptotically most efficient permutation test. 18 Denote the data by {(Ai, Ti, δi, Xi)}, 

where Ai is the time measured from dementia diagnosis to the study enrollment, Ti is the 

time measured from dementia diagnosis to death or right-censoring, Xi =1 for possible 

Alzheimer’s disease and 0 otherwise, and δi= I(Ti−Ai<Ci) is a censoring indicator. The 

conditional test (LT) for general left-truncated data can be used to model the observed data 

using SPlus or R, 8,23 where the function and its data input are provided in Box 1. The 

corresponding output gives the estimated hazard ratio (HR) of 0.94 (95% CI 0.79–1.12; 

P=0.47) between possible Alzheimer’s disease and other dementia types, which does not 

show a statistically significant difference in survival distributions by diagnosis type.

Box 1

Use R/SPlus to estimate HR from the prevalent cohort study

Conditional Test

> coxph(Surv(A, T, Δ) ~ X, data=data.name)

where

A= the time measured from dementia diagnosis to the study enrollment

T= the time measured from demential diagnosis to death or right-censoring

Δ= censoring indicator

X= disease type indicator

Inverse weighted estimation

> coxph(Surv(Ym, rep(1, m)) ~ Xm + offset(log(W)), data=data.name)

where

m= the total number of the observed failure times

Ym= sorted failure times
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Xm= the corresponding group indicator associated with Ym

W= (W1, …, Wm), where  is the integral of the Kaplan-Meier estimator 

of residual censoring time C.

The inverse weighted estimation algorithm developed in Qin and Shen can be directly linked 

to existing S-PLUS or R function for the Cox model by adding appropriate weights using 

“offset” option, 19 see Box 1. Similarly, one can use “PROC PHREG” in SAS with “offset” 

to include the weight function W. The estimated HR of 0.84 between possible Alzheimer’s 

disease and other dementia types has the same interpretation as LT model. However, the 

standard error of HR should be obtained from the bootstrap method, which shows a 

statistically significant difference between the groups (95% CI 0.73 to 0.95; P=0.03). Given 

the censoring distributions across two groups are the same in the CSHA study, both the 

permutation test of Ning et al 18 and the traditional logrank test are valid, while both show 

that patients with possible Alzheimer’s disease had significantly longer survival than the 

other types of dementia with a p-value of .010 and .018, respectively.

Suppose now that we design a prevalent cohort study on Alzheimer’s disease, and the 

sample size calculation is based on the hazard ratio θ=0.84 of overall survival between 

possible Alzheimer’s disease (POA) and vascular dementia or probable Alzheimer’s disease 

(VD+PRA). Assume that the sample size ratio between POA and total study sample is 

similar to that of the CSHA study, i.e., γ = 252/818 ≈ 0.31. Consider a follow up τ = 6 

years, which is the maximum follow up in the CSHA study. Using the prevalent cohort 

design, a sample size of 818 subjects would have 80% power to detect a hazard ratio of 

θ=0.84 with a significance level of 0.05, assuming that the hazard rate of death is λ0 = 0.114 

among the subjects with vascular dementia or probable Alzheimer’s disease. In contrast, 

under the same design considerations, the incidence cohort design would require 2,538 

subjects, three times higher than the sample size requirement using the prevalent cohort 

design.

4 Discussion

Most sample size calculations in clinical trials and incident cohort studies are 

approximations based on simple parametric distribution assumptions. Similarly, we propose 

sample size calculation tools for a cross-sectional prevalent cohort design assuming that the 

failure times follow exponential or Weibull distribution. We also compare the empirical 

power of the two types of designs with the same total sample sizes and design parameters 

under commonly used parametric forms such as exponential and Weibull distributions. The 

prevalent cohort design achieves higher efficiency/power than the incident cohort design 

with the same total sample size and study duration. The power advantage for the prevalent 

design is more evident when the hazard ratio of the two groups is small.

The likelihood for length-biased data is calculated under the assumption that the onset of the 

initiating event follows a stationary Poisson process 6, which has a connection to queuing 

theory that may lead to future works. For length-biased data obtained from a prevalent 

cohort study, the naïve log-rank test is a valid test statistic if the censoring distributions are 
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the same in the exposed and unexposed groups. Otherwise, the naïve log-rank test could 

inflate the type I error rate. A related cautionary note is that estimating hazard ratio using 

standard software for the Cox model will be severely biased for length-biased data from a 

prevalent cohort. Instead, proper estimation methods for length-biased data should be 

used. 17,19,24 We demonstrated some existing methodologies using the example of CSHA 

cohort study.

Another interesting observation is that a prevalent cohort design will not lead to any 

improved power if one uses an inefficient test statistic. The conditional test, which is a valid 

test statistic that has been widely used for analyzing data observed from prevalent cohort 

studies over the past decades 8,23,25 leads to substantial loss of power because the 

information of the backward recurrence time A (in Figure 2) is not properly utilized. For the 

conditional test, the risk set at each failure time is defined to include participants with 

survival times that extend beyond that time point and truncation times that are shorter than 

that time point, which results in few summands compared to that for the logrank test. Gains 

and losses of power are two sides of the same coin in prevalent cohort designs. When using 

the asymptotically most efficient test statistic for both cohort studies, it is evident that the 

prevalent cohort design is more efficient than the incident cohort design because the extra 

“free” information on A is properly utilized. Again, the gain in power for the prevalent 

cohort design depends on the design as well as the use of efficient test statistics.

Sample size estimations are ubiquitously approximated using methods under simplified 

parametric assumptions. For a cross-sectional prevalent cohort study, more precise sample 

size and power estimations may be proposed as a two-stage design. Using the observed 

truncation times A, we may estimate the distribution parameters and the corresponding 

distribution in the first stage. At the second stage, given the estimated parameters, we can 

determine the length of the prospective follow-up for a fixed total sample size to achieve the 

desired power. Alternatively, we may increase the sample size during the prospective follow-

up. Moreover, the sample size calculation for parametric distributions other than exponential 

can be obtained similarly.

In summary, while efficient statistical analysis methods have been developed to obtain 

unbiased estimator of hazard ratio and to test the equality of survival distributions using 

biased data observed from a prevalent cohort study, it is critical to provide practical design 

tools by estimating the sample size/power for the prospective prevalent cohort study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

The derivation of sample size formulas under the exponential distribution assumption

Suppose that the unbiased duration time T̃ follows an exponential distribution with hazard λ. 

The probability density function for time T ̃is fT(t) = λ exp(−λt). The joint probability 

density function of observed variable (A, T) and marginal probability density function of T 
under the stationarity assumption are as follows:

Note that fA, V(a, v) = λ2 exp(−λ(a + v)), which implies the independence of A and V under 

the exponential distribution.

Consider the determination of the total sample size n = n0 + n1, where n0 and n1 are the sizes 

of unexposed and exposed groups, respectively. The sample size estimation is based on the 

assumption that the underlying survival time for an individual in the kth group (k = 0 or 1) 

follows an exponential distribution with hazard rate λk for k = 0, 1 in the unexposed and 

exposed groups, respectively.

Let (Tki, δki) denote the observed length-biased event-time data for i = 1, …, nk and k = 0, 1. 

The likelihood function for the observed length-biased data is

The most efficient estimator for λk is the maximum likelihood estimator that can be solved 

by maximizing the likelihood function,

The equation that derives the total sample size and power for testing the equality of hazards 

is based on the asymptotic score test statistic θ̂/σ̂, where θ̂ is the log hazards ratio, and λ0̂ 

and λ̂
1 are the maximum likelihood estimations for λ0 and λ1, respectively. When assuming 

right censoring occurs only at the end of study τ,
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Using the standard large sample theory with an application of the delta method, we can show 

that  is asymptotically normal with mean 0 and variance σ2(λk) = 1/[1 + 

λkE{min(T̃
k, C)}], where C is the time to the loss of follow up, assumed to follow the same 

distribution for both groups. If right censoring only occurs at the end of study τ, then σ2(λk) 

= {2 − exp(−λkτ)}−1.

Consider testing the null hypothesis H0:log λ0 = log λ1. The sample size calculation can be 

based on the following asymptotic test statistic

Under H0, Qn(λ̂
1, λ̂

0) approximates to the standard normal when min{n1, n2} is large. The 

null hypotheses thus will be rejected at approximate α level of significance if |Qn(λ̂
1, λ̂

0)| is 

greater than zα/2. Under the alternative hypothesis λ1 ≠ λ0, the sample size to achieve a 

power of 1 − β can be found by solving the equation |Qn(λ1, λ0)| − zα/2 = zβ, or 

equivalently,

(4)

If right censoring only occurs at the end of study τ, then the sample size formula can be 

explicitly expressed as in (3). If losses to follow-up are uniformly distributed over (0, τ), the 

corresponding sample size is determined by equation (4), where
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Figure 1. 
Incident and Prevalent Cohort Sampling Schemas, where (1) through (7) represent 

individuals (cases); ○ represents censoring
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Figure 2. 
Observed Data from Incident and Prevalent Cohorts

Liu et al. Page 14

Stat Methods Med Res. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(a) Sample Size and (b) Power Comparisons Between Prevalent and Incident Cohort Designs
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