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Exact Stochastic Simulation of a Calcium Microdomain Reveals the Impact
of Ca2D Fluctuations on IP3R Gating
Nicolas Wieder,1,* Rainer Fink,1 and Frederic von Wegner1
1Medical Biophysics Unit, Department of Physiology and Pathophysiology, Universität Heidelberg, Heidelberg, Germany
ABSTRACT In this study, we numerically analyzed the nonlinear Ca2þ-dependent gating dynamics of a single, nonconducting
inositol 1,4,5-trisphosphate receptor (IP3R) channel, using an exact and fully stochastic simulation algorithm that includes channel
gating, Ca2þ buffering, andCa2þ diffusion. The IP3R is a ubiquitous intracellular Ca2þ release channel that plays an important role
in the formation of complex spatiotemporal Ca2þ signals such as waves and oscillations. Dynamic subfemtoliter Ca2þ micro-
domains reveal low copy numbers of Ca2þ ions, buffer molecules, and IP3Rs, and stochastic fluctuations arising from molecular
interactions and diffusion do not average out. In contrast to models treating calcium dynamics deterministically, the stochastic
approach accounts for this molecular noise. We varied Ca2þ diffusion coefficients and buffer reaction rates to tune the autocor-
relation properties of Ca2þ noise and found a distinct relation between the autocorrelation time tac, the mean channel open and
close times, and the resulting IP3R open probability PO. We observed an increased PO for shorter noise autocorrelation times,
caused by increasing channel open times and decreasing close times. In a pure diffusion model the effects become apparent
at elevated calcium concentrations, e.g., at [Ca2þ] ¼ 25 mM, tac ¼ 0.082 ms, the IP3R open probability increased by z20%
and mean open times increased by z4 ms, compared to a zero noise model. We identified the inactivating Ca2þ binding site of
IP3R subunits as the primarily noise-susceptible element of the De Young and Keizer model. Short Ca2þ noise autocorrelation
times decrease the probability of Ca2þ association and consequently increase IP3R activity. These results suggest a functional
role of local calcium noise properties on calcium-regulated target molecules such as the ubiquitous IP3R. This finding may
stimulate novel experimental approaches analyzing the role of calcium noise properties on microdomain behavior.
INTRODUCTION
Ca2þ is a versatile second messenger, orchestrating a great
variety of vital cellular functions such as cell motility (1),
regulation of gene transcription (2), neurotransmitter release
(3), and cytoskeleton dynamics (4). Its low intracellular
resting concentration is maintained and tightly regulated
by ion channels, ion pumps, and Ca2þ buffers (5). A central
element of this regulation apparatus is the inositol 1,4,5-tri-
sphosphate receptor (IP3R), a large homotetrameric Ca2þ

release channel protein accounting for Ca2þ flux from
intracellular stores (endo-/sarcoplasmic reticulum) into the
cytosol. It is regulated by IP3, a second messenger produced
by the membrane protein Phospholipase C, to transduce
extracellular stimuli into intracellular Ca2þ signals. In addi-
tion to an IP3 binding site, each of the four channel subunits
has two Ca2þ binding sites that are responsible for the char-
acteristic bell-shaped calcium response curve of IP3R (6).
While for low Ca2þ concentrations ([Ca2þ]) the high-affin-
ity activating Ca2þ binding site accounts for the positive
feedback mechanism known as calcium-induced calcium
release, the low-affinity inactivating Ca2þ binding site in-
duces a negative feedback mechanism, inactivating the IP3
receptor at elevated [Ca2þ] (7). IP3Rs are not uniformly
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distributed. They are organized in channel clusters, each
including a few tens of IP3Rs and spaced 1–7 mm apart (8).

The synchronized openings of such clusters, carried by
calcium-induced calcium release, are the foundation of
experimentally observed elementary calcium release events
called ‘‘calcium puffs’’ (9). Diffusion, the presence of Ca2þ

pumps (e.g., SERCA), and Ca2þ buffers limit the spatio-
temporal extent of these ECRE and control the coupling
strength of adjacent IP3R clusters. This quantization of
Ca2þ signals in dynamic microdomains is the basis of
more complex spatiotemporal signaling patterns such as cal-
cium oscillations and calcium waves (10). It also introduces
stochasticity into the process of signal generation. Microdo-
mains only contain a small copy number of Ca2þ ions and
IP3Rs and therefore do not behave deterministically, which
is reflected on a macroscopic level by spontaneous occur-
rences of Ca2þ puffs. It is now believed that global cellular
Ca2þ signals are based on the stochastic occurrence of
elementary calcium release events that, in turn, are carried
by single channel noise (8,11–13).

These perceptions motivated the use of mathematical de-
scriptions of Ca2þ signaling, which take into account the
discrete and stochastic nature of molecular interactions
(14,15). Consequently, a large number of simulation strate-
gies for IP3R-containing calcium microdomains have been
proposed over the last decade (16,17). The fully stochastic
http://dx.doi.org/10.1016/j.bpj.2014.11.3458

mailto:nwieder@ix.urz.uni-heidelberg.de
http://dx.doi.org/10.1016/j.bpj.2014.11.3458
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2014.11.3458&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2014.11.3458
http://dx.doi.org/10.1016/j.bpj.2014.11.3458
http://dx.doi.org/10.1016/j.bpj.2014.11.3458
http://dx.doi.org/10.1016/j.bpj.2014.11.3458


558 Wieder et al.
description of complex reaction-diffusion systems (RDS) is
computationally demanding, and therefore most existing ap-
proaches implement hybrid algorithms. Hybrid algorithms
are able to cover the hierarchical structure of calcium signals,
spanning several orders of magnitude in space and time by
treating functionally important nonlinear components such
as the IP3R stochastically, whereas passive bulk reactions
and diffusion are treated deterministically (11,18–20).
Because noise-induced effects on nonlinear systems have
received special attention over the last few years (21–26),
we chose a fully stochastic framework to investigate the ef-
fects of Ca2þ noise, arising from buffer association/dissocia-
tion reactions and diffusion, on the nonlinear behavior of
IP3Rs. Our model represents a Ca2þmicrodomain with a sin-
gle nonconducting IP3R, integrating channel gating andCa

2þ

dynamics in a common stochastic simulation framework
based on Gillespie’s algorithm. We started investigating the
influence of pure diffusiveCa2þ noise on the nonlinear gating
dynamics of the IP3R, and then extended the model by intro-
ducing artificial Ca2þ buffers. In summary, we found that
IP3R gating is susceptible to Ca2þ noise in general, and to
the Ca2þ noise autocorrelation time in particular.
MATERIALS AND METHODS

Stochastic description of chemical reaction
diffusion systems

An exact stochastic description of chemical systems is provided by the

chemical master equation (CME) (27). The CME describes the evolution

of a chemical reaction system, comprised of a set of N molecular species

S ¼ {S1,.,SN}, inside a system with volume U. The system state at time

t is represented by the system state vector x(t) ¼ (x1(t),.,xN(t)), where

xk(t) denotes the molecular count of species Sk at time t. The system state

is advanced by a set of M reaction events R ¼ {R1,.,RM} that are defined

as state change vectors vj ¼ (dj1,.,djN), j ¼ 1,.,M. Here dji represents the

change in the molecular count of species Si due to Rj. The CME reads as

vtPðx; tÞ ¼
XM
j¼ 1

�
aj
�
x� vj; t

�
P
�
x� vj; t

�� ajðx; tÞPðx; tÞ
�

and states that the probability P(x,t) of the system being at state x at time t is

calculated from the net probability flow from state x � vj to x, and vice

versa. The propensity function a (x,t) denotes the transition probability of
j

Rj, given a system state x at time t. All these considerations are based on

the basic assumption of a well-stirred chemical system, where nonreactive

molecular collisions are far more likely than reactive events and exact

positions, and velocities of single molecules are ignored (28).

It is possible to extend the CME to reaction diffusion systems by subdi-

viding U into u smaller subvolumes (voxels) Uk, k ¼ 1,.,u. Subsequently,

an additional spatial dimension is introduced into the CME, which leads to

the reaction diffusion master equation (RDME) (29). This approach uses the

classic CME in each voxel separately and connects the voxels by adding

diffusion events to the set of state transitions R.
Gillespie’s algorithm

For complex chemical reaction diffusion systems, the RDME quickly

becomes analytically intractable. Gillespie’s algorithm is a Monte Carlo

procedure that simulates the time evolution of a system as a discrete multi-
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variate Markov process (30). It is based on the joint probability density

function

Pðj; tjx; tÞ ¼ ajðx; tÞ � exp

 
�
XM
j¼ 1

ajðx; tÞt
!
; (1)

which determines the probability of state transition Rj to occur in the infin-

itesimal time interval [t þ t, t þ t þ dt), given system state x at time t. The

propensity functions aj(x,t) can be obtained from the deterministic reaction

rate constants. In this study, we use the following.

1. First-order reactions. These are independent of the system volume U.

Their propensity functions are directly proportional to the respective

reaction rate constants aj(x,t) ¼ kj � xj(t).

2. Second-order reactions. They require molecular collisions of two educts,

and therefore depend onU. We have aj(x,t)¼ kj/U� hj(x,t), where hj(x,t)

denotes the number of unique reactant combinations at time t for Rj.

3. Diffusion events. These are characterized by a diffusion coefficient D

and depend on the spatial extent of the considered system. Assuming

a cubic simulation voxel with volume U ¼ l3 and diffusion area A ¼
6 � l2, the propensity function reads aj(x,t) ¼ Dj/l

2 � xj(t).

A rigorous derivation of these propensity functions has been presented by

several authors before (31–33). One way of performing state transitions is

the generation of exponentially distributed random waiting times tj for each

Rj and executing the state transition with the minimum waiting time (first

reaction method) (31). This requires the generation of M uniformly

distributed random variables r1,.,rM and the computation of

tj ¼ �logrj
ajðx; tÞ;

j ¼ 1;.;M:

(2)

Let Rk be the state transition with the smallest associated tk. The system

time t is then advanced to t / t þ tk and the system state is updated as

x(t) / x(t) þ vk. The resulting simulation trajectories are exact solutions

of the underlying RDME.

Many improvements to the classic version of Gillespie’s algorithm have

been proposed in the past (33). In this study, we use Gibson and Bruck’s

next reaction method (34). Its main advantages are the reuse of random

numbers and the introduction of an optimized data structure.
Calcium buffer reactions

Ca2þ ions interact with a great variety of cytosolic buffer proteins (35):

Ca2þ þ B#
kþ

k�
CaB: (3)

Buffer molecules are characterized by their rate constants for association

(kþ) and dissociation (k�) reactions. The implementation of Ca2þ buffers

to Gillespie’s algorithm requires the definition of a second-order reaction

for buffer association and a first-order reaction for the dissociation reaction.

A summary of numerical values is given in Table 1.
Model geometry and diffusion

In this study, we consider a model consisting of a single simulation voxel

surrounded by equilibrated boundary voxels, to account for diffusive trans-

fer across the surface area as illustrated in Fig. 1 A. Inside the boundary

voxels, we set all concentrations to their constant equilibrium concentra-

tions and thus obtain a constant influx rate of diffusing molecular species

(36). Introducing diffusion events considerably increases computation



TABLE 1 Model data

Reactant Kþ (mM�1 ms�1) k� (ms�1) Kd (mM) D (mm2/s) c (mM)

Ca2þ — — — 50–500 0.1–500

IP3 — — — 0 10

B1 0.01 0.1 10 0 300

B2 0.05 0.5 10 0 300

B3 0.1 1 10 0 300

Channel kinetics Association (mM�1 ms�1) Dissociation (ms�1)

IP3 binding site a1,a3 ¼ 0.08 b1 ¼ 6.4 � 10�4

b3 ¼ 0.04

Active Ca2þ

binding site

a5 ¼ 0.015 b5 ¼ 0.012

a2 ¼ 4 � 10�5 b2 ¼ 4.8 � 10�4

Inactive Ca2þ

binding site

a4 ¼ 4 � 10�4 b4 ¼ 7.68 � 10�5

Subunit activation a0 ¼ 0.55 ms�1 b0 ¼ 0.08

Overview of system parameters used.We use IP3R subunit transition rates as

suggested by Rüdiger et al. (19) that were obtained from fitting experimental

data from Mak et al. (7). The value kþ is the buffer association reaction rate

constant, k� is the buffer dissociation reaction rate constant, and Kd is the

respective buffer dissociation constant. D is the diffusion coefficient, and c

is the concentration of the respective substance. Subunit state transition rates

ai,bj refer to the De Young-Keizer model detailed in Fig. 1.

A

B
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times. In this study, we only consider stationary Ca2þ buffers, limiting

diffusion processes to Ca2þ ions. In all simulations, a cubic voxel geometry

with box length l ¼ 0.5 mm and thus U ¼ 0.125 fL is used.
FIGURE 1 (A) Schematic illustration of the model geometry (shaded box

in the center). Main simulation voxel, including a single IP3R on top. Sur-

rounding blank boxes represent the constant pool boundary voxel used in

spatially resolved models. (B) De Young and Keizer state transition model

of an IP3R subunit (37) with an additional, ligand-independent [ACT] state

(38). Four homotetrameric subunits form the channel protein that is in an

open state whenever R3 subunits are active. A subunit exhibits three bind-

ing sites, represented by the numeration of the states. First digit, activating

IP3R binding site; second digit, activating Ca2þ binding site; third digit, in-

activating Ca2þ binding site. Subunit states with an occupied inactivating

Ca2þ binding site are summarized as inactive states ([IACT]) (dashed

box). State transition rates are shown in Table 1 (19).
Implementation of the IP3R

Awidely used gating scheme for the IP3Rs is given by the eight-state subunit

transition model proposed by De Young and Keizer in 1992 (37). It has been

further refined by Shuai et al. (38), who introduced an additional active state

that locks the subunits and prevents the dissociation of its ligands, reproduc-

ing experimentally observed ligand-independent channel flickering (39).

Fig. 1 B illustrates the model with rate constants as proposed by Rüdiger

et al. (19), shown in Table 1. Subunit state transition rates used in their study

were obtained by fitting data from single channel recordings fromMak et al.

(7) and are thus a solid foundation for the here presented simulations of an

IP3R. The three binding sites exposed by each subunit are represented by

the numeration of the states where the first digit represents the IP3 binding

site, the second digit the activating Ca2þ, and the third digit the inactivating
binding site. Avalue of 0 indicates a free binding site, whereas 1 represents an

occupied binding site. The channel is considered to be in an open statewhen-

ever at least three subunits are in the active state [ACT]. Ifmore than one IP3R

subunit has an occupied inactivating binding site ([IACT]), the channel is

unable to open and thus considered to be completely inactivated.

In our implementation of Gillespie’s algorithm, we consider each subunit

state as a distinct molecular species. State transitions are implemented as

second-order ligand binding reactions and first-order ligand dissociation re-

actions. The open channel is included as a further molecular species

whereby its count is increased by 1 whenever at least three out of four sub-

units are active. Within this framework, the implementation of clusters of

IP3R channels as well as Ca2þ-conducting channels is straightforward. In

this study, we only consider a single, nonconducting IP3R, in analogy to

experimental results from lipid bilayer studies (7).

As discussed earlier, simulation trajectories resulting from the here-used

algorithm are exact. They are unevenly spaced time series of the system

state, whereat each data point represents the system state after a single sys-

tem state transition. It is therefore possible to track the exact points in time

when the IP3R opens or closes and the determination of channel open/close

times is straightforward. Because no event is missed, the resulting statistical

analysis of channel open/close times does not require correction.
Characteristics of Ca2D noise

All systems considered here obey combinatorial kinetics and, in the absence

of channel flux, a constant detailed balanced equilibrium condition. The re-

sulting Ca2þ noise distributions at equilibrium are therefore Poissonian (40)

and for sufficiently large [Ca2þ], they are well approximated by a normally

distributed random variable N (m,s2) with m ¼ s2. In these cases, noise in-

tensities at equilibrium depend solely on the mean [Ca2þ], and are indepen-
dent from kinetic system properties. The resulting Ca2þ signal is stationary
Biophysical Journal 108(3) 557–567
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and ergodic (41). In this study, we focus on the temporal characteristics of

Ca2þ noise, in particular on the two-time autocorrelation function, which

reveals information about properties of the underlying microscopic pro-

cesses (42,43). By varying buffer reaction rates and diffusion coefficients,

it is possible to tune the Ca2þ noise autocorrelation time (41). The autocor-

relation function is well approximated by an exponentially decaying

function (29,43,44) characterized by its decay rate tac, which we will refer

to as the ‘‘autocorrelation time’’ (Fig. 2). For a detailed theoretical analysis

of the origins of Ca2þ fluctuations, the reader is referred to this recent

publication (41).
B

Computation times

Simulations presented in this study were carried out on an Intel Core 2 Quad

CPU Q9550 @ 2.83 GHz (Santa Clara, CA) and a cache size of 6144 Kb.

Fig. 3 is based on data from simulation runs of at least 1.5 � 103 s for

[Ca2þ] ¼ 0.1–50 mM and at least 5 � 102 s for [Ca2þ] ¼ 100–500 mM.

Simulation times ranged from ~72 s to 6.5 � 105 s. RDS data presented

in Figs. 4 and 5 result from simulation runs of at least 1 � 103 s. Here,

simulation times ranged from ~103s to 4.5 � 104 s.
C

RESULTS

To study the noise susceptibility of a single, nonconducting
IP3R, we chose a saturating IP3 concentration ([IP3]sat ¼ 10
mM). In a first step, we used purely diffusive Ca2þ noise
with varying diffusion coefficients to examine its influence
on IP3R gating dynamics over a range of [Ca2þ] ¼ 0.1–
500 mM. Consequently, we extended the system by intro-
ducing Ca2þ buffers and examined their additional influence
on the IP3R. In contrast to pure diffusion models that reveal
constant Ca2þ noise tac for different [Ca

2þ], the influence of
a Ca2þ buffer on Ca2þ noise depends on its saturation level.
With increasing buffer saturation, its influence decreases
and noise characteristics are dominated by the remaining
dynamic processes such as diffusion. Due to computational
FIGURE 2 Estimated autocorrelation time of a plain diffusion system

with DCa ¼ 200 mm2 s�1 and [Ca2þ] ¼ 10 mM. Semilogarithmic represen-

tation of 20 exemplary autocorrelation functions Rxx(l) (shaded curves)

with exponential fit (solid curve) and a resulting autocorrelation time of

tac ¼ 0.207 ms (solid diamond). On the right, a representative simulation

trajectory of purely diffusive Ca2þ noise with mean (solid line) and standard

deviation (dashed lines) is shown (T ¼ 10 ms).

FIGURE 3 Summaryof gating properties of the IP3R for varying diffusion

coefficients DCa. Open squares (dashed curve) are the result of zero

noise models and represent the results expected from algorithms that

treat Ca2þ dynamics deterministically. (Solid curves) Results for three

different diffusion coefficients DCa ¼ 50 mm2 s�1 (stars), 200 mm2 s�1

(triangles) and 500 mm2 s�1 (circles). For low [Ca2þ], Ca2þ noise has no

obvious influence on the IP3R. Starting at [Ca2þ] ¼ 1 mM, (A) mean open

times tO increase with increasing DCa, whereas (B) mean close times tC
decrease. (C) Consequently, the channel open probability PO increases

with increasing DCa.
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feasibility, the total buffer concentration [B]tot is limited in
our models. To avoid buffer saturation phenomena, we
therefore focused on a fixed [Ca2þ] ¼ 10 mM and a Ca2þ

buffer with dissociation constant Kd ¼ 10 mM and constant
[B]tot ¼ 300 mM. The choice of these model parameters
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FIGURE 4 Summary of the relationship between IP3R gating and tac of

Ca2þ noise at [Ca2þ] ¼ 10 mM. In addition to purely diffusive models (cir-

cles), results from a RDS withDCa¼ 200 mm2 s�1, including a single buffer

with Kd ¼ 10 mM and varying association reaction rates kþ (see Table 1),

are shown (stars). The zero noise model is included at an arbitrary

x-intercept and represents a model with infinite tac (open square). Mean

open times tO (A), mean close times tC (B), and open probabilities PO
(C) are shown as a function of tac.
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reflects a compromise between a realistic Ca2þ buffer disso-
ciation constant and an acceptable level of buffer saturation
(50%). To vary temporal characteristics of Ca2þ noise,
different on/off reaction rates have been used (see Table 1).
All RDS models of the second part use a Ca2þ diffusion
coefficient of DCa ¼ 200 mm2 s�1.
The case of multibuffer systems can be effectively
reduced to a single buffer system with a compound tac
(45). Temporal Ca2þ noise characteristics are dominated
by the fastest present dynamic process involving Ca2þ.
This means that a multibuffer system induces Ca2þ noise
tac comparable to a single buffer system, which only con-
tains the fastest buffer (as long as the buffer is far from
saturated).
IP3R gating dynamics in a pure diffusion model

To investigate the noise susceptibility of the IP3R, we
used three different Ca2þ diffusion coefficients (DCa ¼
50 mm2 s�1, 200 mm2 s�1, and 500 mm2 s�1) to introduce
Ca2þ noise to the system. Channel dynamics are evaluated
in terms of the mean open times tO, mean close times tC,
and open probabilities PO, for varying [Ca2þ] ¼ 0.1–500
mM. We included results from a zero noise model in order
to compare with earlier results from hybrid models. The
mean open/close times and open probabilities of the zero
noise model are in good accordance with results from
hybrid algorithms used by Shuai et al. (38) and Rüdiger
et al. (19).

Fig. 3 summarizes the results and clearly shows that IP3R
gating dynamics are affected by Ca2þ noise. Ca2þ diffusion
is modeled as a random walk between adjacent voxels (32)
with a rate constant derived from the voxel geometry and
the diffusion coefficient DCa. The corresponding tac is equal
to the inverse of the diffusion rate; therefore, increasing DCa

leads to decreasing tac (41). We found the estimated tac from
our simulations to be in good accordance with the expected
values, as given in parentheses: For DCa ¼ 50 mm2 s�1,
we found an autocorrelation time of t50ac ¼ 0.820 5
0.084 ms (0.833 ms); for DCa ¼ 200 mm2 s�1, we found
t200ac ¼ 0.204 5 0.021 ms (0.208 ms); and for DCa ¼ 500
mm2 s�1, we found t500ac ¼ 0.082 5 0.0085 ms (0.083 ms).

Because the noise variance is constant for fixed [Ca2þ],
noise-induced effects can be attributed to as the autocorrela-
tion time of Ca2þ noise. Fig. 3 A shows that tO increases for
decreasing tac. Ca

2þ diffusion with DCa ¼ 500 mm2 s�1

shows a maximum of tO ¼ 10.07 ms ([Ca2þ] ¼ 5 mM)
compared to the zero noise model with a maximum of
tO ¼ 8.56 ms ([Ca2þ] ¼ 2.5 mM). Furthermore, short tac
values are associated with a delay of the negative Ca2þ

feedback, and tO remains on a high level, even for large
[Ca2þ]. This effect is also shown in Fig. 3 B, where long
tC intervals, resulting from Ca2þ-dependent subunit inacti-
vation, only appear at much larger [Ca2þ] values as
expected from the zero noise model. Fig. 3 C shows how
the open probability PO increases accordingly. While the
zero noise model reveals a maximum PO ¼ 84%
([Ca2þ] ¼ 2.5 mM), the fast diffusion model shows a
maximum of PO ¼ 89% ([Ca2þ] ¼ 10 mM). Open probabil-
ities remained high even for large [Ca2þ] when diffusive
noise is considered.
Biophysical Journal 108(3) 557–567
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FIGURE 5 Open time distributions (left column), close time distributions (middle column) and subunit distributions (right column) at [Ca2þ] ¼ 1 mM

(upper row) and at [Ca2þ] ¼ 10 mM (lower row). Results are shown for a zero noise model (open squares, open bar), pure diffusive noise with DCa ¼
200 mm2 s�1 (stars, shaded bar) and noise arising from a RDS including B3 (k

þ ¼ 0.1 mM�1 ms�1, kþ ¼ 1 ms�1) and diffusion with DCa ¼ 200 mm2

s�1 (triangles, solid bar). (A) Expected open time distributions for O3 and O4 openings (solid lines) and the resulting biexponential open time distribution.

(Dashed lines) Mean open times. (B) Within the close time distributions, we identify three distribution regions: Region I, channel closings resulting from

channel flickering; Region II, channel closings resulting from a superposition of close states where the channel is not inactivated; and Region III, long close

intervals resulting from channel inactivation. (C) Channel state distributions in terms of activated ([ACT]) and inactivated ([IACT]) subunits.
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IP3R gating dynamics in the vicinity of Ca2D buffer

Introduction of Ca2þ buffer

To investigate the additional impact of Ca2þ buffers on Ca2þ

noise and IP3R gating, we simulated a RDS with a standard
value of DCa ¼ 200 mm2 s�1 (46) and an immobile Ca2þ

buffer with Kd ¼ 10 mM. From Fig. 3, the clearest effects
of Ca2þ noise on the IP3R are expected for high [Ca2þ].
However, to avoid buffer saturation phenomena, we kept
the [Ca2þ] equilibrium concentration at [Ca2þ]eq ¼ Kd ¼
10 mM. We obtained different tac values by varying the
buffer association rate kþ, keeping Kd constant. We used
three different Ca2þ buffers B1–B3 (see Table 1 for numeri-
cal values) and found the corresponding Ca2þ noise tac to be
as follows: t

ð1Þ
ac ¼ 0.153 5 0.035 ms, t2ac ¼ 0.087 5

0.027 ms, and t
ð3Þ
ac ¼ 0.058 5 0.012 ms.

In Fig. 4, mean channel open times tO, mean channel
close times tC, and channel open probability PO are shown
as a function of Ca2þ noise tac. In addition to the RDS
models, we included the results from Fig. 3 to show that
the impact on IP3R gating is independent of the underlying
noise generating mechanism. The zero noise model is
included at an arbitrary x-intercept to represent a model
with infinite tac.

We found a dependency of tO, tC, and PO on Ca2þ noise
tac. The decreasing tac induced by Ca2þ buffers and diffu-
sion leads to an increase in tO and PO, and to a decreasing
tC. It is also observed that slow Ca2þ diffusion (DCa ¼
Biophysical Journal 108(3) 557–567
50 mm2 s�1) inducing relatively long Ca2þ noise tac values
has only very small effect on the IP3R (see also Fig. 3).

Detailed channel gating analysis

Because the IP3R opens whenever at least three out of four
subunits are in the [ACT] state (see Fig. 1), it has two
distinct open states. They can be distinguished by the
maximum number of active subunits during an open inter-
val, and are termed O3 and O4 (38). Data from patch-clamp
experiments (47) and deterministic analysis of the IP3R
model (38) both reveal independent, exponential open
time distributions for each open state. Our simulations
reveal the same behavior, and we found dwell times for
the O3 and O4 states that are in good accordance with previ-
ously published data (38), tO3

z 4 ms and tO4
z 15 ms. In

contrast to only two open states, many more distinct close
states exist (94–2). Mean close time distributions therefore
show a more complex, multiexponential behavior. Never-
theless, it is possible to distinguish two major types of
channel closings: 1) short close intervals, resulting from
the ligand-independent inactivation of a single active sub-
unit that underlies the typical channel flickering and 2)
long close intervals that occur whenever Ca2þ binds to an
inactivating binding site, accounting for the strong negative
feedback at high [Ca2þ].

While short closings only last for a few milliseconds, long
close intervals can last up to seconds, and account for the
burstlike opening pattern of IP3Rs.
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Fig. 5 shows a detailed channel gating analysis of three
different models: a zero noise model, a purely diffusive
noise model (DCa ¼ 200 mm2 s�1), and an RDS model
including the buffer B3 (kþ ¼ 0.1 mM�1 ms�1, k� ¼
1 ms�1), as well as Ca2þ diffusion (DCa ¼ 200 mm2 s�1).
The upper row shows results from models with [Ca2þ] ¼
1 mM; the lower row shows results from models with
[Ca2þ] ¼ 10 mM.

Open/close time distributions

Open time distributions are shown in the left column of
Fig. 5. The biexponential decay results from the super-
position of the open time distributions of O3 and O4 states
(solid lines). Vertical dashed lines indicate the tO value of
the respective distribution. While the open time distribution
for [Ca2þ] ¼ 1 mM is unaffected by noise, we find a clear
effect for [Ca2þ] ¼ 10 mM. A decreasing Ca2þ noise tac
induces a shift of the open time distributions toward the
expected distribution for isolated O4 openings. Mean open
times tO increase accordingly from 7.68 to 10.59 ms.

The middle column depicts the corresponding close time
distributions. Based on theoretical mean waiting times tw
resulting from subunit transition rates, we subdivided the
distributions roughly into three regions.

Region I. This distribution shows short channel closings,
resulting from subunit transitions from [110] / [ACT]
(channel flickering). This ligand-independent transition
reveals a theoretical mean waiting time of tw ¼ 0.090 ms.

Region II. This distribution is a superposition of close
channel states with less than two inactivated subunits.

Region III. This distribution shows channel close states
resulting from complete channel inactivation with more
than one inactivated subunit. Assuming the IP3R to be
saturated with IP3, the dissociation of Ca2þ from an
inactivating Ca2þ binding site ([1x1] / [1x0]) reveals a
theoretical mean waiting time tw ¼ 2083.3 ms. The shape
of the distribution changes from [Ca2þ] ¼ 1 mM to
[Ca2þ] ¼ 10 mM, where especially the fraction of pro-
longed close times increase for higher [Ca2þ]. This is
mainly caused by increasing subunit inactivation, i.e.,
negative Ca2þ feedback. Again, noise only influences the
close time distribution at [Ca2þ] ¼ 10 mM. The zero noise
model shows a well-defined second peak in Region III,
which slowly vanishes for decreasing tac. Remarkably,
the IP3R does not completely inactivate at small tac
(triangles) values, explaining the large mean channel
open times tO in Fig. 3. Consequently, mean channel close
times tC decrease with decreasing tac from 2.28 to 1.14 ms
(Fig. 4 B).

Channel state distribution

The right column of Fig. 5 shows the channel state distribu-
tion as histograms. Because the IP3R consists of four sub-
units with nine different subunit states each, the resulting
total number of possible channel states is 94 ¼ 6561.
Here, we simplify the situation by defining a state solely
by its number of active ([ACT]) or inactive ([IACT]) sub-
units (see Fig. 1). The right side of Fig. 5 C shows the chan-
nel state distribution in terms of the number of [ACT]
subunits, the left side in terms of the number of [IACT] sub-
units. For [Ca2þ] ¼ 1 mM, the average number of [ACT]
states are insusceptible to noise and average numbers of
[IACT] differ only slightly. Invariant open time distributions
go along with a nearly constant ratio of O3/O4 openings
(z1.14).

It is also observed that complete channel inactivation
([IACT] > 1) occurs very rarely, leading to invariant close
time distributions. In contrast, the histogram for Ca2þ ¼
10 mM shows a strong, tac-dependent deviation from
this pattern. The O3/O4 ratio varies considerably ranging
from 0.67 in RDS models to 1.17 in zero noise models,
explaining the skewed open time distributions. With
increasing [Ca2þ], subunit inactivation becomes more likely
and we find an increased fraction of inactivated channel
states ([IACT]> 1). However, noise also influences channel
inactivation. While the zero noise model reveals a fraction
of 5% inactivated channels, this value decreases to 1.5%
for the purely diffusive noise model, and vanishes for the
RDS model. The channel state distribution explains the
vanishing peak in Region III of the close time distribution
for decreasing Ca2þ noise tac.

In summary, we can explain the initially observed, noise-
induced alteration of mean channel open times tO, mean
channel close times tC, and open probabilities PO with a
shift in the channel state distribution away from inactivated
states and toward the O4 open states.
DISCUSSION

Our motivation to study the influence of Ca2þ noise on the
IP3R arose from the contemporary interest in the stochastic
nature of complex Ca2þ signals (11,20,26,41). Just recently,
Thurley et al. (13) showed that stimulus intensities of input
signals are reliably encoded in stochastic sequences of
random spikes, and the body of literature, emphasizing
the functional relevance of noise in biological systems, is
constantly growing (24,48–52).

The exact stochastic description of chemical RDS is uni-
versal and therefore, models of arbitrary complexity can be
implemented in a consistent framework. However, running
the model can be computationally demanding and in prac-
tice, the spatio-temporal dimensions of realistic models
are limited. An alternative modeling strategy is represented
by hybrid algorithms that treat nonlinear system compo-
nents stochastically and bulk reactions deterministically
(11,19,38,53–55). In terms of Ca2þ signaling, hybrid ap-
proaches explicitly ignore Ca2þ noise.

As noise-induced effects on nonlinear systems have
received much interest over the past years (21,56), we de-
signed a reduced, computationally feasible, fully stochastic
Biophysical Journal 108(3) 557–567



FIGURE 6 Subunit distribution of the three most frequent subunit states

[ACT], [IACT], and [110] are shown as a function of [Ca2þ]. The distribu-
tions of the zero noise model (shaded curve) and a pure diffusion model

with DCa ¼ 200 mm2 s�1 (solid curve) are shown. As a reference, isolated

binding curves of the activating and inactivating binding site are shown

(light-shaded dashed curves). Note that due to crucially shorter computa-

tion times, data of the zero noise model is available for a greater range of

[Ca2þ] than for the diffusive model.
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model of a Ca2þ microdomain, to investigate the influence
of Ca2þ noise on IP3R gating dynamics.

We observed that the Ca2þ noise autocorrelation time tac
has a significant effect on mean open times, mean close
times, and the open probability of the IP3R (see Fig. 4).
As shown in Fig. 3, the effect becomes apparent for
[Ca2þ] > 1 mM and mainly affects channel inactivation.
This is confirmed in Fig. 5, where open and close time dis-
tributions are noise-invariant for [Ca2þ] ¼ 1 mM, whereas
the distributions are clearly skewed for [Ca2þ] ¼ 10 mM.
The corresponding channel state histograms emphasize
that decreasing tac induces a shift in the channel state distri-
bution from [IACT] toward [ACT], decreasing channel inac-
tivation and stabilizing channel open states. Our data shows
that Ca2þ noise reduces the probability for subunit inactiva-
tion, which in turn increases the number of [ACT] subunit
states and consequently the number of O4 openings. At
[Ca2þ]¼ 10 mM, for example, the proportion of inactivating
subunit state transitions was z0.35% for the zero noise
model, z0.18% for the pure diffusive model, and
z0.07% for the RDS model. Subunit inactivations are
rare events compared to channel openings, but with a strong
impact on the IP3R channel state distribution. A single
inactivated subunit prevents O4 openings for a duration up
to seconds, and two inactive subunits prevent the IP3R
completely from opening. Therefore, minimal changes in
the channel inactivation probability lead to significant
changes of mean channel open/close times and open
probabilities.

Both the functionally important association of Ca2þ to the
activating binding site and the inactivating binding site
are second-order reactions. The influence of fluctuations
in the educt species of simple second-order reactions has
been studied analytically by Morita (57) and Katsumoto
and Morita (58) in closed systems. They showed in their
work that fluctuations not only alter equilibrium concentra-
tions but also influence the dynamics of the reaction. The
here used gating scheme of IP3R subunits consists of eight
interconnected, Ca2þ-dependent second-order reactions
and exponentially correlated Ca2þ noise (compared to un-
correlated noise in Morita and Katsumo’s work). The situa-
tion here is therefore much more complex, and a rigorous
physical explanation for the observed effects would require
an analytically solution of the proposed model. But an
analytical solution is, to the best of our knowledge, not
available at the moment. We can therefore only hypothesize
about the origin of the noise-induced delay of subunit inac-
tivation. Fig. 6 shows the distributions of the most frequent
subunit states ([ACT], [IACT], [110]) as a function of
[Ca2þ], whereby the shaded curve represents the zero noise
model and the solid curve a purely diffusive model (DCa ¼
200 mm2 s�1).

It becomes clear that subunit activation and inactivation
does not follow the binding curves expected from the rate
constants of the respective binding sites. This shift can be
Biophysical Journal 108(3) 557–567
attributed to the ligand-independent subunit activation tran-
sition that locks [110] subunits with a high rate. The binding
curve of the activating binding site is therefore shifted to
lower [Ca2þ], while the binding curve for the inactivating
binding site is shifted to higher [Ca2þ]. This effect explains
the late inactivation of channel subunits, even for the
zero noise model. Ca2þ noise, here introduced by diffusion,
clearly shifts the binding curve of the inactivating site
further to higher [Ca2þ], while leaving the binding curve
of the activating binding site mainly unaffected. There are
three main differences between the two Ca2þ binding sites
that could serve as an explanation for this behavior: 1) the
activating binding site has a much higher association rate
than the inactivating binding site; 2) the dissociation
constants of the two binding sites differ by a factor of 10;
and 3) the lockable subunit [110] is a product of subunit
activation, while it is an educt for subunit inactivation.

The consequent examination of the influence of these
differences on the noise susceptibility of IP3Rs would go
beyond the scope of this study. However, future investiga-
tions should be directed toward this problem to gain a
deeper understanding of the effect of Ca2þ noise on the
nonlinear dynamics of the De Young and Keizer subunit
transition model for IP3Rs.

The biphasic Ca2þ feedback of the IP3R is the functional
basis of Ca2þ waves and oscillations (59). Noise-induced
delay of negative Ca2þ feedback therefore affects the funda-
mental mechanism of spatiotemporal Ca2þ signal forma-
tion. We showed that not only diffusion, but also the
presence of Ca2þ buffers shape the temporal properties of
Ca2þ fluctuations and consequently IP3R gating. The influ-
ence of Ca2þ buffers on Ca2þ signaling has previously been
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studied, both theoretically (54,60–62) and experimentally
(63–66). These studies mainly focused on the influence
of mobile and immobile buffers on global Ca2þ signals,
whereas only a very few studies are concerned with the
functional role of buffer-dependent Ca2þ fluctuations (26).
The expression profiles for Ca2þ buffers with widely
differing kinetic properties are highly variable among
different cell types (35,46).

There is a large number of naturally occurring Ca2þ

buffers and their dissociation constants range from only a
few nM (e.g., a-Parvalbumin, Kd ¼ 4–9 nM (35)) to up to
tens of mM (e.g., a-Secretagogin, Kd ¼ 25 mM (67)).
Furthermore, there are slow (e.g., a-Parvalbumin, kþ ¼
1 � 10�3 mM�1 ms�1) and fast Ca2þ buffers (e.g.,
Calbindin-D9k, kþ ¼ 1 mM�1 ms�1), as characterized by
their Ca2þ association rates kþ. Specific buffer expression
profiles may therefore constitute a powerful tool that allows
the cell to influence Ca2þ signaling on different levels,
ranging from the modulation of stochastic Ca2þ fluctuations
up to the spatiotemporal modulation of ECRE, waves, and
oscillations. Another thought should be dedicated to the
fact that most experimental settings include artificial Ca2þ

buffers, either to control [Ca2þ] or in the form of fluorescent
Ca2þ dyes. The range of physico-chemical properties
of artificial Ca2þ buffers adds to the complexity of the prob-
lem (68). As we have shown in this study, artificial Ca2þ

buffers may significantly alter the properties of calcium
noise and possibly, the behavior of the observed calcium
microdomain.

So far, we have only investigated the noise susceptibility
of the IP3R in silico. We used the nine-state De Young-
Keizer subunit state transition model as proposed by Shuai
et al. (38) with parameters from Rüdiger et al. (19). In accor-
dance with structural and mutational studies (69), the model
assumes that the IP3R consists of four identical subunits
with an IP3-binding site, an activating Ca2þ binding site
and an inactivating Ca2þ binding site (70). The originally
proposed eight-state De Young-Keizer model (37) was
extended by a ligand-independent [ACT] state in order to
account for experimental observations including channel
flickering (39) and calcium-independence of the activated
open state (38,71). Following other studies showing the
functional relevance of noise experimentally (20,72–74),
our findings await experimental verification.

For instance, an IP3R channel incorporated into a lipid
bilayer could be exposed to a defined calcium microenviron-
ment. This setting should allow for the observation of IP3R
gating in a controlled Ca2þ-buffer system. Statistical
properties of Ca2þ noise and the corresponding two-time
correlation function in particular could be measured with
fluorescence correlation spectroscopy (75). This approach
would allow to investigate experimentally the influence of
both natural Ca2þ buffers and widely used fluorescence
dyes on Ca2þ fluctuations and IP3R gating. A further inter-
esting focus for future investigations is the noise susceptibil-
ity of the ryanodine receptor, structurally closely related to
the IP3R and representing the main Ca2þ release channel in
cardiac and striated muscle cells (76). Due to a similar
biphasic Ca2þ dependency, a similar influence of stochastic
Ca2þ fluctuations on the gating behavior of the ryanodine
receptor is expected (77).

To understand our findings in the global context of Ca2þ

signaling, it is necessary to extend our models to clusters of
IP3R channels, and beyond. Furthermore, it is necessary to
consider Ca2þ flux through the channel pore, because it
has been shown that the magnitude of Ca2þ fluctuations re-
veals a dependency on total buffer concentration and buffer
kinetics in systems with constant Ca2þ influx (41). Because
our model and software framework are capable of simu-
lating both channel clusters and Ca2þ flux, the investigation
of more complex models will be the subject of future inves-
tigations (14,15,17,36).

The spatial extent of our models is so far also limited by
computational feasibility. A more efficient strategy would
be the approximation of the CME by a Fokker-Planck equa-
tion or a chemical Langevin equation (78) but there are lim-
itations to find a satisfactory approximation, namely the
existence of a macroscopically infinitesimal time domain
(79). An adequate approximation requires the existence of
a time interval during which changes in the propensity func-
tions are negligibly small, whereas each state transition is
expected to occur sufficiently frequently (n >> 1). Given
the model parameters used in this study, this condition is
not met, mainly due to the large timescale of IP3R subunit
state transitions and the low copy number of both Ca2þ

ions and IP3Rs. The rarely occurring and functionally essen-
tial Ca2þ-dependent channel inactivation constitutes the
limiting factor.

Ca2þ microdomains are a fundamental entity of Ca2þ-
mediated cell functions (80). Morphologically predeter-
mined structures, such as neuronal dendritic spines or the
dyadic cleft of cardiac myocytes, are prominent examples
for their vital roles in learning, memory (81), and heart-
beat generation (82). Even though some recent work about
stochastic fluctuations in the dyadic cleft exists (26), the
question how such fluctuations influence the Ca2þ signaling
apparatus as a whole, remains unanswered.

Beyond the scope of Ca2þ signaling, our work illustrates
the important role of mesoscopic chemical noise for intra-
cellular signaling networks. Nonlinearities such as allosteric
regulation, positive and negative feedback mechanisms,
and covalent modifications are ubiquitous and low-copy
numbers of key molecules appear frequently. In these situa-
tions it is necessary to recognize noise as an active element
within biological signaling networks.
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